Autonomous Transfer for Reinforcement Learning

Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{mtaylor, kuhlmann, pstone}@cs.utexas.edu

ABSTRACT

Recent work intransfer learninghas succeeded in makingin-
forcement learninglgorithms more efficient by incorporating knowl-
edge from previous tasks. However, such methods typicallgtm
be provided either a full model of the tasks or an expliciatiein
mapping one task into the other. An autonomous agent may no
have access to such high-level information, but would be &bl
analyze its experience to find similarities between tasksthis
paper we introduck®lodeling Approximate State Transitions by Ex-
ploiting RegressiofMASTER), a method for automatically learning

a mapping from one task to another through an agent's exyerie
We empirically demonstrate that such learned relatiorsstém sig-
nificantly improve the speed of a reinforcement learningatgm

in a series of Mountain Car tasks. Additionally, we dematstr
that our method may also assist with the difficult problemasit
selection for transfer.

Keywords

Transfer Learning, Reinforcement Learning

1. INTRODUCTION

ified by a human. While effective in some situations, TL meth-
ods that rely on being provided such information will be Ueab
transfer knowledge autonomously.

If TL methods are able to automatically learn task relatiips,
transfer may be possible in domains where humans are ur@able t

tintuit accurate inter-task mappings. In order to enablesfier in

such an autonomous transfer learning agent, a TL algoritust:m
1. Selectan appropriate source task from which to trangifem
a target task.
2. Learn how the source task and target task are related.
3. Effectively transfer knowledge from the source task te th
target task.
While significant progress has recently been made on steg,thr
relatively little attention has been paid to the first two. isTha-
per introducedlodeling Approximate State Transitions by Exploit-
ing RegressiofiMASTER). To the best of our knowledg®lASTER
is the first TL method able to autonomously learn a relatignsh
between two tasks by using experience gathered from task env
ronments, rather than from human-provided environmentad-m
els. We empirically verify our method by learning mappings b

Agents deployed in an environment often need to learn how to tween different tasks in the Mountain Car domain and dernatest

execute sequential actions. A common way of framing such-pro
lems is to use the framework efinforcement learningl7] (RL).

a significant improvement in training, relative to learnimghout
transfer.

While RL algorithms have had many empirical success and have 2. BACKGROUND AND RELATED WORK

some theoretical guarantees, for RL to be widely applicaiole
real-world tasks, it is important for learning to occur wah lit-
tle training experience as possible. If RL algorithms camienew
tasks from limited experience, agents may be able to lediabhe
on-line in the real world. One approach to enabling suchiegr
is to employtransfer learning(TL) to reuse knowledge gathered in
previous tasks to learn a novel task better or faster.

A number of recent empirical successes (e.g., [4, 11, 20, 22]
in a variety of RL domains have shown that transfer between RL
tasks is feasible. Such successes are not entirely sugpdsie to
the intuitive appeal of transfer. If a learning agent exgreces two
or more similar tasks, we would expect it to be possible fa& th
agent to leverage past knowledge; we have such an existemak p
in human learning.

Current TL algorithms are able to successfully transfenkno
edge from one or morsource taskinto a noveltarget task How-
ever, as discussed in the next section, existing algoritiypisally
need the relationship between the source and target tabksfuec-

Cite as: Autonomous Transfer for Reinforcement Learning, M. E. @ayl
G. Kuhlmann, and P. Ston&roc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 200@}igham, Parkes,
Muller and Parsons (eds.), May, 12-16., 2008, Estoril, Ryt pp.283-290.
Copyright (© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

283

In this section we discuss related work to emphasize has-
TERIs situated in the current literature. We first briefly disctise
Markov decision procegMDP) framework that is commonly used
to describe RL tasks. An agent observes the world throughesom
sensors and describes its currstdtes € S that can be decom-
posed into a sequence sfate variabless = (x1,z2,...,Zk).
The agent begins iBjnitig @nd, if the task is episodic, the task
terminates if the agent reaches..; (or, in general, any state in a
set of final states). The agent may execute an actian A, that
is possibly state-dependent. The next state the agenesuaivis
governed by a transition functioff; : S x A — S, which may
be stochastic. Upon arriving at a new state, the agent resain
immediate reward? : S — R. The goal of an agent is to learn
a policyw : S — A such that the expected long-term reward is
maximized. A value function learner estimates the valuetion
V . S — R or the action-value functio : S x A — R from
experience, rather than learning the policy directly.

Many existing method have recently been developed thatallo
transfer between pairs of RL tasks. For instance, Torrel. 2
use advice learned in a source task to speed up learning iget ta
task. Taylor, Stone, and Liu [20] leverage a learned acta@ne
function to learn a target task faster. Both of these metasdame
a hand-codethter-task mappingwhich defines how the state vari-
ables in both tasks are related, and how actions in both tasks

related. Many current TL methods differ primarily in the ¢ypf
knowledge saved in the source task, the form of the intesteegp-
ping, and the way the inter-task mapping is used to make theglsa
source task knowledge useful in the target task.

Most closely related to this work are approaches for transfe
learning in RL domains that are able to learn an inter-task-ma
ping for pairs of tasks. Liu and Stone [7] assume that the tagen
is provided a complete and correct transition model for tibth
source task and the target task. They are then able to us@lagra
matching algorithm that finds similarities between statéatdes in
the two tasks, and actions in the two tasks. Kuhimann ance§&jn
approach a similar problem in th&eneral Game Playingp] do-
main. They construatule graphsbased on the provided transition
and reward functions for the source and target tasks, amdfite
a match between games based on graph similarity.

A different set of work has attempted to reduce the amount of
information needed for the agent to learn a mapping from &cgou
to target task. Soni and Singh [15] treat the different gnesstate
variable mappings agptions(multi-step actions) in the target task
and use them to learn the target task faster. However, thik wo
assumes that the action mapping is provided to the agenthamnd t
the state variables can be grouped into task-independempgyr
This assumption allows the source and target tasks to haife a d
ferent number of objects in the different tasks because ebigtt
can be described by the same number of state variables.teTalvi

task mapping from environmental data. We can learn both¢he a
tion mapping,X 4, and the state variable mappingx, from data
collected in the source and target tasks. and X x fully define an
inter-task mapping, which maps each target task actionanéoor
more source task actions, and maps each target task stetblear
into one or more source task state variables. Implementigicel
details will be specified later in the context of specific sfen ex-
periments.

Method 1 MASTER

. while training in the source tasko
Agent(s) record observe@, a, s’) tuples iNDsource
. Save learned knowledge
. for small number of episodes in the target task
Agent(s) record observe@, a, s’) tuples inDiarget
. Learn a one-step transition mod@lf;qrget(s,a) — s, that tries to
minimizeZDnget (Mtarget(s,a) —s')
. for every possible 1-to-1 mapping from source task state Vasatio
target task state variable$y do
for every possible 1-to-1 mapping from source task actionsrgeta
task actionsg 4 do
Usedx andd 4 to transformDsource iNt0 DY 1rce
for every tuple(s, a, s’) € D%, cc dO
11: Calculate the errorts’ — Miarget (s, a))?
12: MSEs, 5,) < average error

13: Use the recorded MSE values to constrxigtandX x from somezig1
andsy!

OURrWNE

8:

9:
10:

and Singh [18] again assume an action mapping and state vari
able grouping and use an experts algorithm to select betieen
different possible state variable mappings. Taylor, W4ate and
Stone [21] relax the requirements somewhat by learning tiath
state variable mapping and the action mapping by usingifitzss
tion, but they also leverage the assumption that the agegmbis
vided state variable groupings.

Other work attempts to bypass the need for an inter-task map-
ping altogether. If the problem is formulated in tiegational re-
inforcement learnind3] (RRL) framework, source task policies
can be directly reused if the number of objects change inesubs
quent tasks. For instance, transfer can be quite effectiieif the
Blocksworld domain when source and target tasks have differ
numbers of blocks. However, not all tasks can easily be ftatad
as relational problems, which includes the tasks we usesmibrk
(see Section 4).

Lastly, there has been some work in effectively selectinguace
task from which to transfer, given a target task. Fernandek a
Veloso [4] first construct a library of learned policies. Wiha
novel task is experienced, the agent can learn to probidxslily
exploit the policies in the library. While no explicit intéask map-
ping is needed, some time must be spent in the target tasigtryi
to determine which policy to use, and the amount of expeéegre
quired to select the best mapping will increase with thealipsize.
Additional constraints include restricting the rewarddtion to a
single goal state and the transition function to remain anged
in the different tasks. Ultimately, it is likely that ease based
reasoning[1] (CBR) approach may be successfully used to find
task similarities between a target task and previoushynkstasks.
While there have been initial attempts at using CBR to agsibt
transfer [13], we are not aware of a robust, a domain-indegen
similarity metric for MDPs.

3. THE MASTER METHOD

As discussed previously, many TL methods rely on a mapping
between the source task and target task to enable transfein &5
mapping is typically provided to the learner by an oraclear be
determined by analyzing models provided for both tasks.his t
section we introduc@ASTER, our method for learning an inter-

284

Our domain-independent method for constructing intek-taap-

pings is summarized in Method 1. We consider five distincepba
1. Lines 1-3 represent training in the source task. Any learn

ing method can be used that is capable of utilizing intek-tas
mappings for transfer (e.g., KBKR [8], Sarsa [12, 14], or
NEAT [16]). The type of knowledge saved in the data struc-
ture Dsource Will depend on which RL algorithm is used for
source task learning.

. Lines 4-5 show the agent(s) exploring in the target tagik-wi
out learning. We have found in practice that only a relagivel
small amount of data is needed (see Section 5.3).

. A one-step transition modeM:qr4¢, for the target task is
learned on line 6. As discussed in Section 5, our experi-
ments utilize neural network function approximation in the
Weka [23] machine learning package, but we expect other
prediction methods to also perform well. Note that the er-
ror calculation(Myqrget (s, a) — s') is a vector operation and
is computed per state variable. Such an error definition im-
plicitly assumes that the state variables can be scalecaso th
they are weighted equally, and that a Euclidean metric is an
appropriate measure of state similarity (for both disceete
continuous state variables).

. Lines 7-12 examine different ways of mapping the source
task data into the target task using inter-task mappiags (
andd). When considering target tasks that have more state
variables and/or actions than the source task, this isailpic
a one-to-many mapping. Each possible mapping is tested and
its appropriateness is determined by how well it matches the
learned model.

. Lastly, the agent constructs the inter-task mapping fitoen
tested mappings (line 13). Note that the inter-task mapping
maps target task data to source task data, while the agent
had been testing different mappings from source task data
into the target task. Details of this step will be discussed
in Section 5, but the intuition is that if a there is a single
best mapping, it should be used. If there are a number of
candidate mappings that have very similar MSEs, they can
be combined in a mixture weighted by their inverse errors.

After MASTER has determined the inter-task mappings, they can
be leveraged in conjunction with the saved knowledge (Lin®o3
speed up learning in the target task using one of the exigting
methods for RL tasks.

The key insight of this method is that it is able to propose all
possible methods and then score them by analyzing thenineff-|
(i.e., without requiring more samples from the environrsgnBuch
analysis, lines 7-12, is exponential in the number of statmbles
and actions. While such testing is relatively fast, if thisthod
is scaled to tasks with a large number of state variables or ac
tions, some type of heuristic will need to be used. For ircgan
rather than an exhaustive search, a hill-climbing methaddcbe
used to find a good mapping (for instance, a variant on Pawell’
Method [10]). Additionally, it is worth emphasizing thaistsearch
affects only computational complexity. In this work we atig to
learn an inter-task mapping so that the sample complexithef
target task is reduced — reducing the computational coritplex
not our primary concern, as CPU cycles are generally cheamwh
compared to collecting data from a fielded agent.

There are a number of model-learning methods for RL tasks
(e.g., KBRL [9]), but such methods do not generally scaleatgé
tasks with continuous state variables, which are of pdetidater-
est to agents acting in real-world tasks. Such methods gker
attempt to model a task in order to perform dynamic programymi
offline. In MASTER, we instead only need to learn approximate
model that allows us to find similarities between state @emand
actions in two tasks. Since we typically would expect rekdyi
large differences in the transition model of an MDP wherestati-
ables and actions are changed, the error due to poor modielags
critical then when a model is used for dynamic programming- F
thermore, existing model-learning methods generally dosnale
well to large, continuous state spaces. This relaxed reongnt al-

4.1 Two Dimensional Mountain Car

In the standard two dimensional version of Mountain Car, the
agent’s state is described by two continuous state vagaltier-
izontal position £) and velocity), which are restricted to the
ranges[—1.2,0.6] and [—0.07, 0.07] respectively. The agent has
three actions: Kef t , Neut r al , Ri ght }, which change the ve-
locity by -0.001, 0, and 0.001 respectively. On each time tte
term —0.025(cos(3z)) is added tat: to account for gravity. The
goal state ist = 0.5, without regard to the current velocity. We
use a released version of this code for our simulatiéns.

Our agent uses Sarsg([12] with CMAC [2] (tile coding) func-
tion approximation. The CMAC is two-dimensional and has 14
tilings (repeating the setup detailed in Singh and Suttdi)[Sarsa
has learning rate ok = 0.5, ane-greedy exploration rate af =
0.1, an eligibility trace decay rata of 0.95, and we multiply the
exploration rate by 0.99 at the end of each learning epismdsdist
convergence. The learning rate is not decayed. Thesegttiere
selected because they were included in the released MouDgai
package as the best found to date for Savsaf this task.

4.2 Three Dimensional Mountain Car

In this novel modification to the standard Mountain Car domai
the mountain’s curve is extended to a 3D surface (see Figure 1
The state now has four continuous state variables:, y, y. The
positions have a range ¢f1.2,0.6] and the velocities are con-
strained to £-0.07, 0.07]. The agent now selects from five actions:
{Neutral ,West, East, Sout h, Nor t h}. West and East mod-
ify © by -0.001 and +0.001 respectively, while South and North
modify ¢ by -0.001 and +0.001 respectivélyOn each time step
is updated by-0.025(cos(3z)) andy is updated by-0.025(cos(3y))
due to gravity. The goal stateis> 0.5,y > 0.5. When learning
this task without transfer we use a four-dimensional CMAGhwi

lows us to use a simple regression method, which may be used ony4 tjlings, and again set = 0.95. After initial experiments with

tasks with continuous state variables, and which requétegively
little data for model learning

4. GENERALIZED MOUNTAIN CAR

In this section we introduce our experimental domain, a gene
alized version of Mountain Car [14], and summarize how tasks
this domain are learned without the aid of transfer. 2D Maimt
Car is one of the canonical RL tasks which requires genetidia
across a continuous state space where an agent must drivdem u

powered car up a mountain to reach a goal state. We then exten

the problem to three dimensions. This extension retainshnodfic
the structure of the 2D problem so that transfer from 2D to 3y m
be beneficial, but the 3D task forces the agent to act in a Spatee
with four continuous state variables instead of only twodiidn-
ally, we later allow the agent to execute a new action (engage
hand brake). By adding this action we are able to experiment o
a total of four related tasks, each with different statealdds and
actions. After we have introduced the tasks, Section 5 diszsi
how MASTER is able to learn inter-task mappings for these tasks
and demonstrates their benefit by using an existing TL alyori

In all the mountain car tasks, the shape of the mountain aad th
goal location are initially unknown. The agent begins at a¢she
bottom of the hill. The reward is-1 for each time step until the
goal is reached, at which point the episode ends. The ep@ede
ends, and the agent is reset to the start state, if the adisrtoféind
the goal within5000 time steps.

Lif a significant amount of data from the target task were néede
to learn a transition model, relative to the amount of datded to
learn the target task, the time spent gathering data to laimter-
task mapping could easily outweigh any savings gained ingtea

285

roughly 100 different parameter settings, we seleectee: 0.2,
e = 0.5, and are-decay of 0.99.

2Available at http://rlai.cs.ual berta.cal/ RLR/

Mount ai nCar Best Sel | er. ht i .

Note that we call the agent’s vehicle a “car,” although itsloet

urn, to emphasize the similarities with the stand two digie@mal
ountain car task.

3D Mountain Car

Mountain Height
5 o e
NORPOIOOROIN

Figure 1: In 3D Mountain Car, the 2D curve becomes a 3D surface.

4.3 Hand Brake Mountain Car

We add a variant to the two- and three-dimensional mountain ¢
tasks by adding an extra actiohand br ake. While the other
actions in the mountain car tasks are all executed for aesiigle
step, the hand brake action is a macro-action that exeootdisd
simulator time steps. The effect of the action, in both the-tand
three-dimensional versions of the task, is to immediatelytlse
velocity of the car to zero. All other aspects of the tasksaiem
unchanged from the non-hand brake versions.

When learning the two-dimensional hand brake mountain car
we used parameters identical to the two-dimensional mauoga.
When learning the three-dimensional hand brake mountaivitia:
out transfer we tested roughly 70 different parameterrsgstand
selectecy = 0.4, ¢ = 0.3, and anc-decay of 0.99.

5. EXPERIMENTAL VERIFICATION

In this section we show howASTER can learn an inter-task
mapping from 2D Mountain Car to 3D Mountain Car. We then
discuss a number of experiments that illustrate how our akih
able to achieve a significant speed-up in the target taskliwitted
source task data and compare the results of our algorithmanmit
existing learning approach. Lastly, we demonstrate RV TER
can evaluate mappings between multiple source tasks apddel
select an appropriate source task for transfer.

5.1 Using MASTER in Mountain Car

In order to useMASTER o0 learn an inter-task mapping between
2D Mountain Car and 3D Mountain Car, the agent first trained in
2D Mountain Car for 100 episodes using Sakga(hile saving the
observed {;, as, s,) transitions (see Method 1, lines 1-3). The
agent then executed actions randomly in 3D Mountain Car @or 5
episodes, recording the observed, @, s;) transitions.

To learn the one-step transition model (Method 1, line 6), we
used the Weka package (version 3.4.6) to train multi-layer p
ceptrons (i.e., artificial neural networks). While we expemted
primarily with neural networks for building the 1-step madee
expect that other non-linear function approximators coutitk
equally well. After trying 4 different parameter settinggmformal
experiments, we used Weka'’s default settings, except foingehe
number of hidden nodes to eight and the number of traininglepo

Trajectory when executing a single action for 10 timesteps

T T T T

042 + & |
/r"g" .0
-0.46 |- - o 1
c 7 P
2 v o
8 r;'é @
o ; peg .
L 05} P 0T e |

Actual West —+—
Actual East -
Actual South ----x----

-0.54 Actual North & 1
Predicted West —-a--
Predicted East --o--
Predicted South -~
Predicted North -~
-0.58 L L L L
-0.58 -0.54 -0.5 -0.46 -0.42
X-position

Figure 2: Trajectories in the 3D Mountain Car task (10 “Actual” ac-
tions are taken in arow), and trajectories generated by neual networks
trained on 50 target task episodes (10 “Predicted” actionsra taken in
a row), shows how the trained neural network may produce skeed
predictions, but that the relative effect of the actions is peserved.

our example, we would use the set of four neural networksedhi
on the target task action West to predict the next state tlesigent
observes. The output from each neural network is compargéd wi
the true next state the agent observed in the source taskhand
error over all the transformed source task data is used twiledt
the MSE for the mapping.

Table 1 summarizes results of a representative trial whaluatr
ing the 240 mappings. For this domain, one state variableomgp
is significantly better than all others, both when averagedss all
action mappings, or when the best action mapping is coresider
each possible state variable mapping. This state variabjgmg
is fairly intuitive: the position state variable in the 2D Mutain
Car maps to both position variables in 3D Mountain Car, amrd th
velocity state variable in the 2D Mountain Car maps to botbae
ity state variables in the 3D Mountain Car.

In Table 2 we focus on the best state variable mapping and show
the MSE for each of the different possible action mappingghW

to 5000. For each 3D Mountain Car trail, we trained a separate the exception of Neutral, each task action has two souréeaas

neural network for each (action, state variable) pair, lteguin a
total of 20 trained neural networks. Each network modeliegtar-
get task data for 3D Mountain car had 4 inputs, one for eadk sta
variable, eight hidden nodes, and a single output that worddict

a single state variable’s next value.

The trained target task models are only approximate beazfuse
the small amount of target task data. For instance, when we co
pare trajectories in the target task with trajectories poed by our
model (see Figure 2), it is clear that the models are not vecy-a
rate, but that the relative effects of actions are preserved

Once the models are learned, the agent next iterates oyrsall
sible state variable and action mappings. For instancepitlav
sequentially try mapping: in the source task to each of{y, z,

y} in the target task. Likewise, the source action Left would b
mapped to the target actions {Neutral, West, East, SoutithNo
The agent then transforms the recorded 2D Mountain Car data u
ing each of these 240 mappings (16 state variable mappings
action mappings). For instance, consider a recorded staskeu-
ple (z, z, Left), the state variable mapping, — {x¢,y¢}, s —
{#+, y: }, and the action mapping Left- West, Right, — {Neutral,
East, South, North,}. Using these mappings, the tuple will be
transformed into, =, ¢, &, West). Each transformed tuple is used
as input to the neural networks for the relevant target taskra In

286

tions with very similar error. This effect is caused by theibling
of state variables and actions when using 2D Mountain Car aat
input to a 3D Mountain Car model. When using the state vagiabl
mapping described above, is mapped to bothk:; andy:. Con-
sider saved source task data for the action Right. Righ&istlurce
task will causei s to increase. East in the target task will likewise
causet. to increase, but it will not affecj.. Becausetrs has been
mapped to both of these state variables, one will be modifietie
target task model expects for the action East, but the otHlemat.
Intuitively, an appropriate action mapping would map boighR
and Neutral from the source task to the action East in theetarg
task. Because there is no clear single best 1-1 mapping, @aseh
to weight the different action mappings by the inverse ofrthrea-
sured MSE. Such a method will allow us to map multiple actions
from the source task into the target task, weighted by tledative
errors on our model.

Once the agent learns the mappings and 64 (one-to-many
for the state variable mapping and many-to-many for theoas}j
we construct the inter-task mappings andX 4 by taking the in-
verse of these mappings. We then use a transfer method which
is very similar to that 0ofQ-Value Reus§20] (see Method 2). In
this transfer method, the agent saves the 2D CMAC after-train
ing on the source task. In the target task, the agent modffees t

State Variable Mappings Evaluated

r y < gy | Avg. MSE | Best MSE
r T x x 0.0384 0.0348
r x T 0.0246 0.0228
r x T x 0.0246 0.0227
r x® T @ 0.0107 0.0090
r & T x 0.0451 0.0406
r & T 0.0385 0.0350
r T T x 0.0312 0.0289
r & T 0.0245 0.0225
r x T =z 0.0451 0.0406
r x T 0.0312 0.0290
r x T x 0.0384 0.0350
r x T 0.0245 0.0226
r & T x 0.0516 0.0463
r & T 0.0450 0.0407
r & T =z 0.0450 0.0407
r & T 0.0383 0.0350

Table 1: This table shows the resulting MSE when using different
state variable mappings. Each row shows a different mappingvhere
the source task variables in the row are mapped to the targetask vari-
ables at the head of the column (i.ez, z, =, £ maps variable zs to x¢,
x5 10 yt, s 10 o¢, and &5 to ¢). The Avg. MSE column shows the MSE
averaged over all possible action mappings for each row’s ate vari-
able mapping. The Best MSE column shows the MSE for each row’s
state variable mapping when using the action mapping with tie low-
est MSE. Both metrics show that the state variable mapping irbold is
significantly better than all other possible state variablemappings.

Action Mappings Evaluated

Target Task Action] Source Task Action] MSE
Neutral Left 0.0118
Neutral Neutral 0.0079
Neutral Right 0.0103

West Left 0.0095
West Neutral 0.0088
West Right 0.0127
East Left 0.0144
East Neutral 0.0095
East Right 0.0089
South Left 0.0099
South Neutral 0.0093
South Right 0.0135
North Left 0.0136
North Neutral 0.0100
North Right 0.0100

Table 2: This table shows the MSE found when a source task action is
mapped into a target task action. All experiments in this tale use the
same state variable mapping.

weights in a 4D CMAC when learning. However, when computing
the action-value for &, a pair, the agent also uses the saved 2D
CMAC to evaluate the current position. Conceptuallys:, a:) =
Qapcmac(st,ar) + Q2pemac(Xx (st), Xa(sa)). However, as
mentioned above, our action mapping is not one-to-one. Waus
iterate over all source task actions, multiply each by therse

of the action mapping’s recorded MSE, and then renormatiee (
Method 2). The action mappings with the lowest error have the
most influence on the value contributed by the source task CMA
While learning, the target task CMAC'’s weights are modifigd b
Sarsal) and will allow for an accurate approximation of the action-
value function, even though the transferred source CMAGdwh
remains unchanged) will not be optimal in the target task.

5.2 Transfer from 2D to 3D Mountain Car

Figure 3 shows learning curves in 3D Mountain car, each aver-
aged over 25 independent trails. For each trial, after epidoée
we evaluate the policy off-line without exploration. To ghathe
learning curve we average all 25 learning curves for theipusv
10 episodes and plot the mean. First, consider the lineshitwit

287

Method 2 Q-Value Reuse in 3D Mountain Car

D z,y, %,y < agent’s current state

. a¢ < action to evaluate

. for each source task actien do

SUM +=1/MSEq, a,

. for each source task actian do

Q(s,at) +=Q2dcmac(z,&,as) X 1/SUM x 1/(MSEq,,q,)
Q(s,at) += Qaacmac (Y, ¥, as) x 1/SUM x 1/(MSEq, a,)
D Q(s,at) += Quacmac(x,y, %, Y, at)

transfer” and “Average Both.” Average Both transfers byrage

ing over all action mappings and all state variable mappiSggeh

a method can be considered a type of blind transfer — no time or
samples are spent learning an inter-task mapping, but thétre
ing learning curve is much worse than learning without tfams
Evidently, transferring without any consideration to thats and
action variable mappings may be quite harmful to learningwH
ever, as is shown by the other transfer experiments, UsKgIrER

to learn these mappings can enable transfer that is quitfibizh.

The line “Transfer: 1/MSE” is generated by transferringnfro
100 episodes of 2D Mountain Car where the action mapping is
weighted by the inverse of its observed MSE in the target task
model. Using paired t-tests we find that the 1/MSE transfevecu
is statistically significantly better, at the 95% level, iHaarning
without transfer for episodes 2—473Also included in the graph
are three other transfer mappings for comparison. “Hande@bd
uses hand-coded state variable and action mappings basad on
knowledge of the domains as humans. We believe that thie-lear
ing curve represents the upper bound on transfer for 10@agss
of 2D Mountain Car. It is encouraging that the 1/MSE learning
curve quickly converges to the same asymptotic value asahd h
coded transfer learner. “Average Actions” performs transfith
the learned state variable mapping but simply averagesathvac-
tions. This would be equivalent to all the possible actiomppiags
having the same error, and indicates how important usingcan a
tion mapping is for efficient transfer. Figure 4 shows a mhegdi
version of the graph to better see differences between ffezaiit
transfer methods.

We also tested a final method for weighting the differentaacti
mappings. Rather than using all action mappings and weighti
by the inverse of the MSE, we selected only the best or two best
actions. The learning curve resulting from this method waesig
tatively similar to the 1/MSE learning curve and is not shown

5.3 Reducing the Total Sample Complexity

The results in Figure 3 show that learned source task knaeled
can be effectively used with a learned mapping. Thus, if @ntg
has already trained on 2D Mountain Car and wants to learn 3D
Mountain Car, it likely makes sense to use its past knowledtfer
than to learn without it. However, consider a situation vehtre
agent has not trained on 2D Mountain Car and is faced with the
3D Mountain Car task. Should it first train on the 2D task, tear
mapping, and then transfer? Or should it directly tacklertiuee
difficult 3D task?

To help answer this question, we varied the amount of data use
in the source and target task to learn a mapping, as well as how
many episodes in the source task used to learn the 2D CMAC's
weights. Earlier experiments showed transfer after legrfor 100
episodes in the source task, spending 50 episodes cofedaia

40n the first episode, the agent with transferred knowledgeaha
average reward of -4640 while the agent learning withourtstier
has an average reward of -5000, which is not different at 8% 9
confidence level.

3D Mountain Car
0 T T T

-1000 [1
2000 1

-3000 f N 1

Average Off-Line Reward

gy Transfer: Hand-Coded i

4000 " Transfer: 1/MSE
Transfer: Average Actions

NS No Transfer
o __ Transfer: Average Both

-5000 - .
0 1000 1500
Episodes

Figure 3: This graph compares learning without transfer to: transfer
with learned state variable and action mappings, transfer vith hand-
coded mappings, transfer with mappings that average over apossible
mappings, and transfer with a learned state variable mappiig. Figure 4
zooms in on the beginning of the same curves. Each learning e
averages 25 independent trials.

in the target task, and then usingpSTER with transfer to learn

the target task. We tried using 100, 50, 25, and 10 episodes of

source task training, as well as 50, 25, and 10 episodes gdttar
task training. We found that only when we reduce the number of
source task episodes to 10 does performance degrade.

Figure 5 compares learning 3D Mountain Car without transfer
to using transfer. The agent trains for 25 episodes in thecsou
task, collects data for 10 episodes in the target task, M88SER
to learn the inter-task mappings, weights the action mayspby
1/MSE, and then learns in the target task. Note that thefeans
learning curve has been shifted by 35 episodes (the firshgohp
point is at episode 45, instead of at episode 10) to explieit-
count for the episodes spent before learning in the targét tA
series of paired t-tests show that the difference betwesmiteg
without transfer and learning with transfer while accongtior all
episodes used is statistically significantly differentat 5% level
from learning without transfer from episodes 36-474. Wedfoze
conclude that for some tasks, it may be in an agent’s intésésdin
first on a simple source task, learn a mapping, and then leaen o
target task, rather than learn on the target task direttly.

5.4 Comparison to Previous Work

We would like to compare our method with previous methods
for learning a mapping using data from the environments [(L’g,
18, 21]) but the 2D and 3D Mountain Car tasks do not easily sub-
divide into groups of state variables. For instance, ouviptes
work [21] presents an example from a logistic domain thaideis
the world into two object types, trucks and locations, angpsises
that the source and target tasks can have different numbtrese
objects. However, in Mountain Car there is no clear divisafn
“object types.” To enable a comparison, we will decide tougro
state variables into (position, velocity) tuples. Our seutask will
thus have one objectz(), and the target task will have two ob-
jects, @, z) and {y,). Note that a significant amount of informa-
tion about the relationship between the two tasks has ajreaen
encoded in this formulation.

5The learning parameters for the 3D Mountain Car task weredtun
for learning without transfer. In a different series of esipeents,
not shown, the transfer learning curves were improved bliymaig
the learning parameters.

288

3D Mountain Car

ot } 1 k { }]

°
S -1000 1 p
S
[}
= s
[} P
£ -2000 ~]
= -
=
(e}
S 4
g -3000 f]
[
>
<

-4000 - Transfer: Hand-Coded - 1

Transfer: 1/MSE - -
- Transfer: Average Actions
T No Transfer -----
-5000 L—= L . .]
0 50 100 150 200 250 300

Episodes

Figure 4: This graph shows the same curves as in Figure 3. The hand-
coded mapping performs slightly better than the fully learned map-
ping, which in turn is better than using only the state variable mapping.
To help visualize the magnitude of the evaluation noise, théearned
mapping transfer curve shows error bars at+ 1 standard deviation.
Each learning curve averages 25 independent trials.

3D Mountain Car

-1000
-2000 |- A R

3000 FJ B

Average Off-Line Reward

-4000 - | B

Transfer: 1/MSE, total episodes
No Transfer

1500

-5000 ‘
0 1000
Episodes

500

Figure 5: This graph compares learning without transfer to transfer
using learned mappings. The transfer learning curve does ristart at 0
episodes as it now reflects the total number of episodes usexléarn the
mappings in the source and target task. This result shows thdhe total
time to learn a source task, an inter-task mapping, and thendarn in a
target task may less than learning a target task directly. Eah learning
curve averages 25 independent trials.

We follow the procedure of Taylor, Whiteson, and Stone. In
the source task, we collect experience while learning infone

(zs, s, as,r, x5, 4%), where the s subscript denotes the source
task. After learning, we use the data to train an action iflass
Caction(Ts, Zs, 7,25, ') — as. Then, in the target task, we
collect data in the forma;, 2+, ye, yr,ae, 7, 2%, &%, Y1, 9:'). Af-

ter collecting the target task data, we use the action ¢ies$o
predict which similar source task action was used for anmvise
target task tuple. For instance, the output from the actiasstfier
Caction(Tt, Tt, 7, T3, ") would give some source task action. The
returned source task action is counted as a vote that thet tagk
action associated with this tuple;, is the same as the action re-
turned by the classifiet,s. Note that no state variable classifier is
needed, as there is only one object type. Thus, ;) and (:, y+)
both get mapped tac, <) because of the knowledge we implic-
itly gave the agent in how we chose the state variable grgupin
Xx has been provided by human knowledge, but the classifier is
responsible for learning 4.

We collected 50 episodes of data in 2D Mountain Car and tdaine
a neural network action classifier with 5 inputs (four statgables
and the current reward) to predict the source task actionwha
taken. The neural network was unable to learn to correctyg-cl
sify the data until we changed the agent’s policy so that e c
took each action for 5 successive time steps. By groupingesdc
sive states together (i.e., instead of using the state astimand
t+1, we used the state at times t and t+5), the effects of ractio
outweighed the effects of gravity and we were able to learacto
curately classify source task actions. The action mappagked
is similar to the results of our method, as expected (seeeTapl
If we use this action mapping to learn in 3D Mountain Car (not
shown), weighting the different actions by the number oftéa3
each mapping received, we find that the target task learsingry
similar to our 1/MSE method using both the learned stateatstei
and action mappings described above. The main significahce o
this result is that it confirms thatASTER is able to find an action
mapping similar to that found by an existing learning metren
though significantly less human knowledge is required.

Action Mappings via Classification

Left | Neutral | Right
Neutral | 679 | 18910 | 154
West | 8518 | 10554 | 184
East| 285 | 10046 | 9177
South | 8773 | 10730 | 186
North | 375 | 10093 | 9540

Table 3: This table shows the confusion matrix when evaluating 3D
Mountain Car data on an action classifier trained using 2D Mountain
Car data. Each value in the matrix is the number of times a target
action (row) was classified as a source action (column), ancéeh data
can be considered a vote for the action mapping.

5.5 Transfer in Hand Brake Mountain Car

In this section we examine transfer into the 3D Hand Brakeiou
tain Car task. First, consider an agent that has previousiged
for 500 episodes of 2D Hand Brake Mountain Car. Figure 6 com-
pares learning without transfer, learning after trangfgronly the
state variable mapping, and learning after transferrir the state
variable and action mapping. This result confirms thasTER can
learn a useful inter-task mapping in this variant of Moumt@ar.

Consider an agent that has previously trained on 2D Mountain
Car, both with and without a hand brake action. If the agent is
now tasked with 3D Hand Brake Mountain Car, it should be able
to learn mappings for both tasks and use the learned mapfangs
intelligently transfer from the source tasks. One optioruldde
to select the source task with learned mappings that hadwest
MSE, which in this case would be 2D Mountain Car with a hand
brake action (see Table 4 for a partial summary). A seconidopt
would be to weight the mappings from both tasks by the invefse
their recorded MSEs. Figure 7 shows both of these methods out
perform transferring only from the 2D Mountain Car withoatrial
brake, as well as outperforming learning the 3D hand bragk ta
without transfer. Interestingly, transferring from bottusce task
appears better than transferring from a single source &sto(gh
the differences are not statistically significant at the 98%&| due
to high variance).

This experiment shows that it is possible to leveragesTER'S
evaluation of different inter-task mappings to help deieevhow
similar tasks are. It is possible that such a method could laés
used to learn when an action or state variable in the targehba
analog in any source task, but we leave this enhancementuiefu
work. In our experiment, the transition function of the twanid
brake tasks was more similar than the 3D hand brake task a&nd th

289

3D Hand-Brake Mountain Car

-500
-1000
-1500

-2000

-2500 | | i :

-3000 |- | .

Average Off-Line Reward

-3500 |- | ; 1

-4000 | 1
i / Transfer: 1/MSE ——

Transfer: Average Actions
No Trapsfer

800

-4500

_5000 : 1 1 1
0 200 400 600

Episodes

Figure 6: This graph shows that transfer using both learned mappings
outperforms both learning without transfer and using only the learned
state variable mappings. Each learning curve averages 25dependent

trials. . .
Action Mappings for 2 Source Tasks

Target Task Source Task MSE for 2D MSE for 2D Hand
Action Action as Source Task Brake as Source Task
Neutral Left 0.0196 0.0140
Neutral Neutral 0.0188 0.0113
Neutral Right 0.0244 0.0162
Neutral Hand Brake 0.0665

West Left 0.0180 0.0111
West Neutral 0.0226 0.0143
West Right 0.0320 0.0219
West Hand Brake 0.0678

Hand Brake Left 0.1673 0.1284

Hand Brake Neutral 0.1706 0.1285

Hand Brake Right 0.1985 0.1360

Hand Brake Hand Brake 0.0097

Table 4: This table shows some of the MSEs found when a source task
actions from 2D Mountain Car (with and without a hand brake action)
are mapped into a a 3D Hand Brake Mountain Car action. Note tha
the errors for the 2D hand brake task are less than the standat 2D
task and that no source task action from the standard 2D task raps
well to the 3D hand brake action.

2D non-hand brake task. While encouraging, such a metrig onl
accounts for the similarity of two tasks’ transition furmts. If, for
instance, the target task’s goal state were moved i@/ 0.5) to
(—1.2,—1.2), itis unlikely that transferring from either 2D Moun-
tain Car task would improve learning. In fact, when transfer
from such mismatched tasks, it is possible that transfeddvourt
the learner’s performance, relative to learning withoansfer. In-
sulating an agent from the effects of suckgative transfeiis a
difficult problem that we leave to future work, along with refig
this proposed task similarity metric to account for differes in
source and target tasks’ reward functions.

6. FUTURE WORK

In this work we have focused on reducing the sample complexit
of learning by showing that ASTER can increase performance in a
target task with effective reuse of past knowledge, as vesshmw-
ing that the total number of episodes can be effectively cedu
with an automatically learned mapping. We do so under the as-
sumption that for many fielded agents, sample complexityuisim
more of a bottleneck than computational complexity. In tieife
we would also like to examine reducing computational coxipte

The first area for improvement would be tackling the inneploo
of MASTER which is exponential in the number of state variables

3D Hand-Brake Mountain Car

0 T . ; ;
-500]

-1000 1
B ’
c - i 1
g 1500 i ‘
] i E
¢ 2000 |
= ;
z [-
= -2500
[e]
o -3000 -]
o
¢ -3500 -]
4

-4000 1 Transfer: 1/MSE from 2D and 2D Hand-Brake

Transfer: 1/MSE from 2D Hand-Brake --------
-4500 - : Transfer: 1/MSE from 2D - 7
. No Transfer
-5000 L L L A
0 200 400 600 800 1000

Episodes

Figure 7: This graph compares learning the 3D Hand Brake Moun-
tain Car task without transfer, with transfer from the 2D Han d Brake
Mountain Car, with transfer from the 2D Mountain Car, and wit h
transfer from both versions of the 2D task (weighted by the inerse
of their respective mapping errors). Each learning curve aerages 25
independent trials.

and actions. As suggested before, if this method is to soabesks
with hundreds of state variables or actions, some sort ofisteu
search would be needed, rather than an enumeration of aibp®s
mappings. However, we reiterate that the main insight @6 TER
is that the different possible mappings can be evaluatedinaff
and that utilizing more powerful search techniques foraliscing
an optimal mapping is left to future work.

It would also be useful to determine if the sample complexity

could be further reduced. One idea would be to explore inaiget
task so as to minimize the uncertainty in the target tasksttian
model, making exploration more efficient. Another possitalet
would be to interleave building the target task transitiordel and
gathering data in the target task. By examining the learnede
it may be possible to continue exploring in the target tadiy as
long as collected data is changing the model significantly.

MASTERrelies on being able to explore in the target task quickly

and build an approximate model. However, in some tasks ttialin

exploration may not be indicative of the entire MDP and a nhode

learned with only a little training data would be misleadighile
there is likely no way to guard against this for arbitrary MDR
would be useful to be able to define the type of task for whiahsu
initial exploration is likely to yield a useful model for le@ng a

mapping.

Lastly, we note that this work focuses on pairs of tasks drawn (17]
from the same domain. While other work has demonstrated that
cross-domaittransfer is possible [19], itis likely that autonomously

learning mappings will become more difficult when the souwme
target tasks become less similar.

7. CONCLUSION

This paper has introducedASTER, a method for automatically

learning a mapping between tasks. We have empirically demon 21

strated the efficacy of this algorithm on a series of taskshen t

Mountain Car domain. These results show that a learned tapk m

pings can effectively increase the speed of learning in alrtawet
task so that the sample complexity is reduced using transfier
tive to learning without transfer. Additionally, we show anitial

approach for leveraging learned inter-task mappings tistasgth

the problem of appropriate source task selection.

290

Acknowledgments

We would like to thank Lilyana Mihalkova and the anonymous re
viewers for helpful comments and suggestions. This rebeseas

supported in part by DARPA grant HR0011-04-1-0035, NSF CA-

REER award 11S-0237699, and NSF award EIA-0303609.
8. REFERENCES

[1] A. Agnar and P. Enric. Case-based reasoning: Founditissues,
methodological variations, and system approaches, 1994.

[2] J. S. Albus.Brains, Behavior, and RoboticByte Books,
Peterborough, NH, 1981.

[3] S. Dzeroski, L. D. Raedt, and K. Driessens. Relationaifoecement
learning.Machine Learning43(1/2):5-52, April 2001.

[4] F. Fernandez and M. Veloso. Probabilistic policy reusa i
reinforcement learning agent. Rroc. of the 5th International Conf.
on Autonomous Agents and Multiagent Systet@86.

[5] M. Genesereth and N. Love. General game playing: Overeitthe
AAAI competition. Al Magazine 26(2), 2005.

[6] G.Kuhlmann and P. Stone. Graph-based domain mapping for
transfer learning in general games Rroceedings of The Eighteenth
European Conference on Machine Learniggptember 2007.

[7] Y. Liu and P. Stone. Value-function-based transfer finforcement
learning using structure mapping. Bmoc. of the 21st National Conf.
on Artificial Intelligence July 2006.

[8] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild.ivé&g
advice about preferred actions to reinforcement learniers v
knowledge-based kernel regressionPhoceedings of the 20th
National Conference on Atrtificial Intelligenc2005.

[9] D. Ormoneit and S. Sen. Kernel-based reinforcementiegr
Machine Learning49(2-3):161-178, 2002.

[10] M. J. D. Powell. An efficient method for finding the minimmuof a
function of several variables without calculating derives.
Computer Journal7:155-162, 1964.

[11] J. Ramon, K. Driessens, and T. Croonenborghs. Tratedening in
reinforcement learning problems through partial poliayyaing. In
Proc. of The 18th European Conf. on Machine Learn@@07.

[12] G. Rummery and M. Niranjan. On-line Q-learning using
connectionist systems. Technical Report CUED/F-INFENIGLR6,
Engineering Department, Cambridge University, 1994.

[13] M. Sharma, M. Holmes, J. C. Santamaria, A. Irani, C. lishand
A. Ram. Transfer learning in real-time strategy games uisyigid
cbr/rl. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligen¢c007.

[14] S. P. Singh and R. S. Sutton. Reinforcement learning veiplacing
eligibility traces.Machine Learning22:123-158, 1996.

[15] V. Soni and S. Singh. Using homomorphisms to transfé¢ioop
across continuous reinforcement learning domain®rtrc. of the
Twenty First National Conf. on Atrtificial Intelligencduly 2006.

[16] K. O. Stanley and R. Miikkulainen. Evolving neural neiks

through augmenting topologieBvolutionary Computation

10(2):99-127, 2002.

R. S. Sutton and A. G. Barttntroduction to Reinforcement

Learning MIT Press, 1998.

[18] E. Talvitie and S. Singh. An experts algorithm for triamdearning.
In Proceedings of the Twentieth International Joint Confeeean
Artificial Intelligence 2007.

[19] M. E. Taylor and P. Stone. Cross-domain transfer farfecement
learning. InProceedings of the Twenty-Fourth International
Conference on Machine Learningune 2007.

[20] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning witer-task

mappings for temporal difference learniripurnal of Machine

Learning Researgt8(1):2125-2167, 2007.

M. E. Taylor, S. Whiteson, and P. Stone. Transfer viariask

mappings in policy search reinforcement learningThe Sixth

International Joint AAMAS ConfMay 2007.

[22] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Usiagvice to
transfer knowledge acquired in one reinforcement leartasg to
another. InThe 16th European Conf. on Machine Learni2@g05.

[23] 1. H. Witten and E. FrankData Mining: Practical machine learning
tools and techniqguesMorgan Kaufmann, 2005.

