
Evaluation of Election Outcomes under Uncertainty

Noam Hazon1, Yonatan Aumann1, Sarit Kraus1, Michael Wooldridge2

1Department of Computer Science 2Department of Computer Science
Bar-Ilan University University of Liverpool
Israel United Kingdom
{hazonn,aumann,sarit}@cs.biu.ac.il mjw@csc.liv.ac.uk

ABSTRACT
We investigate the extent to which it is possible to evaluate
the probability of a particular candidate winning an elec-
tion, given imperfect information about the preferences of
the electorate. We assume that for each voter, we have a
probability distribution over a set of preference orderings.
Thus, for each voter, we have a number of possible prefer-
ence orderings – we do not know which of these orderings
actually represents the voters’ preferences, but we know for
each one the probability that it does. We give a polynomial
algorithm to solve the problem of computing the probability
that a given candidate will win when the number of candi-
dates is a constant. However, when the number of candi-
dates is not bounded, we prove that the problem becomes
#P-Hard for the Plurality, Borda, and Copeland voting pro-
tocols. We further show that even evaluating if a candidate
has any chance to win is NP-Complete for the Plurality vot-
ing protocol, in the weighted voters case. We give a poly-
nomial algorithm for this problem when the voters’ weights
are equal.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Intelligent agents ;
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; J.4 [Social and
Behaviorial Sciences]: [Economics]

General Terms
Algorithms, Economics, Theory

Keywords
Computational social choice, Voting protocols

1. INTRODUCTION
In many multi-agent systems, it is desirable to have a mech-
anism which enables the agents within the system to make
a collective decision on a given issue. The mechanism by
which such a collective decision is made is typically a vot-
ing procedure. When considering voting procedures from

Cite as: Evaluation of Election Outcomes under Uncertainty, Noam Ha-
zon, Yonatan Aumann, Sarit Kraus and Michael Wooldridge, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

a computational perspective, many interesting theoretical
questions arise. Perhaps the most natural question from a
computer science perspective is: are the voting protocols to
select a winning outcome efficiently computable, given all
the agents preferences? Fortunately, it seems that relatively
few voting protocols are hard to compute in this sense [4].
Perhaps more intriguing are questions related to the com-
plexity of manipulating a voting procedure. It can often be
computationally infeasible for an agent to compute the most
beneficial manipulation [3], implying that while manipula-
tion is possible in theory, it is infeasible in practice. The
complexity of manipulation was studied in [3, 2, 6] under
the assumption that the number of outcomes is unbounded,
while [5, 7] analyzed the complexity of manipulation with
a constant number of outcomes. However, most of these
results assume perfect information about voter preferences,
which is surely a very unrealistic assumption in real world
settings.

In this work, we investigate voting systems under an im-
perfect information model. We assume that what is known
about an electorate is the following. For each voter, we have
a probability distribution over a set of preference orderings.
The idea is that although we do not know a voter’s prefer-
ence ordering exactly, we know that it is one of a set of possi-
ble orderings (typically a subset of the overall set of possible
preference orders), and we have a probability distribution
over these. This information may be estimated using histor-
ical data. In this setting, the following fundamental question
arises: given such an incomplete information model of voter
preferences and a particular voting system, how hard is it
to compute the probability that a particular candidate will
win? To the best of our knowledge, this question is not
addressed in the existing literature1.

The motivation for investigating this question is not merely
theoretical interest (which is, of course, by itself a legitimate
thing). In many situations, it might be beneficial to try to
foresee the probability of an outcome being chosen using
only partial knowledge about the other agents preferences,
which is modeled by a probability distribution as we have
described. One area is the avoidance of strategic voting by
a coalition of manipulators. Suppose that agent A wants to
vote for an outcome which is its most preferred one. An-
other manipulator agent, B, could try to convince A that
its outcome does not have any chance to be the winner so
he should directly vote for his second preferred outcome;

1The exception is the work of [5] but their result holds only
for weighted voters with weights that are not bounded by
Poly(n) as we will show later.

16.,2008,Estoril,Portugal,pp.959-966.

959

otherwise this outcome will also lose to A’s least preferred
candidate. Due to lack of exact knowledge how the other
agents will vote, A may be convinced by B. Alternatively,
A can estimate the other agent’s probabilities to vote for the
outcomes, by asking people who know them, or by using the
history of their former votes on the same issue. The ability
to calculate the probability of an outcome winning should
then help A to decide whether B has a valid point.

This ability to calculate the probability of an outcome
winning might also be useful in other domains. For example,
(and somewhat more speculatively), consider large multi-
agent environments, in which there is a need to keep com-
munication to a minimum. The voting process inevitably
requires communication between the election officer and the
voters in order to elicit their preferences. However, one way
to reduce the communication load is to calculate the prob-
abilities on the agents preferences from their voting history
and then calculate the probability of each outcome to win:
the winning outcome is then the one which gets the high-
est probability to be the winner. In this way, we simulate
a voting process by choosing the successful outcome with-
out the need to use communication at all. (This method
might be extended to a more sophisticated protocol which
uses limited communication by asking only a subset of the
voters about their current preferences, although we do not
investigate this possibility here.)

We therefore analyze the ability to calculate the probabil-
ity of an outcome to win in various different settings. We
first give some background and review some common voting
systems in Section 2. We formally define the above men-
tioned“evaluation”question in Definition 1. In Section 3, we
give a polynomial algorithm to answer the evaluation prob-
lem if the number of outcomes is a constant number, and we
show that the result of [5] holds only for weighted voting sys-
tems with weights that are not bounded by Poly(n). If the
number of candidates is not bounded, the evaluation prob-
lem becomes much harder: we show in Section 4 that even
for the Plurality, Borda, and Copeland voting protocols the
problem is #P-Hard. We then analyze a simpler question,
(the CHANCE-EVALUATION problem – Definition 8): can
we only distinguish between the case where a candidate has
any chance to be the winner from the case where its prob-
ability to be the winner is zero? Surprisingly, this problem
is shown to be NP-Complete even for the Plurality voting
protocol, when not all the voters have equal weights. We
also give a polynomial time algorithm when all voters have
equal weights.

Table 1 summarizes our results. For comparison, we also
include results from [5] (Parentheses near a complexity class
indicates the voting protocols for which the results have been
proved – for example, p is for Plurality and b is for Borda;
an ellipsis indicates that the results hold for a large variety
of voting protocols).

2. PRELIMINARY DEFINITIONS
Underlying our work is the notion of a social choice domain.
Formally, a social choice domain is a tuple S = 〈V, W, Ω,Â〉
where V = {1, . . . , n} is a non-empty set of voters – the
electorate; W = {w1, . . . , wn} is a non-empty set of weights,
wi ∈ N is a weight for each i ∈ V , to represent the decision
power of a given voter in a voting setting where not all vot-
ers are considered equal (rational weights can be converted
to integers by multiplying them by all the weights’ denom-

inators); Ω = {ω1, . . . , ωm} is a non-empty set of outcomes,
or candidates – the things the voters are trying to decide
over; and Â= {Â1, . . . ,Ân} is a non-empty set of preference
relations, Âi⊆ Ω×Ω is a (strict) preference relation over Ω,
for each i ∈ V , which is usually private to i.

The preference aggregation problem is that of combining
the preference relations Âi to obtain a social preference or-
der, and the general problem of social choice theory is to
find some way of aggregating preference relations in such a
way that certain principles (such as the Pareto condition)
are satisfied [1]. Generating the social preference order is
commonly done by a voting system which specifies the form
of the ballot, the set of allowable votes, and the voting pro-
tocol (an algorithm for determining the outcome). We are
concerned with settings in which we simply want to select
one outcome from Ω, and the voting protocol runs in poly-
nomial time.

We now review some common voting systems in the case
of un-weighted votes (i.e., the case where wi = 1 for all i).
The evaluation of a voting protocol for weighted votes is
done by simply replacing the vote of each voter i with wi

identical un-weighted votes. In general, voting systems can
be classified based on their ballot type. In binary voting
systems a voter either votes or does not vote for a given
candidate. In ranked voting systems, each voter ranks the
candidates in order of preference. We represent this ballot
as a vector where the first candidate is the most preferred
candidate, the second one is the second preferred candidate
and so on. Condorcet systems (or pairwise systems) are
a class of ranked voting systems that meet the Condorcet
criterion. That is, the candidate who, when compared in
turn with each of the other candidates, is preferred over the
other candidate is always declared to be the winner, if such
a candidate exists.

• Binary voting systems:

Plurality (aka. first-past-the-post, relative majority, or
winner-take-all). Each voter votes for one candidate,
and the candidate that receives the most votes wins
(even if it receives less than a majority of votes).

Approval voting. Voters may vote for as many can-
didates as they like. The candidate that receives the
most approval votes wins.

• Preferential voting systems:

Instant-runoff voting (IRV). The voters rank candi-
dates in order of preference. If no candidate receives
an overall majority (more than half of the votes) of
first choices, the candidates with fewest votes are elim-
inated one by one, and ballots cast for those candidates
are recounted for the next choice candidate until the
winner achieves a majority among remaining candi-
dates.

Contingent Vote (aka. plurality with run-off). The
contingent vote is the same as IRV except that all but
the two candidates with most votes are eliminated af-
ter the first iteration; therefore there are always only
two iterations.

Supplementary Vote. The Supplementary vote is a
variant of Contingent Vote. The difference is only in
the ballot type; voters only express a first and second
choice of candidate, while under the Contingent Vote
they must rank all of them.

960

Number of Candidates Weights Chance-Evaluation Evaluation

constant
equal P(p,b,c,m,i,...) P(p,b,c,m,i,...)

bounded by Poly(n) P(p,b,c,m,i,...) P(p,b,c,m,i,...)

otherwise NP-Hard(b,c,m,i) [5] NP-Hard(b,c,m,i) [5]

parameter
equal P(p) #P-Hard(p,b,c)

bounded by Poly(n) NP-Complete(p) #P-Hard(p,b,c)

otherwise NP-Complete(p) #P-Hard(p,b,c)

Table 1: Summary of results. The parentheses near a complexity class indicates the voting protocols for
which the results have been proved. Key: p=plurality, b=borda, c=copeland, m=minimax, i=irv, ...=many
more voting protocols

Borda. Voters rank candidates in order of preference.
Then for each voter, a candidate receives m points if
it is the voter’s top choice, m − 1 if it is the second
choice, . . . , 1 if it is the last. The candidate with the
most points wins.

• Condorcet systems:

Copeland (aka. Tournament). The winner is the can-
didate that wins the most pairwise contests (in a pair-
wise contest, a candidate wins if it is preferred over the
other candidate by more than half of the voters). The
score for every candidate is 1 point when it wins, −1
when it loses and 0 if the pairwise contest ends with a
draw. The candidate with the most points wins.

Minimax. If no candidate is undefeated, the candidate
that is defeated by the fewest votes in its worst defeat
wins.

Ranked pairs. Tally the vote count comparing each
pair of candidates. Sort the pairs by the margin of
victory: largest first, smallest last. Then create a di-
rected majority graph, where the nodes are the candi-
dates, and an edge (ω, ω′) means that ω would beat ω′

in a pairwise simple majority ballot. The graph is built
by starting with the pair with the largest number of
winning votes, and adding one pair in turn to the graph
as long as they do not create a cycle (which would cre-
ate an ambiguity). The completed graph shows the
winner: the node with in-degree of zero.

For breaking ties, we consider two alternatives. We can se-
lect a candidate randomly among all the tied candidates,
or, alternatively, we can simply select the first candidate ac-
cording to a pre-defined lexicographic order. Our results can
be easily extended to hold for other tie-breaking methods.

Now, a voter will not usually know the preferences of the
other individual voters – but he may know the probability
that a voter will vote for a specific candidate, or the proba-
bility that he will prefer one candidate over another. If all
probabilities are 0 or 1 then the scenario is one of perfect in-
formation, otherwise it is one of imperfect information. To
model imperfect information, we assume that we have for
each voter at most k possible preference orders, which are
permutations over the available alternatives. Each such or-
der is associated with a non-zero probability that this voter
will choose to vote for it, and the sum of probabilities of the
given preference orders is one; all the other possible pref-
erence orders which are not explicitly given are assumed to
have a probability of zero.

We consider the case where voters’ choices are indepen-
dent. If we collect from each voter just one preference order

(from the ones that are associated with him) we get a vot-
ing scenario, from which the winner can be calculated using
one of the voting protocols listed above (Plurality, Borda,
. . .). The probability of any given voting scenario occur-
ring is simply the multiplication of the probabilities of its
preference orders from the different voters.

Consider the following illustrative example. Suppose we
have 3 candidates, ω1, ω2 and ω3, and 3 voters, V1, V2 and V3.
In this example n = m = k = 3. Assume that the random
tie-breaking method is used. The voters’ preferences are
summarized in Table 2 with a probability associated to each
preference order. The probability that ω1 is the winner ac-
cording to Plurality is 9

20
/3, because the only voting scenario

where it has a chance to win is when V1 votes for him and
V3 votes for ω3 so there is a tie between all the candidates;
V2 always votes for ω2 (remember that in the plurality pro-
tocol every voter votes for its most preferred candidate; the
other preferences are not taken into account). The winning
probabilities for each candidate under the Plurality, Borda
and Copeland voting protocols are summarized in Table 3.
Note that ω3 has the highest probability of winning under
Plurality and Borda, but ω2 has the highest probability of
winning under Copeland.

V1 V2 V3

1
2

(ω1, ω2, ω3)
1
4

(ω2, ω1, ω3)
9
10

(ω3, ω1, ω2)
1
3

(ω3, ω1, ω2)
3
4

(ω2, ω3, ω1)
1
10

(ω2, ω1, ω3)
1
6

(ω2, ω1, ω3)

Table 2: An example of how we represent the im-
perfect information

Plurality Borda Copeland

ω1 0.15 0.225 0.1125
ω2 0.4 0.3625 0.5875
ω3 0.45 0.4125 0.3

Table 3: Winning probabilities for each candidate.
Bold font represents the highest probability in each
voting protocol

We are now ready to define our main problem.

Definition 1. [EVALUATION] Given a social choice do-
main, an imperfect information model of voters’ preferences,
as described above, and a specific candidate, ω∗, what is the
probability that ω∗ will be chosen?

The answer to this question is the sum of probabilities
of all the voting scenarios where ω∗ wins. Note that the

961

complexity of this problem is a function of the number of
voters (n), the number of outcomes (m), and the number of
possible non-zero probability preference orders for each voter
(k). In the following sections, we analyze the complexity
of the problem in two main different scenarios: where the
number of candidates is bounded by a constant, and when
it is not bounded.

3. CONSTANT NUMBER OF CANDIDATES
In many real-world scenarios, the number of alternatives is
small and can be bounded by a constant. For example, if
a group of agents want to decide on a full hour to meet in
a given day, the number of alternatives is always 24. In
this section we will show a polynomial algorithm for the
EVALUATION problem under the assumption of a constant
number of alternatives2.

The key to the efficiency of our algorithm is the distinction
between a voting scenario to a voting result. In a voting
scenario we know for each voter which preference order he
votes for. But to identify a winning candidate, we actually
do not care which voter votes for each candidate; rather,
we are concerned with what the total number of votes are.
That is a voting result. Many voting scenarios may lead
to the same voting result. For example, suppose we use
the Plurality protocol with three voters and two candidates,
ω1 and ω2. Suppose also that all the voters do not have
a probability of 1 to vote for one of the candidates. Thus,
there are three voting scenarios with the same voting result
of two votes for ω1 and one vote for ω2. After we present
the algorithm, we describe different ways to represent voting
results for many common voting protocols.

Let us first describe the algorithm where all the voters’
weights are equal. We use a dynamic programming approach
to enumerate all the possible voting results of a given voting
protocol for n voters and calculate their probability. This is
done by using the possible voting results for n−1 voters and
their probabilities, which is in turn done by using the voting
results of n − 2 voters, and so on. Our algorithm builds a
Table where the rows are all the possible voting results for
n voters and the columns represent the voters. We denote
by T [~i, j] the cell in the Table at the row which represents

the voting result vector ~i, and at column j. In any stage,
the algorithm only requires memory to hold 2 columns.

Algorithm 1 VotingResult(table T , preference orders for
each voter)

1: Init T [., .] ← 0, T [~0, 0] ← 1.
2: for i ← 0 to n− 1 do
3: for all cells in column i do
4: ~r ← the voting results of the cell’s row
5: for j ← 1 to k do
6: ~cur ← preference order j of voter i + 1
7: ~next ← the voting result from adding cur to r
8: T [~next, i+1] ← T [~next, i+1]+ (probability of cur×

T [~r, i])

When the algorithm terminates, each cell in the last col-
umn contains the probability of that cell’s row voting result
occurring. We can identify the winner for each voting result
according to the specific voting protocol. So, we can an-

2We thank Efrat Manisterski for her contribution in devel-
oping this algorithm

swer the EVALUATION problem from definition 1 by sim-
ply summing for ω∗ the probabilities of the voting results
where it wins. Consider the following small example. Sup-
pose we use the plurality voting protocol with 3 candidates,
ω1, ω2 and ω3 and 2 voters, V1 and V2. The voters’ prefer-
ences are summarized in table 4(a). Table 4(b) shows the
table, T , that is built by the algorithm. Every row rep-
resents a voting result which is a vector such that index i
counts the number of votes for candidate ωi. The last col-
umn shows the probabilities for every possible voting result
with voters V1 and V2. Thus, the probability that ω1 is the
winner, assuming a random tie-breaking method is used, is
1
2
· 1

4
+ 1

2
· (1

3
· 1

4
+ 1

2
· 3

4
) + 1

2
· (1

6
· 1

4
).

Table 4: An example of how algorithm 1 builds a
table from a given set of preferences

(a) A set of vot-
ers’ preferences

V1 V2

1
2

ω1
1
4

ω1
1
3

ω2
3
4

ω2
1
6

ω3

(b) The corresponding table T , that is
built by the algorithm

Voting result 0 1 2
(ω1, ω2, ω3)

0,0,0 1 0 0

1,0,0 0 1
2

0
0,1,0 0 1

3
0

0,0,1 0 1
6

0

2,0,0 0 0 1
2
· 1

4

1,1,0 0 0 1
3
· 1

4
+ 1

2
· 3

4

1,0,1 0 0 1
6
· 1

4

0,2,0 0 0 1
3
· 3

4

0,1,1 0 0 1
6
· 3

4

0,0,2 0 0 0

The time complexity of the algorithm is roughly O(n×
number of rows of T ×k), and the space complexity is O(2×
number of rows of T). The specific voting system determines
how to express the possible voting results which in turn de-
termines the number of rows. For many voting systems one
of the following three methods can be used to express the
possible voting results:

1. a vector of [0, n]m such that index i represents the
number of voters who voted for candidate i.

2. a vector of [0, n]m(m−1)/2 which represents the num-
ber of voters who preferred the first candidate in each
possible pair of candidates.

3. a vector of [0, n]m! which represents the number of vot-
ers who voted for each possible preference order per-
mutation.

We now show which method to use for each voting system.

• Binary voting systems:

Plurality. The first method can be used, so the number
of rows is nm and the time complexity is O(nm+1k),
but we can give a tighter bound. The actual number
of voting results with n voters is exactly the number of
options to split the integer number n to exactly m non-
negative integers, such that their sum is equal to n.
Two sums which differ in the order of their summands
are considered to be different compositions. This is
called a weak composition of n with exactly m parts;

962

we denote this value by WC(n, m). So the running
time complexity is O(k

∑n
i=1 WC(i, m)) and the space

required is O(WC(n− 1, m) + WC(n, m)).

Approval voting : The first method can be used.

• Preferential voting systems:

IRV and Contingent Vote: the third method can be
used so the number of rows is nm! and the time com-
plexity is O(nm!+1k). Again, the more precise bound
is O(k

∑n
i=1 WC(i, m!)).

Supplementary Vote: because every voter expresses a
first and second choice of candidate only, we can use
a modified version of the first method – a vector of
[0, n]m

2
such that each index counts the number of

voters who voted for a specific ordered pair of candi-

dates. The number of rows is nm2
, and a precise time

bound is O(k
∑n

i=1 WC(i, m2))

Borda: If (mn)m < nm! we shall use a modified ver-
sion of the first method – a vector of [0, mn]m which
represents the total score for each candidate. A more
precise time bound is O(k

∑n
i=1 WC(i∗m, m)). If not,

we can use the third method and calculate the number
of scores for each candidate from the preference orders.

• Condorcet systems: (Copeland, Minimax, ranked
pairs). The second method can be used, so the number

of rows is nm(m−1)/2.

When we move to the weighted voters case, [5] expressed
the EVALUATION problem as the following decision prob-
lem: given a number r, 0 ≤ r ≤ 1, is the probability
of ω∗ winning greater than r? They showed that Borda,
Copeland, Minimax and IRV are NP-hard to evaluate even
for extremely restricted probability distributions. We show
that their results hold only for weights that are not bounded
by Poly(n).

Claim 2. The EVALUATION problem is in P even for
weighted voters, when the weights are in O(Poly(n))

Proof. Our dynamic programming approach (algorithm
1) can be easily extended to work with weighted voters. Ac-
tually, the only thing that has to be changed is the range
of possible voting results which determines the number of
rows in the table. The number of rows will now become
O(Poly(n)m), O(Poly(n)m(m−1)/2) or O(Poly(n)m!), de-
pending on the specific voting system (as described before).
In all the cases it is still in P.

This result may be understood with reference to the proofs
of [5], which uses a NP-Hard reduction from the PARTI-
TION problem. PARTITION is known to have a pseudo-
polynomial time dynamic programming solution [8]. The
restriction to weights that are bounded by Poly(n) in our
case however, seems to be a very natural and realistic as-
sumption. It seems unlikely that there exist meaningful real
world scenarios in which one gives a particular voter power
that is exponentially larger than another voter’s power.

4. THE NUMBER OF CANDIDATES AS A
PARAMETER

If we cannot bound the number of candidates, then EVAL-
UATION becomes much harder. In this section, we show

that EVALUATION for Borda, Copeland and even for Plu-
rality is #P-Hard in this case. We also define and analyze
a seemingly much weaker question for the Plurality voting
protocol. Surprisingly, we show that even this problem is
hard to compute when not all voters have equal weights,
but we give a polynomial algorithm for the case when all
voters have equal weights.

4.1 The Evaluation problem
Sometimes, the number of candidates cannot be assumed to
be a constant, but is necessarily a parameter of the prob-
lem. For example, if a group of agents wants to choose one
of them as a leader, m = n and thus is not a constant.
There are some special cases where the number of voters is
a constant and so a naive algorithm, which simply evaluates
all possible options and runs in time polynomial of O(mn)
will suffice. In most cases this is probably not going to hap-
pen. Unfortunately, if both the number of voters, n, and the
number of candidates, m, are given as parameters, the prob-
lem is #P-Hard even for the Plurality, Borda and Copeland
voting protocols.

All our #P-Hard reductions will be from a well known
#P-Complete problem – a calculation of the permanent of
a 01-matrix, or counting the number of perfect matching for
a bipartite graph.

Definition 3. Denote by Sn the set of all permutations
of the numbers 1, 2, . . . , n. The permanent of an n-by-n
matrix A = (ai,j) is defined as

perm(A) =
∑

σ∈Sn

n∏
i=1

ai,σ(i)

For a bipartite graph G = (X + Y, E) such that ∀(x, y) ∈
E, x ∈ X and y ∈ Y , and |X| = |Y | = k, a perfect match-
ing is a set of edges such that no two edges share a common
vertex and every vertex is incident to exactly one edge. The
permanent of G’s adjacency matrix in fact counts the num-
ber of perfect matchings for G.

We are now ready to show the proof for the Plurality
voting protocol.

Theorem 4. If n and m are not constant, the EVALUA-
TION problem is #P-Hard for the Plurality voting protocol.

Proof. Given a bipartite graph G = (X + Y, E), with
X = {x1, . . . , xk} and Y = {y1, . . . , yk}, for which we wish
to count the number of perfect matchings, we construct an
instance of the EVALUATION problem such that the prob-
ability of the chosen candidate to win is linear in the number
of perfect matchings. We first consider the case where the
tie-breaking method is to select the first candidate accord-
ing to a pre-defined lexicographic order. The voters are all
the vertices of X plus two additional voters x0 and ŵ, all
with equal weights. The candidates are all the vertices of Y
plus two additional candidates y0 and â. For every x ∈ X, if
(x, y) ∈ E, set the probability that voter x votes for candi-

date y to be 1
k
. With the remaining probability (1− deg (x)

k
,

where deg (x) is the degree of x) voter x votes for y0. Finally,
ŵ votes for candidate â with probability 1, and x0 votes for
candidate y0 with probability 1.

Consider a particular set of votes cast by the voters. Vot-
ers x0 and ŵ have no choice, so consider the choices made by

963

voters in X. Each such set of choices naturally corresponds
to a matching, M , between X and Y :

M = {(x, y) ∈ X × Y : x voted for y}
(note that if x voted for y0 then this pair is not included
in M). We show that â wins the election iff M is a perfect
matching.

Suppose that M is a perfect matching, then all candidates
in Y get exactly one vote (from the voters in X) as do â
and y0 (from ŵ and x0, respectively). Thus, all candidates
obtain the same score, and â wins by lexicographic order.
Conversely, suppose that M is not a perfect matching. Then,
either there is a candidate y ∈ Y that gets more than one
vote, or else there is a voter x ∈ X that voted for y0 (in
addition to the vote y0 surely received from x0). In either
case, there is a candidates that got more than one vote, while
â received only one vote (from ŵ). Hence, â does not win
the election.

The probability that the voters of X elect any specific
perfect matching is k−k. Thus

Pr[â wins the election] = k−k · PM(G)

where PM(G) denotes the number of perfect matchings in
G. Hence, the answer to the EVALUATION problem also
gives us one for the number of perfect matchings.

The proof for random tie-breaking is essentially identical,
only that in the case of an exact matching â does not nec-
essarily win, but only wins with probability 1

k+2
. Hence, in

this case Pr[â wins the election] = k−k

k+2
· PM(G). The rest

of the proof remains the same.

We now turn to the Borda and Copeland protocols. We
start with a simple lemma, the proof of which is trivial.

Lemma 5. Let V be a set of voters, each with an individ-
ual preference order over a set of candidates. Suppose that
all orders are different, and that for each preference order
of any voter v, there exists another voter v′ with the exact
opposite preference order. Then:

• In the Borda protocol all candidates get the exact same
score (which is also the average score).

• In the Copeland protocol, all pairwise contests are tied,
for a total 0 score for all candidates.

Theorem 6. If n and m are not constant, the EVALU-
ATION problem is #P-Hard for the Borda voting protocol.

Proof. Let G = (X + Y, E) be a bipartite graph, with
X = {x1, . . . , xk} and Y = {y1, . . . , yk}, for which we wish
to count the number of perfect matchings. We construct an
instance of the EVALUATION problem as follows. There
are 2(k + 1) voters composed of two subsets: X+ and W ,
with k + 1 voters in each. The set X+ consists of the set X
plus one additional voter x0. The set W consists of k + 1
voters w0, . . . , wk. All voters have equal weights. There
are k + 2 candidates: C = {c0, . . . , ck} and one “special”
candidate â. We build the EVALUATION instance in such a
way that every perfect matching in G corresponds to a voting
choice in which for every voter xi ∈ X+, there is a voter
wj ∈ W with the exact reverse preference order. In this case,
by Lemma 5 all candidates have the same score, and â wins
by lexicographic order. Furthermore, the EVALUATION

instance is constructed such that â only wins in votings that
correspond to perfect matchings in G. The details follow.

For ease of notation we denote i⊕ j = (i + j)mod(k + 1).
Define the following set of orderings over the candidate set.
For each i = 0, . . . , k let si = (ci, ci⊕1, . . . , ci⊕k, â), and
denote by (si)

R the reverse order to si. For each (xj , yi) ∈
E (an edge in G), there is a probability of 1/k that voter
xj vote for order si. With the remaining probability (1 −
deg (xj)

k
) voter xj votes for order s0. Voter x0 votes for s0

with probability 1. For voters in W , voter wj votes for order
(sj)

R with probability 1. Note that, in particular, â is last in
all votes of X+ and first in all votes of W . See Figure 1 for
example of how to build an instance from a given bipartite
graph where k = 3.

Consider a set of orders chosen by the voters. Only the
voters of X have any choice, so consider their votes. Each
such set of choices naturally corresponds to a matching, M ,
between X and Y :

M = {(xi, yj) ∈ X × Y : xi voted sj}
We show that for lexicographic order tie-breaking, â wins
the election iff M is a perfect matching in G.

Suppose that M is a perfect matching in G. Then, each
si is voted exactly once, by the voters in X+. However, each
(si)

R is also voted exactly once, by the voters of W . Hence,
each voted order has the exact opposite order also voted for,
and by Lemma 5, â wins by lexicographic order.

Conversely, suppose that M is not a perfect matching.
Denote by α the average total score of the candidates. Since
α is an average, it is independent of the actual choices made
by the voters. Consider M . Since M is not a perfect match-
ing, there exists at least one order si that is not voted by
any voter of X+. W.l.o.g. assume that this is sk. Note that
in all orders si with i 6= k candidate ck appears after candi-
date ck−1. Hence, the total score that ck−1 gets from voters
of X+ must be higher than the total score they give ck. The
voters of W , on the other hand, in total give all candidates
of C the exact same score (since the construction of the si’s
is symmetric). Hence, ck−1 gets a higher total score than ck,
and, in particular, it is not the case that all candidates get
an identical total score. Thus, there must be a candidate ci0

that gets a total score β strictly greater than the average α.
On the other hand, the score of â is always the same (being
always last in votes of X+ and first in votes of W). Hence,
its score is always identical to the one it gets in a perfect
matching, namely α. Hence, â does not win the elections.

The probability that the voters of X elect any specific
perfect matching is k−k. Thus, Pr[â wins the election] =
k−k ·PM(G). Hence, the answer to the EVALUATION prob-
lem also gives us one for the number of perfect matchings.

The proof for random tie-breaking (instead of lexico-
graphic), is essentially identical, as in the previous proof.

Theorem 7. If n and m are not constant, the EVALUA-
TION problem is #P-Hard for the Copeland voting protocol.

Proof. The proof is very similar to that of the Borda
protocol, and uses the exact same construction. Following
that proof, we show that also for the Copeland protocol, â
can win iff M (as defined in the Borda proof) is a perfect
matching. Indeed, if M is a perfect matching, then as shown
above, for each vote for a given preference order there is a
vote for the exact reverse order. Thus, the conditions of

964

x1

x2

x3

y1

y2

y3

X Y

(a) Bipartite graph example, k = 3

x1

x2

x0

w0

w1

w3

w2

(c1,c2,c3,c0,â)
1/3

1/3

1/3

1/3

1/3

1

1

1

1

1/3

2/3

1

1/3
x3

(c2,c3,c0,c1,â)

(c3,c0,c1,c2,â)

(c0,c1,c2,c3,â)

(â,c3,c2,c1,c0)

(â,c0,c3,c2,c1)

(â,c1,c0,c3,c2)

(â,c2,c1,c0,c3)

X+

W

(b) The corresponding instance for the EVALUA-
TION algorithm

Figure 1: Reduction of Permanent to EVALUA-
TION problem used in proof of Theorems 6 and 7

Lemma 5 hold, and all candidates get an identical 0 score.
Hence, â can win (either by lexicographic order or by random
choice, depending on the protocol).

Conversely, suppose that M is not a perfect matching.
Then, there exists at least one order si that is not voted
by any voter of X+. W.l.o.g. assume that this is sk. In all
orders si with i 6= k candidate ck−1 appears before candi-
date ck. In all orders (si)

R with i 6= (k − 1) candidate ck−1

appears immediately after ck, and in (sk−1)
R it appears be-

fore candidate ck. Hence, for any other candidate cj , if ck

wins the pairwise contest with cj , so does ck−1. In addi-
tion, ck−1 wins ck. Hence, in total, ck−1 must win strictly
more pairwise contests than ck. Hence, it cannot be the case
that all candidates score exactly 0. Thus, since the average
total score is necessarily 0, there must be at least one can-
didate that scores more than 0. On the other hand, â ties
all pairwise contests (it is first in all votes by W and last in
all those by X+), for a total of 0. Thus, â cannot win the
elections. The rest of the proof is identical to that for the
Borda protocol.

Note that all our proofs use equal weights for the voters,
so the results hold for the weighted voters case with un-
bounded or bounded weights too.

4.2 Chance-Evaluation problem
Our original definition of the EVALUATION problem yields

a problem that is hard to compute for some common voting
protocols. Now we thus define a related problem with a
weaker question.

Definition 8. [CHANCE-EVALUATION] Given a so-
cial choice domain, an imperfect information model of vot-
ers’ preferences, as described above, and a specific candidate,
ω∗, is the probability that it will be chosen greater than zero?

This question seems to be very a natural one. In many
cases there are some candidates which do not have any
chance of winning. Every voter will probably want to know
which candidates do not have any chance to win regardless
of his vote, in order to deliberate between candidates which
have at least one voting scenario where they win. Surpris-
ingly, this question is hard even for the simplest voting pro-
tocol – Plurality – when not all voters have equal weights.

Theorem 9. If n and m are not constant, the CHANCE-
EVALUATION problem is NP-Complete for the Plurality
voting protocol when not all the voters have equal weights.

Proof. The problem is clearly in NP – given one voting
scenario where ω∗ wins, we can calculate its probability of
occurring and check that indeed ω∗ is the winner in polyno-
mial time. The NP-Hard reduction is from the NP-Complete
BIN-PACKING problem: given a finite set U of items, an
integer size s(u) for each u ∈ U , a positive integer bin capac-
ity B and a positive integer k, is there a partition of U into
disjoint sets U1, U2, . . . , Uk such that the sum of the sizes
of the items in each Ui is B or less? The instance for the
CHANCE-EVALUATION problem is as follows. Every item
is represented by a voter, where the item size is the voter’s
weight. We add another voter, vz with the weight B + 1.
Every bin is represented by a candidate, and we add another
candidate z. vz has a probability of 1 to vote for z, and all
the other voters have an equal probability to vote for each
one of the remaining candidates. We look for the possibility
of z to be a winner. Note that every voting scenario corre-
sponds to a packing and vice versa; a voter with weight x
which votes for candidate y is like placing an item with size
x in bin y. One item can not be in more than one bin and
every voter can not vote for more than one candidate. Now
suppose the tie-breaking method is to select the first can-
didate according to a pre-defined lexicographic order (the
proof can be extended to work with a random tie-breaking
method as well). z is the winner if and only if all the other
candidates get B or less votes. So there is a packing if and
only if there is a voting scenario where z is the winner.

This problem is NP-Complete in the strong sense [8],
meaning that even if the weights are bounded by Poly(n)
the problem remains hard (unlike the case with the con-
stant number of candidates, as shown before). Fortunately,
if all voters have equal weights the problem can be solved in
polynomial time.

Theorem 10. Even if n and m are not constant, the
CHANCE-EVALUATION problem is in P for the Plurality
voting protocol where all voters have equal weights.

Proof. We give a polynomial time algorithm to answer
the CHANCE-EVALUATION problem, assuming a random
tie-breaking is used although the algorithm can be extended
to work with the second tie-breaking method that was men-
tioned above as well. The idea is very similar to the tech-
nique in [9, p.176]. Let ω∗ be the candidate for whom we

965

are trying to determine whether they have any chance of
winning. Count the number of voters that vote for ω∗ with
non-zero probability, and denote this number by k. Then
build a flow network G = (V, E) which contains a bipar-
tite graph G′ = (V 1′ + V 2′, E′) and two additional nodes
s and t, V = V 1′ ∪ V 2′ ∪ {s, t}. V 1′ has a node for every
voter which has a zero probability to vote for ω∗, and V 2′

has a node for every candidate but ω∗. For every i ∈ V ′
1 ,

if voter i has a non-zero probability to vote for candidate
j then (i, j) ∈ E′. In E, s has an edge with capacity 1 to
all the nodes of V 1′, t has an edge with capacity k from
all the nodes of V 2′, and if (i, j) ∈ E′, (i, j) ∈ E too, with
capacity 1. Now find a maximum flow and check that every
edge from s to a node of V 1′ has a residual capacity of zero.
If such flow exists, it represents a voting scenario where ω∗

gets k votes and all the other candidates get k or less votes
so the algorithm returns “yes”. If not, then in every voting
scenario, ω∗ can get at most k votes and there is at least
one candidate who get more than k votes so the algorithm
returns “no”. The construction of the flow network and all
the stages of the algorithm can be done in polynomial time,
so the CHANCE-EVALUATION problem for Plurality is in
P where all the voters have equal weights.

Figure 2 shows how the algorithm builds a flow network
from the set of preferences in Figure 2(a). In this example we
seek a voting scenario where candidate D wins. We remove
voters V1, V5 and V7 which have a non-zero probability of
voting for D, and build a flow network as described in Figure
2(b) to find a voting scenario where all the other candidates
receive no more than 2 votes.

V8 V7 V6 V5 V4 V3 V2 V1

3

1
 B

3

1
 B

3

1
 B

3

1
 A

3

1
 B

3

1
 A

2

1
 A

4

1
 A

3

2
 C

3

2
 D

3

2
 C

3

2
 D

3

2
 C

2

1
 B

2

1
 C

2

1
 B

6

1
 C

4

1
 D

(a) A set of preferences

V2

V3

V4

A

B

C

V1' V2'

V6

V8

s t

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

2

2

2

1

(b) The corresponding flow network for candidate D

Figure 2: An example of how to build a flow network
from a given set of preferences

5. CONCLUSIONS AND FUTURE WORK
In many multi-agent systems, it is desirable to use voting
protocols to aggregate the preferences of different agents. If
all the agents’ preference orders are perfectly known, then
for any practical voting protocol it is computationally easy

to calculate which candidate will win. However, this perfect
information assumption is sometimes not realistic, and what
we know instead is only the probability that each voter has a
certain preference profile. In this work, we investigated the
problem of computing the probability that a candidate will
win an election, given this imperfect information scenario.
We showed an important distinction between the case where
the number of candidates is a constant and the case where it
is not bounded. In the first case, our algorithm, which runs
in polynomial time, can compute the probability of a can-
didate winning in many voting systems, no matter whether
or not voter weights are equal. However, the second case is
#P-Hard to compute, as we proved for Plurality, Borda and
Copeland voting protocols. Even to check whether a candi-
date has any chance to win with the Plurality voting protocol
is NP-Complete when not all voter weights are equal. For
the case when they are equal, we gave a polynomial time
algorithm for computing if a candidate has any chance to
win using the Plurality protocol.

For future work, we would like to extend our current anal-
ysis to more voting protocols. We would also like to improve
our results for the current voting protocols: where we prove
that the problem is #P-Hard it would be useful to have an
approximation algorithm (or to prove that one cannot be
found); even where the problem is in P, our algorithm may
have an impractically large running time. Using heuristics
may yield more efficient algorithms which yield the correct
answer for most of the cases.

6. REFERENCES
[1] K. J. Arrow, A. K. Sen, and K. Suzumura, editors.

Handbook of Social Choice and Welfare Volume 1.
Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 2002.

[2] J. J. Bartholdi and J. Orlin. Single transferable vote
resists strategic voting. Social Choice and Welfare,
8:341–354, 1991.

[3] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, 6:227–241, 1989.

[4] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting
schemes for which it can be difficult to tell who won the
election. Social Choice and Welfare, 6:157–165, 1989.

[5] V. Conitzer and T. Sandholm. Complexity of
manipulating elections with few candidates. Proceedings
of the Eighteenth National Conference on Artificial
Intelligence (AAAI-2002), 2002.

[6] V. Conitzer and T. Sandholm. Universal voting
protocol tweaks to make manipulation hard.
Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-03), 2003.

[7] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate?
Journal of the ACM, 54(3):1–33, June 2007.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
np-Completeness. W. H. Freeman: New York, 1979.

[9] D. B. West, editor. Introduction to Graph Theory.
Prentice Hall, 2 edition, 2001.

966

