
Power and Stability in Connectivity Games

Yoram Bachrach Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem, Israel
{yori,jeff}@cs.huji.ac.il

Ely Porat
Department of Computer Science

Bar-Ilan University, Ramat-Gan, Israel
porately@cs.biu.ac.il

ABSTRACT
We consider computational aspects of a game theoretic ap-
proach to network reliability. Consider a network where fail-
ure of one node may disrupt communication between two
other nodes. We model this network as a simple coalitional
game, called the vertex Connectivity Game (CG). In this
game, each agent owns a vertex, and controls all the edges
going to and from that vertex. A coalition of agents wins
if it fully connects a certain subset of vertices in the graph,
called the primary vertices.

We show that power indices, which express an agent’s abil-
ity to affect the outcome of the vertex connectivity game,
can be used to identify significant possible points of failure
in the communication network, and can thus be used to in-
crease network reliability. We show that in general graphs,
calculating the Banzhaf power index is #P-complete, but
suggest a polynomial algorithm for calculating this index in
trees. We also show a polynomial algorithm for computing
the core of a CG, which allows a stable division of payments
to coalition agents.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Network Reliability, Power in-
dices

1. INTRODUCTION
Making joint decisions and cooperating are key features of

multiagent systems. Cooperative game theory treats many
aspects of these issues, and can serve as a foundation for

Cite as: Power and Stability in Connectivity Games, Yoram Bachrach,
Jeffrey S. Rosenschein and Ely Porat,Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal, pp.999-1006.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

analyzing such systems. One specific topic which has been
studied extensively in game theory, as well as in other fields
such as political science and economics, is that of voting.
Voting is used in a variety of multiagent systems, typically
to enable a team of agents to make a group decision.

An interesting measure applied to voting scenarios is that
of power indices; such indices measure the control a voter
has over decisions of a larger group [5]. One popular power
index is the Banzhaf power index [2]. While it has mostly
been used for measuring power in weighted voting systems,
it can easily be adapted for other domains as well.

In this paper, we consider the use of the Banzhaf index to
find key points of failure in a communication network. We
model a communication network composed of servers and
network links between them as a vertex connectivity game.
The network is modeled as a graph, where the servers are
the vertices, and the network links are the edges. A certain
subset of the servers (vertices) are primary—a failure to
send information between any two of them would constitute
a major system failure. Another subset of the servers are
always available (backbone servers).

In the vertex Connectivity Game (CG) that we introduce,
each agent controls a different vertex in the graph. A coali-
tion of agents can use any of the vertices controlled by the
coalition members or the backbone vertices, and may send
information between them. The coalition wins if it connects
all the primary vertices, so that it can send information be-
tween any two of them. The Banzhaf index of an agent in
this game reflects its criticality in maintaining this connec-
tivity. In communication networks, this index could thus
enable an administrator to identify potential critical points
of failure in the network.

We consider the computational complexity of calculating
the Banzhaf power index in this domain. We show that in
general graphs, this problem is #P-complete. Despite this
negative result, we provide a polynomial algorithm for the
restricted case where the graph is a tree. Many networks,
including parts of the internet’s backbone, are constructed
as trees when the construction of a communication line is ex-
pensive, so this algorithm can analyze important real-world
domains.

We also consider another game theoretic solution concept,
the core, and show that it can be computed in polynomial
time in CGs. The core of the CG indicates which payoff
vectors are stable. When a coalition in the CG manages to
connect all the primary vertices it wins, and gains a certain
profit. This profit should be divided among the members of
the coalition. Choosing a payoff vector in the core guaran-

999

tees that no subcoalition would choose to split from the main
coalition, and attempt to establish its own network. Thus,
the core can be used to allocate the gains of a coalition in a
CG domain in a stable way.

The paper proceeds as follows. In Section 2, we provide
background information regarding coalitional games and the
Banzhaf power index, and fully define a vertex connectivity
game. In Section 3, we discuss the Banzhaf power index in
vertex connectivity games, and present the hardness result
for the general case. Section 4 discusses vertex connectivity
games in trees, and provides a polynomial algorithm for this
case. Section 5 shows that the core of CGs can be computed
in polynomial time. Section 6 discusses important related
work, and we conclude in Section 7.

2. PRELIMINARIES
A coalitional game is composed of a set of n agents, I =

(a1, . . . , an), and a function mapping any subset (coalition)
of the agents to a real value v : 2I → R. The function v is
called the coalitional function (or sometimes the character-
istic function) of the game. In a simple coalitional game, v
only gets values of 0 or 1, so v : 2I → {0, 1}. A coalition
C ⊆ I wins if v(C) = 1, and loses if v(C) = 0. The set of all
winning coalitions is denoted W (v) = {C ⊆ 2I |v(C) = 1}.
An agent ai is critical in a winning coalition C if the agent’s
removal from that coalition would make the coalition lose:
v(C) = 1 but v(C \ {i}) = 0. Thus, an agent can only be
critical in a coalition that contains him.

We are interested in measuring the influence a given agent
has on the result of the game. A common interpretation for
this is the probability that this agent would significantly
affect the outcome of the game.

One common power index is the Banzhaf power index [2].
It has been widely used for measuring political power in
weighted voting systems, but its definition does not rely on
the specific features of a weighted voting game. The index
depends on the number of coalitions in which an agent is
critical. The Banzhaf index of agent ai is the proportion of
all winning coalitions where ai is critical, out of all winning
coalitions that contain ai.

Definition 1. The Banzhaf index is given by β(v) =
(β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

X

S⊆N|i∈S

[v(S) − v(S \ {i})].

When the agents are independent in their choices, so every
coalition has an equal probability of occurring, the Banzhaf
index measures the probability of an agent being critical;
for the winning coalitions that contain ai, the index counts
in how many of them it is critical (i.e., its removal from
the winning coalition would make the coalition lose). Other
power indices reflect other assumptions. For example, the
Shapley-Shubik index assumes the model that agents are
randomly added to a coalition, so every ordering of the
agents is equally probable. The index then measures in how
many of the orderings ai is the first agent that makes the
coalition win (i.e., the first agent that, when added to the
previous agents, makes the coalition win).1 In this paper,
we consider server failures in a network. Since each server

1Although the Banzhaf and Shapley-Shubik indices are sim-

may fail independently from the others, the Banzhaf power
index is more appropriate for this case.

In simple coalitional games, the coalitional function v only
gets values of 0 or 1. In general coalitional games, this func-
tion may have any value in R

+, and we say this function de-
termines the total gains of a coalition. The coalitional func-
tion only defines the utility a coalition can achieve, but does
not define how the agents distribute this utility among them-
selves. A payoff vector (p1, . . . , pn) is a division of the gains
of the grand coalition I among the agents, where pi ∈ R,
and

Pn

i=1 pi = v(I). We call pi the payoff of agent ai, and
denote the payoff of a coalition C as p(C) =

P

i∈{j|aj∈C} pi.

By assumption, agents are rational and attempt to maxi-
mize their own share of the utility. Game theory offers sev-
eral solution concepts, determining which payoff vectors are
possible when agents act rationally.

A simple requirement for the payoff vector is individual-
rationality : for all agents ai ∈ C, we have pi ≥ v({ai}),
otherwise that agent is better off on its own. Similarly,
we say a coalition B blocks the payoff vector (p1, . . . , pn)
if p(B) < v(B), since the members of B would split off from
the coalition and gain more utility without the rest of the
agents. If a blocked payoff vector is chosen, the coalition is
unstable. A solution concept that emphasizes such stability
is the core [8].

Definition 2. The Core of a coalitional game is the set
of all payment vectors (p1, . . . , pn) that are not blocked by
any coalition, so for any coalition C we have p(C) ≥ v(C).

A value distribution in the core makes sure that no subset of
the agents would split off, so the coalition is stable. In gen-
eral the core can be empty, so every possible value division
is blocked by some coalition. In this work, we give results
regarding computing the core in vertex Connectivity Games.
Another solution concept, which contains only a single possi-
ble payment vector, is the Shapley value, whose application
to simple coalitional games is the Shapley-Shubik power in-
dex, discussed above. However, the core focuses on stability,
and the Shapley value focuses on certain fairness conditions.

Our hardness result for calculating the Banzhaf power in-
dex in CGs considers the class #P. #P is the set of integer-
valued functions that express the number of accepting com-
putations of a nondeterministic Turing machine of polyno-
mial time complexity. Let Σ be the finite input and output
alphabet for Turing machines.

Definition 3. #P is the class consisting of the functions
f : Σ∗ → N such that there exists a non-deterministic poly-
nomial time Turing machine M that for all inputs x ∈ Σ∗,
f(x) is the number of accepting paths of M.

The complexity classes #P and #P-complete were intro-
duced by Valiant [20]. These classes express the hardness of
problems that “count the number of solutions”.2

ilar, the Banzhaf index considers all possible subsets of
agents, whereas the Shapley-Shubik index is defined over all
orderings (or permutations) of the agents, so the two indices
can be computationally quite different.
2Informally, NP and NP-hardness deal with checking if at
least one solution to a combinatorial problem exists, while
#P and #P-hardness deal with calculating the number of
solutions to a combinatorial problem. Counting the number
of solutions to a problem is at least as hard as determining

1000

2.1 Connectivity Games
In this paper we consider a particular network reliability

model. Consider a communication network connecting var-
ious servers (or, equivalently, vertices); a certain subset of
the servers are designated “primary” servers. Our goal is to
make sure we can send information between any two primary
servers. A server in the network may malfunction, and if it
does, we cannot send information through it. If all the paths
between two primary servers go through a failed server, we
cannot send information between these two primary servers.

Of course, a communication network may be designed
with redundancy, and have no single point of failure. How-
ever, even in this case, when more than one server fails,
we may cease to be able to send information between two
primary servers (depending on the available paths).

In our model, we will also assume that there can be a cer-
tain subset of servers that are guaranteed never to fail (guar-
anteed, say, by heavy maintenance and fail-safe backup); we
will call these “backbone” servers. Our question is, given our
desire to ensure communication paths between “primary”
vertices, which servers on the network are most critical?
Given limited resources to make sure that some servers do
not fail (i.e., making them backbone servers), on which ver-
tices should we concentrate to ensure communication be-
tween primary servers?

We model the above problem as a coalitional game, called
the vertex Connectivity Game. This game is modeled so
that the Banzhaf power index in the game will give us a
good indication of the criticality of vertices.

Definition 4. A vertex Connectivity Game Domain (CGD)
consists of a graph G = 〈V, E〉 where the vertices are par-
titioned into primary vertices Vp ⊆ V , backbone vertices
Vb ⊆ V , and standard vertices Vs ⊆ V . We require that
Vp ∩ Vb = ∅, Vb ∩ Vs = ∅, Vp ∩ Vs = ∅, and that V =
Vp ∪ Vb ∪ Vs, so this is indeed a partition.

Given a CGD we can define the vertex Connectivity Game.
In this game, each agent controls one of the standard servers.
A coalition wins if it connects all pairs of primary vertices
(so that it is able to send information between any two such
primary servers). Let |Vs| = n, and consider a set of n agents
I = (a1, . . . , an), so that agent ai controls vertex vi ∈ Vs.
Given a coalition C ⊆ I we denote the set of vertices that C
controls as V (C) = {vi ∈ Vs|ai ∈ C}. Coalition C can use
either the vertices in V (C) or the always available backbone
vertices Vb. In our model, we assume that the coalition can
also use any of the primary vertices Vp as well.3

We say a set of vertices V ′ ⊆ V fully connects Vp if for
any two vertices u, v ∈ Vp there is a path (u, p1, p2, . . . , pk, v)
from u to v going only through vertices in V ′, so for all i we
have pi ∈ V ′.

Definition 5. A vertex Connectivity Game (CG) is a
simple coalitional game, where the value of a coalition C ⊆ I

if there is at least one solution, so #P-complete problems
are at least as hard (but possibly harder) than NP-complete
problems.
3Another possibility would be to allow some of the primary
vertices we want to connect to fail. In this case a coalition
would win if it manages to connect all the non-failed pri-
mary vertices. We could also disallow sending information
through the primary vertices (so they can only be the final
destination). Most of the results in this paper hold for these
different settings as well.

is defined as follows:

v(C) =

(

1 if V (C) ∪ Vb ∪ Vp fully connects Vp

0 otherwise

We would like to locate important points of failure in the
network, and we will compute the Banzhaf power index in
the CG to enable us to identify possible important points
of failure. Since we are interested in being able to send
information between any two primary servers, we want to
identify the servers which, when failing, can cause us to
lose connectivity between primary servers. Suppose all the
servers have an equal probability of working or failing the
next day. When these failures are independent, any sub-
set of the servers has an equal chance of surviving. Thus,
we have a certain probability of having the surviving set of
servers fully connect the primary servers.

Suppose we can make sure that exactly one server, owned
by agent ai, always survives. The Banzhaf power index mea-
sures the probability of having the surviving subset of ver-
tices (which now contains vi with probability 1) fully con-
nect the primary servers. When attempting to maximize the
probability of achieving our goal, the higher the Banzhaf in-
dex of a server is, the more we should try and make sure
that server does not fail. Thus, in order to find significant
points of failure, we can calculate the Banzhaf power index,
and focus on the servers with the highest indices.

3. COMPUTING THE BANZHAF POWER
INDEX IN CONNECTIVITY GAMES

We now consider the computational complexity of calcu-
lating the Banzhaf power index in general vertex connectiv-
ity games. We first formally define the problem.

Definition 6. CG-BANZHAF: We are given a CG over
the graph G = 〈V, E〉, with primary vertices Vp ⊆ V , back-
bone vertices Vb ⊆ V , and standard vertices Vs ⊆ V . There
are n = |Vs| agents, I = (a1, . . . , an), so agent ai controls
vertex vi ∈ Vs. The game’s coalitional function v : 2I →
{0, 1} is defined as in Definition 5. We are also given a spe-
cific target agent ai, and are asked to calculate its Banzhaf
power index in this game, βi(v).

We now show that in general CGs, this problem is #P-
complete. We first prove it is in #P, and then reduce a
#SET-COVER problem to CG-BANZHAF. We begin with
a few definitions.

Definition 7. #SET-COVER (#SC): We are given a
collection C = {S1, . . . , Sn} of subsets. We denote ∪Si∈CSi =
S. A set cover is a subset C′ ⊆ C such that ∪Si∈C′ = S.
We are asked to compute the number of covers of S.

A slightly different version requires finding the number of
set covers of size at most k:

Definition 8. #SET-COVER-K (#SC-K): A set-cover
with size k is a set cover C′ such |C′| = k. As in Defini-
tion 7, we are given S and C and a target size k, and are
asked to compute the number of covers of S of size at most
k.

1001

Both #SC and #SC-K are #P-hard. [7] shows that #SC-
K is #P-hard: it considers several basic NP-complete prob-
lems, and shows that their counting versions are #P-complete.
The counting version of SET-COVER discussed there is
#SC-K. #VERTEX-COVER is a restricted form of #SC.
[19] shows that #VERTEX-COVER is #P-hard4 so #SC
is of course also #P-hard. To prove that CG-BANZHAF
is #P-complete, we show a reduction from #SC to CG-
BANZHAF.5

In order to show that CG-BANZHAF is #P-complete we
need to show two things: first, that CG-BANZHAF is in
#P, and second, a reduction of a #P-hard problem to a
CG-BANZHAF instance.

Lemma 1. CG-BANZHAF is in #P.

Proof. The Banzhaf index of ai in a CG v is βi(v), the
proportion of all winning coalitions where ai is critical, out
of all winning coalitions that contain ai. Given a certain
coalition C ⊆ I , it is polynomial to check whether it wins—
we only need to check whether V (C)∪ Vb fully connects Vp.
We can do this by creating a new graph G′, dropping all
edges that miss V (C) ∪ Vb from G (i.e., we drop any edge
(x, y) ∈ E that either x /∈ V (C)∪ Vb or y /∈ V (C)∪ Vb). We
then check if any two primary vertices in G′ are connected
(there are several polynomial algorithms to do this; a simple
one is to run a depth-first search [DFS] between all pairs of
primary vertices). We can thus easily test if a certain agent
ai is critical for a coalition: we perform the above test when
he is in the coalition, remove him, and repeat the test. If the
first test succeeds and the second fails, that agent is critical
for that coalition.

Since we can construct a deterministic polynomial Turing
machine M that tests if an agent is critical in a coalition,
we can construct a non-deterministic Turing machine M ′,
that first non-deterministically chooses a coalition (where
ai is always in the coalition), and then tests if ai is critical
in that coalition. The number of accepting paths of M ′ is
the number of coalitions that contain ai where ai is critical.
Denote by k the number of such accepting paths of M ′, and
denote |I | = |Vs| = n. Then the Banzhaf power index of
agent ai is βi(v) = k

2n−1 .
Calculating the numerator of βi(v) is thus, according to

Definition 3, a problem in #P. Since the denominator is
constant (given a domain with n agents), CG-BANZHAF is
in #P.

We now show that CG-BANZHAF is #P-hard. We do
this by a reduction from #SC. Figure 1 shows an example
of such a reduction for a specific #SC instance.

Theorem 1. CG-BANZHAF is #P-hard, even if there
are no backbone vertices, i.e., Vb = ∅.

Proof. We reduce a #SC instance to a CG-BANZHAF
instance. Consider the #SC instance with the collection
C = {S1, . . . , Sn}, so that ∪Si∈CSi = S. Denote the items

4It also shows that the problem remains #P-hard even in
very restricted classes of graphs.
5We use #SC to prove that CG-BANZHAF is #P-hard. It is
easy to show that #SC-K is #P-complete, but the fact that
#SC is #P-complete is more difficult to prove (and is thus
not very well known). We give the definitions of both #SC
and #SC-K to avoid confusion between them, and use the
result from [19] which indicates that #SC is #P-complete.

in S as S = {t1, t2, . . . , tk}. Denote the items in Si as
Si = {t(Si,1), t(Si,2), . . . , t(Si,ki)}. The reduced CGD is con-
structed with a graph G = 〈V, E〉 as follows. For each subset
Si ∈ C, the reduced CG instance has a vertex vSi

. We de-
note the set of vSi

vertices Vsets = ∪{i|Si∈C}vSi
. For each

item ti ∈ S the reduced CG instance also has a vertex vti
.

We denote the set of vti
vertices Vitems = ∪i|ti∈Svti

. The
reduced CG instance also has two special vertices va and vb.
These are all the vertices of the reduced instance.

The vertices in the reduced CG are connected in the fol-
lowing way. The vertices Vsets are a clique: for every vi, vj ∈
Vsets, (vi, vj) ∈ E. The vertex va is also a part of that clique,
so for all vi ∈ Vsets we have (vi, va) ∈ E. The vertex va is
connected to vb, and is the only vertex connected to vb, so
(va, vb) ∈ E. Each set vertex vSi

is connected to all the ver-
tices of the items in that set, vt(Si,1)

, vt(Si,2)
, . . . , vt(Si,ki)

, so

for any vSi
∈ Vsets and any vt(Si,j)

(so that t(Si,j) ∈ Si) we

have (vSi
, vt(Si,j)

) ∈ E.

We define the CG so that Vi = Vitems∪{vb}, Vb = ∅, Vs =
Vsets ∪ {va}, and the CG game is defined as in Definition 5.
The game has m = |Vs| = |Vsets| + 1 = |C| + 1 = n + 1
agents (where n is the number of subsets in C, the input to
the #SC problem). The CG-BANZHAF query is regarding
va. Let βi(v) be the answer to the CG-BANZHAF query,
and k be the number of set covers in the #SC instance.
We show that k = βa(v) · 2m−1, by providing a one-to-one
mapping between a set-cover of the original problem and a
winning coalition where va is critical in the reduced CG.

Consider a set-cover C′ ⊆ C for S. C′ must cover all the
items ti in S. We denote the set of vertices corresponding
to the sets in this vertex cover VC′ = {vSi

∈ Vsets|Si ∈ C′}.
Since C′ is a set cover for the original problem, each vertex
vtj

∈ Vitems in the reduced graph must be connected to
at least one vertex vi ∈ Vsets. Since the vertices Vsets are
a clique, in the reduced CG all the vti

’s and vSj
’s are in

the same connected component. However, without va we
cannot reach vb from any vertex. Thus, VC′ ∪ {va} ⊆ VS is
a winning coalition in the reduced CG, but VC′ is not, so
va is critical for that coalition. We now show the mapping
in the reverse direction. Consider a coalition V ′ ⊆ Vs where
va is critical, and denote C′ = {Si ∈ C|vSi

∈ V ′}. By
definition, V ′ must be winning and contain va. Consider
any vertex vti

∈ Vitems. Since V ′ wins, it must allow any
vertex in Vsets to reach vti

, which can only happen if V ′

contains some vSj
so that ti ∈ Sj . Thus, C′ is a set cover

for the original problem.
Let k be the number of set covers in the #SC instance, and

ca be the number of winning coalitions where va is critical
in the reduced CG. Due to the one-to-one mapping we have
shown, k = ca. But by the definition of the Banzhaf index, in
the reduced CG we have βa(v) = ca

2m−1 , so ca = βa(v)·2m−1,

and then k = βa(v) · 2m−1.
We have shown that given a polynomial algorithm for CG-

BANZHAF, we can solve #SC in polynomial time, so CG-
BANZHAF is #P-hard.

Having demonstrated that CG-BANZHAF is in #P and
that it is #P-hard, we have completed the proof that it
is #P-complete. Thus, it is unlikely that a polynomial al-
gorithm for calculating the Banzhaf power index in vertex
connectivity games would be found. We can circumvent this
computational problem in several ways. One is to try and
find an approximation algorithm, and the other is to solve

1002

Figure 1: Example of reducing #SC to CG-

BANZHAF. The items are {t1, t2, t3, t4} and the sets

are S1 = {t1, t3}, S2 = {t1, t2, t3}, S3 = {t3, t5}, S4 =
{t3, t4, t5}.

the problem for restricted instances. In the next section, we
adopt this second approach.

4. CALCULATING THE BANZHAF POWER
INDEX IN TREE CGS

Although computing the Banzhaf power index in general
CGs is #P-complete, restricting the structure of the graph
in the domain may allow us to polynomially compute this
index. We now provide a polynomial algorithm for the case
where the graph is a tree. Consider a CG with graph G =
〈V, E〉 that is a tree, with primary vertices Vp ⊆ V , backbone
vertices Vb ⊆ V , and standard vertices Vs ⊆ V . We call the
problem of calculating the Banzhaf power index of an agent
in this domain TREE-CG-BANZHAF. We will start with a
few useful lemmas before we introduce our algorithm. We
assume that there are at least 2 primary vertices va, vb ∈ Vp

(otherwise, any subset of the vertices trivially fully connects
the primary vertices). We first note that since the graph
is a tree, some of the vertices are present in any winning
coalition.

Lemma 2. Consider a CG where the graph G is a tree.
Let va, vb ∈ Vp be two primary vertices, and a standard ver-
tex vr ∈ Vs is on a simple path from va to vb. Then vr is
present in all winning coalitions in the CG game.

Proof. Since G is a tree, there is only one simple path
between va and vb. The removal of any vertex along that
simple path would make vb unreachable from va. Since vr is
such a vertex, any coalition C ⊂ Vs such that vr /∈ C loses,
and any winning coalition must contain vr.

Any standard vertex on the simple path between two pri-
mary vertices is required to be in a coalition in order for it

to win. We now show that having all of these vertices allows
us to connect the two primary vertices.

Lemma 3. Consider a CG where the graph G is a tree.
Let va, vb ∈ Vp be two primary vertices. Consider a vertex
coalition C ⊂ Vs that contains all standard vertices vr ∈ Vs

on the single simple path from va to vb. Then C allows the
connecting of va and vb in the CG game.

Proof. In the CG game we are allowed to use any pri-
mary vertex vp ∈ Vp, and any backbone vertex vb ∈ Vb. We
consider a coalition C that contains all vertices vr ∈ V on
the single simple path from va to vb. Any vertex vx on the
single simple path between va and vb is either a backbone
vertex (so vx ∈ Vb) or a primary vertex (so vx ∈ Vp) or a
standard vertex (so vx ∈ Vs). If it is a standard vertex, it
is in the coalition, so vx ∈ C. In any of these cases we are
allowed to use it in the CG game, so va and vb are in the
same connected component for the coalition C.

We now consider a coalition that contains any standard
vertex on any simple path between two primary vertices,
and show that it is a winning coalition.

Lemma 4. Consider a CG where the graph G is a tree.
Consider a vertex coalition C ⊂ Vs that contains all standard
vertices vr ∈ Vs on any simple path between any two primary
vertices va, vb ∈ Vp (that is, for any va, vb ∈ Vp and any
vertex vr ∈ VS such that vr is on a simple path between va

and vb, we have vr ∈ C). Then C is a winning coalition in
the CG game, so v(c) = 1.

Proof. Consider two primary vertices va and vb. Due to
Lemma 3, va and vb are connected in the CG game—there
is a simple path composed of either backbone, primary, or
coalition vertices between them. But va and vb were any
primary vertices, so there is such a simple path between any
two primary vertices. Thus C fully connects the primary
vertices Vp, and it is therefore a winning coalition.

On the one hand, due to Lemma 2 any vertex which is
on the path between some two primary vertices is a member
of any winning coalition, so any winning coalition contains
all such vertices. On the other hand, due to Lemma 4 any
coalition that contains all such vertices is winning. Thus we
get the following corollary.

Corollary 1. The winning coalitions are exactly those
coalitions that contain all the standard vertices on any simple
path between two primary vertices.

When calculating the Banzhaf power index of vi, we are
interested in counting not any winning coalition, but only
those in which vi is critical. Due to Lemma 1, if vi is not
found on any simple path between some two primary ver-
tices, it is not critical in any coalition C: if C contains all
such vertices between any two primary vertices, then C is
winning, but C also wins without vi, and if C misses even
one such vertex, it is a losing coalition. Thus, we get the
following corollary.

Corollary 2. If vi is not found on any simple path be-
tween some two primary vertices, the Banzhaf power index
of vi in the CG is βi(v) = 0.

Proof. vi is not critical in any coalition. Since the Banzhaf
index is the proportion of coalitions where vi is critical out
of all coalitions that contain vi, βi(v) = 0.

1003

A vertex that is found on a simple path between two pri-
mary vertices is critical in all winning coalitions, so we get
the following corollary.

Corollary 3. If vi is found on any simple path between
some two primary vertices, the Banzhaf power index of vi in
the CG is βi(v) = 1.

Proof. Due to Lemma 2, vi is critical in all winning
coalitions. Since the Banzhaf index is the proportion of
coalitions where vi is critical out of all coalitions that contain
vi, βi(v) = 1.

We now show that TREE-CG-BANZHAF is in P, by pro-
viding a polynomial algorithm for this problem.

Theorem 2. TREE-CG-BANZHAF is in P.

Proof. The above corollaries allow us to polynomially
calculate the Banzhaf power index of any agent in the CG.
We simply mark all the standard vertices that are found be-
tween any two primary vertices. Given two primary vertices
va, vb ∈ Vp we can do the marking as follows. We perform
a DFS, which defines a parent-son relation for the vertices
in the tree.6 We then start at vb, continue to its parent
p(b) and so on until we reach va, and mark any standard
vertex vx ∈ Vs along the way. After performing this pro-
cess for all pairs of primary vertices, we can easily calculate
the Banzhaf index of every vertex. Due to Corollary 2 and
Corollary 3, marked vertices have a Banzhaf index of 1, and
the others have a Banzhaf index of 0. Since DFS takes poly-
nomial time, and we perform a DFS |Vp|

2 times, this is a
polynomial algorithm.

We have thus shown that despite the high complexity re-
sult for the general case derived above in Section 3, in the
restricted domain where the graph is a tree, we can polyno-
mially calculate the Banzhaf power index. This restricted
case can be of value for analyzing reliability in real-world
networks. As an example, consider the situation where in-
ternet connectivity is established between companies, where
one company is the supplier and another company is the
client. An example of a cycle in this relationship would be
if company A buys an internet connection from company B,
which in turn buys an internet connection from company
C, which eventually buys an internet connection from com-
pany A. This would mean that, in a sense, company A would
have become a client of itself, and would be paying money
for its own connection. This scenario, with a cycle, is un-
likely; many interesting domains where we may want to use
network reliability models are, in fact, trees.

5. THE CORE OF CGS
Consider a CG domain where a certain reward is promised

to any coalition that manages to connect all the primary ver-
tices. Agents who form a winning coalition get this reward
as a group, and must then decide how to divide the reward
among the coalition members. In this case, even when a win-
ning coalition is formed, it may not be stable—agents who
are given a small share of the reward may attempt to form
another coalition, where they may get a higher share of the
reward, and thus increase their own utility. One prominent

6Vertex v is the parent of vertex u, denoted v = p(u), if we
found u when we popped v from the DFS stack.

game theoretic solution concept that takes such considera-
tions into account is the core, which can thus be used to
allocate the gains of a coalition in a CG domain in a stable
way.

We now consider the problem of computing the core of
general CGs. When the core is non-empty, it contains pay-
off vectors that are stable. When it is empty, the coali-
tion would be unstable no matter how we divide the utility
among the agents. We first note that it is not always possi-
ble to concisely represent the core, since it may contain an
infinite number of payoff vectors. However, in the case of
CGs, it can be done.

We first note that the core is a very demanding concept
in simple coalitional games (where the coalitional function
can only take 0 or 1 as values). An agent ai is a veto player
if it is present in all winning coalitions, so if ai /∈ C we have
v(C) = 0. It is a well-known fact that in simple coalitional
games, the core is non-empty if and only if there is at least
one veto player in the game. Consider a simple coalitional
game that has no veto players. For every agent ai we have
a winning coalition that does not contain ai. Take a payoff
vector p = (p1, . . . , pn) where pi > 0. Since

Pn

i=0 pi = 1
and since pi > 0 we know that p(C) ≤

P

pj∈I−ai
pj < 1, so

p(C) < v(C) = 1, which makes C a blocking coalition. On
the other hand, we can see that any payoff vector p where
non-veto players get nothing is in the core: any coalition C
that can potentially block p must have v(C) = 1 (if v(C) =
0 it cannot block), and must contain all the veto players,
so

P

pj∈C
pj = 1, and thus cannot block p. Due to this

fact, calculating the core of simple games simply requires
obtaining a list of veto players in that game.

We now consider computing the core in CGs. We first
show a monotonicity property of CGs.

Lemma 5. Let W ⊆ I be a winning coalition in a CG (so
v(W) = 1), and let C ⊆ I be any coalition in that game.
Then W ∪C is also a winning coalition (so v(W ∪C) = 1).
This can be restated as, for all coalitions A, B ⊆ I in a CG
we have v(A ∪ B) ≥ v(A).

Proof. If C fully connects Vp then W ∪C also fully con-
nects Vp, since we are now allowed to use even more vertices
in our paths (so all the paths that had existed before be-
tween some va, vb ∈ Vp also remain).

We now denote the set of all the agents except ai as I−i =
I \ {ai}. Let G be the CG graph. We denote by G−i the
same graph when we drop the vertex vi owned by ai, so
G−i = 〈V−i, E−i〉 where V−i = V \{vi} and E−i = {(u, v) ∈
E|u 6= vi ∧ v 6= vi}. We now show a polynomial algorithm
for testing if a player is a veto agent in CGs.

Lemma 6. Testing if agent ai is a veto agent in a CG is
in P.

Proof. We first show that I−i is a losing coalition if and
only if ai is a veto agent. If I−i is a losing coalition then
due to Lemma 5 any sub-coalition of it, C ⊆ I−i, is also
losing. Thus, any coalition without ai is losing, so ai is a veto
player. On the other hand, if I−i is a winning coalition, it is
a winning coalition where ai is not present, so by definition
ai is not a veto player. Thus, to test if ai is a veto agent we
only need to test if I−i is losing or winning. According to
Definition 5 of CSG, to check if I−i wins we need to check
if I−i fully connects the primary vertices. This test can be

1004

performed in polynomial time by trying all pairs va, vb ∈ Vp,
and performing a DFS between va and vb in the graph G−i.
Thus, we can check if an agent is a veto agent in a CG in
polynomial time.

Since computing the core in simple coalitional games sim-
ply requires returning a list of all the veto agents, we get the
following corollary.

Corollary 4. It is possible to compute the core of a CG
in polynomial time.7

Proof. Computing the core of CG requires returning a
list of the veto players in the game. Due to Lemma 6, we can
check each agent and see if it is a veto player. Thus, testing
all the agents and finding all the veto players can also be
done in polynomial time. If there are no veto players, the
core is empty. Otherwise, any payoff vector that distributes
1 (the total utility v(I) = 1) among the veto players and
gives none to the non-veto players is in the core.

Due to the above proofs, if we adopt the core requirement
for stability, there is a stable way of dividing the total utility
among the agents only if there is a least one vertex which is
always required to fully connect the primary vertices.

6. RELATED WORK
Power indices originated in work in game theory and po-

litical science, attempting to measure the power that players
have in weighted voting games. In these games, each player
has a certain weight, and a coalition’s weight is the sum of
the weights of its participants. A coalition wins if its weight
passes a certain threshold. This is a common situation in
legislative bodies. Power indices have been suggested as a
way of measuring the influence that players in such a game
have on choosing outcomes. The most popular indices sug-
gested for such measurement are the Banzhaf index [2] and
the Shapley-Shubik index [17].

The Shapley-Shubik index [17] is the direct application
of the Shapley value [16] to simple coalitional games. The
Banzhaf index emerged directly from the study of voting in
decision-making bodies, where a certain normalized form of
the index was introduced [2]. The Banzhaf index was later
mathematically analyzed in [4], where it was shown that
this normalization has certain undesirable qualities, and the
standard Banzhaf index is introduced. These indices were
applied in an analysis of the voting structures of the IMF
and the European Union Council of Ministers (as well as
many other bodies) [10, 11]. The Shapley value can also
be used to fairly allocate costs in various domains. One
such example is [6], where the Shapley value is used for the
fair allocation of the costs of multicast transmissions.8 Our
work considers a different application of power indices, using
them to locate reliability problems in a network. We believe
power indices and other game theoretic notions can be very
helpful in analyzing computer networks, and [6] provides a
good example of this.
7In fact, the same can be done for any simple monotone
coalitional game where the value of a coalition can be
computed in polynomial time: due to the same proof of
Lemma 6, in such games we can test whether an agent is a
veto player, and in simple games computing the core simply
requires finding out who the veto players are.
8We thank an anonymous reviewer for pointing out this work
to us.

The differences between the Banzhaf and Shapley-Shubik
indices were analyzed in [18], where it was shown that each
index reflects specific conditions in a voting body. An ax-
iomatization of these indices (as well as several others) was
given in [9]. The Banzhaf index reflects the assumption that
agents are independent in their choices, and is thus more ap-
propriate for our network reliability problem.

It is possible to calculate the Banzhaf power index for any
simple coalitional game. However, the complexity of such a
procedure depends on the representation of the game. When
the game is defined only by the value of each coalition, in
the form of an oracle which tests a certain coalition and
answers whether it wins or loses, calculating the Banzhaf
power index is problematic. A naive implementation of an
algorithm for calculating the Banzhaf index of an agent ai

enumerates over all coalitions containing ai. Since there are
2n−1 such coalitions, the naive algorithm is exponential in
the number of agents.

[13] surveys algorithms for calculating power indices in
weighted majority games, and [14] shows that calculating
both the Banzhaf and Shapley-Shubik indices in weighted
voting games is NP-complete. Since weighted voting games
are a restricted case of simple coalitional games, the problem
of calculating either index in a general coalitional game is of
course NP-hard. In fact, in certain cases, calculating power
indices is not just NP-hard but also #P-hard. [3] shows
that computing the Shapley-Shubik index in weighted voting
games is #P-complete.

The solution concept of the core originated in [8]; it fo-
cuses on stability of the coalition. The Shapley value is
another well-known solution concept, and has been used to
fairly allocate the gains of a coalition. While it is known
that the Shapley value is the only value division where cer-
tain fairness axioms hold, it is susceptible to some forms of
strategic behavior, as noted in [21].

Fair allocation of the gains of the coalition using the Shap-
ley value has been explored in many papers. However, using
it to measure power in weighted voting systems, as in [17],
has been much less studied. The use of power indices for
game types other than weighted voting games is indeed rare.
One example of such use is [1], which considered a network
reliability problem. In that scenario, agents control edges in
a network flow graph, where a coalition wins if it can main-
tain a certain flow between a source and a target. [1] shows
that finding the Banzhaf index of an edge in this domain is
#P-complete, and gives an algorithm for a restricted case.
Our research in this paper handles a scenario very differ-
ent from [1]—our agents are required to maintain connec-
tivity, rather than a certain flow. Also, we are interested
in maintaining this connectivity between every two primary
vertices, rather than two specific vertices (we can simulate
the case of two specific servers by having only two primary
servers). Also, in this work, the agents are the servers in the
communication network, rather than the links.

While our treatment of the model is game theoretic, such
problems can be formulated as network reliability problems.
The computational complexity of such problems has been
studied in several papers. Classical network reliability prob-
lems consider an undirected graph G = 〈V, E〉, when each
edge e ∈ E has a probability assigned to it, pe. This is the
probability that edge e remains in the surviving graph.

One prominent problem is s-t connectivity probability (STC-
P): given the above domain, compute the probability of hav-

1005

ing a path between s, t ∈ V in the surviving graph. Another
prominent problem is full connectivity probability (FC-P):
given the above domain, compute the probability that the
surviving graph is connected (so that there is a path be-
tween any two vertices). One seminal paper by Valiant [20]
proves that STC-P is #P-hard. Provan and Ball [15] show
that FC-P is also #P-hard.

The problem we study is similar to FC-P, but since we use
the Banzhaf power index, we deal with a very specific case of
the general problem, where the probability of every vertex
subset is equal. Since this is a restricted case, we cannot use
the hardness result of [15], and have to prove that even the
restricted case is #P-complete (we did this in Section 3).

The complexity results shown in this paper (and in sev-
eral papers dealing with similar domains) demonstrate the
difficulty of using certain techniques in real-world applica-
tions; for example, in order to use the Banzhaf index to find
network reliability bottlenecks, one must be able to calcu-
late it. There are several ways to circumvent this problem.
One way is to find algorithms that work for restricted cases
of the problem (we used this approach in Section 4). An-
other approach is approximating these power indices. Sev-
eral such approximation methods have been suggested. [12]
suggests approximating the Shapley-Shubik power index us-
ing a Monte-Carlo technique; [13] shows a similar method
for the Banzhaf power index. Such results make it more
tractable to use power indices in real-world applications.

7. CONCLUSIONS
We have considered some computational aspects of a game

theoretic approach to network reliability. We modeled a
communication network as a simple coalitional game, and
have shown that power indices can be used to find signifi-
cant possible points of failure. We have shown that in this
domain, for general graphs, computing the Banzhaf power
index is #P-complete. Despite this high complexity result
for the general domain, we also gave a polynomial result for
the restricted domain where the graph is a tree. We have
also shown that computing the core can be done in polyno-
mial time in any CG, and gave a simple characterization of
the instances when the core is non-empty in CGs.

It remains a topic of future research to tractably compute
or approximate the Banzhaf index in general graph CGs,
and to find other interesting restricted domains where this
index can be calculated polynomially. We also note that
the Banzhaf power index is just one of several such game
theoretic power indices that could be used to analyze such
domains; another open question is that of computing other
game theoretic solution concepts in this domain.

8. ACKNOWLEDGMENT
This work was partially supported by Israel Science Foun-

dation grant #898/05.

9. REFERENCES
[1] Y. Bachrach and J. S. Rosenschein. Computing the

Banzhaf power index in network flow games. In The
6th Int. Joint Conference on Autonomous Agents and
Multiagent Systems, pages 323–329, May 2007.

[2] J. F. Banzhaf. Weighted voting doesn’t work: a
mathematical analysis. Rutgers Law Review,
19:317–343, 1965.

[3] X. Deng and C. H. Papadimitriou. On the complexity
of cooperative solution concepts. Math. Oper. Res.,
19(2):257–266, 1994.

[4] P. Dubey and L. Shapley. Mathematical properties of
the Banzhaf power index. Mathematics of Operations
Research, 4(2):99–131, 1979.

[5] E. Elkind, L. A. Goldberg, P. W. Goldberg, and
M. Wooldridge. Computational complexity of
weighted threshold games. In The National Conference
on Artificial Intelligence, pages 718–723, 2007.

[6] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker.
Sharing the cost of multicast transmissions. Journal of
Computer and System Sciences, 63(1):21–41, 2001.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., 1979.

[8] D. B. Gillies. Some theorems on n-person games. PhD
thesis, Princeton University, 1953.

[9] A. Laruelle. On the choice of a power index. Papers
99-10, Valencia — Instituto de Investigaciones
Economicas, 1999.

[10] D. Leech. Voting power in the governance of the
International Monetary Fund. Annals of Operations
Research, 109(1-4):375–397, 2002.

[11] M. Machover and D. S. Felsenthal. The treaty of Nice
and qualified majority voting. Social Choice and
Welfare, 18(3):431–464, 2001.

[12] I. Mann and L. S. Shapley. Values of large games, IV:
Evaluating the electoral college by Monte-Carlo
techniques. Technical report, The Rand Corporation,
Santa Monica, CA, 1960.

[13] Y. Matsui and T. Matsui. A survey of algorithms for
calculating power indices of weighted majority games.
Journal of the Operations Research Society of Japan,
43, 2000.

[14] Y. Matsui and T. Matsui. NP-completeness for
calculating power indices of weighted majority games.
Theoretical Computer Science, 263(1–2):305–310,
2001.

[15] J. S. Provan and M. O. Ball. The complexity of
counting cuts and of computing the probability that a
graph is connected. SIAM Journal on Computing,
12(4):777–788, 1983.

[16] L. S. Shapley. A value for n-person games.
Contributions to the Theory of Games, pages 31–40,
1953.

[17] L. S. Shapley and M. Shubik. A method for evaluating
the distribution of power in a committee system.
American Political Science Review, 48:787–792, 1954.

[18] P. Straffin. Homogeneity, independence and power
indices. Public Choice, 30:107–118, 1977.

[19] S. P. Vadhan. The complexity of counting in sparse,
regular, and planar graphs. SIAM Journal on
Computing, 31(2):398–427, 2002.

[20] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing,
8:410–421, 1979.

[21] M. Yokoo, V. Conitzer, T. Sandholm, N. Ohta, and
A. Iwasaki. Coalitional games in open anonymous
environments. In The 20th National Conference on
Artificial Intelligence, pages 509–514, 2005.

1006

