Dynamics Based Control with PSRs

Ariel Adam
School of Engineering and
Computer Science
The Hebrew University of

Jerusalem)
adama@cs.huji.ac.il

ABSTRACT

We present an extension of the Dynamics Based Control (DBC)
paradigm to environment models based on Predictive StgieeRe
sentations (PSRs). We show an approximate greedy versithe of
DBC for PSR modelEMT-PSR and demonstrate how this algo-
rithm can be applied to solve several control problems. Véa th
provide some classifications and requirements of PSR enwieat
models that are necessary for the EMT-PSR algorithm to tpera

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search-Gontrol theory 1.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords

Dynamics Based Control, Predictive State Representation

1. INTRODUCTION

Autonomous agents, and the entities they represent, rigata
counter systems that develop over time. Modifying netwoaks-
mission rates, controlling the motion of remote actuatorspo-
sitioning a target within a field of vision (by moving the tatg
or the vision system), can all be described as a control thsk o
dynamic stochastic system. One common model for formajisin
such tasks has been Partially Observable Markov Decisiob-Pr

Zinovi Rabinovich
School of Electronics and
Computer Science
Southampton University
zr@ecs.soton.ac.uk

Jeffrey S. Rosenschein
School of Engineering and
Computer Science
The Hebrew University of
Jerusalem

jeff@cs.huji.ac.il

sively on observed properties: sensory input, and theahlailac-
tions. Based on the predicted success levels of some futtioma
observation sequences, termedts PSRs allow the recovery of
the probability of success of any given sequence of actiwaiscan
be applied, and the observations that would follow themylties)

in a modelling scheme that is at least as powerful and congsmact
hidden state models [6].

Dynamics Based Control (DBC) [15] is a new approach to con-
trolling agents in stochastic environments. Unlike pregidech-
nigues, which seek to optimise expected rewards (e.g., MPRx),
DBC optimises system behaviotawards specified system dynam-
ics. One specific instance of the overall DBC framework is the
controller based on Extended Markov Tracking (EMT) [12,14;
EMT employs greedy action selection to provide an efficiamt-c
trol algorithm in Markovian environments. The EMT-basedh-co
troller assumes that the system can be forced to behave &sa sp
ified Markov chain—an ideal dynamics—and uses the undeglyin
EMT algorithm to estimate the effects of different actiolbe ac-
tion with the effect most aligned with the ideal dynamicshiernt
applied.

In this paper, we combine the PSR representation with the DBC
approach. We propose a new system-tracking algorithm uheer
PSR model, the EMT-PSR algorithm, which is designed to reccov
the transition rule between two consecutive actions anérehs
tions in the immediate future—that is, the transition betwto-
morrowandthe day after tomorrowunder the assumption that such
a transition is Markovian. The resulting polynomial-timentrol
algorithm directly operates over observable quantities,sensory
inputs, and the available actions, allowing for a more titeiand
dynamics-directed specification of the control task. Weeeixpen-
tally show that behavioural heuristics can be directly ipooated

lems (POMDPs) [11, 3]. POMDPs assume that the true state of jnto the algorithm’s task specification, resulting in imged con-

the system is obscured, and can be only indirectly obsemgad f
the available sensory input. The control task is then tedaedlinto
a utility function that uniformly describes the benefit offelient
steps in the system’s development, and the action policyis o
mised to produce the highest expected utility [9]. Whileottet-
ically attractive, such an approach in practise has highpetaa
tional complexity [7, 5], which has encouraged the develeptof
additional system modelling and control frameworks.

Predictive State Representations (PSRs) [6, 16] have b®en p
posed as a new way of creating models of controlled dynansic sy
tems. PSRs describe a system’s dynamic development badead ex
Cite as: Dynamics Based Control with PSRs, Ariel Adam, Zinovi Ra-
binovich and Jeffrey S. Rosenschelroc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 208&ham,
Parkes, Muller and Parsons (eds.), May, 12-16., 2008, iE$tortugal, pp.
pp. 387-394.

Copyright (© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

387

trol performance.

The remainder of the paper is structured as follows. In Be@i
we review the PSR environment, review the DBC framework, and
present the EMT-PSR algorithm in detail. In Section 3 we dbsc
the domains used for the algorithm’s performance evaloaiio-
cluding domain-specific performance measures and the &apir
results obtained for each of the domains. Sections 4 anddsides
the necessary modelling characteristics and the contsklspec-
ification guidelines for the EMT-PSR algorithm applicatiod/e
conclude and discuss future work in Section 6.

2. THE EMT-PSR ALGORITHM

The recently introduced Dynamics Based Control (DBC) [15]
framework, which we review below in Section 2.2, views tha-co
trol task as follows: force a given algorithm for system itiféea-
tion to produce a result as close as possible to a specifiedl)id

one. This point of view requires an environment model to jgted
the response of the identification algorithm, and to opereterms

of connections between the actions that will be applied hadb-
servations that will then be made. Although all previouslenpen-
tations of the DBC framework [12] used a hidden state moael, i
this paper DBC is implemented using a new approach. We con-
struct a DBC algorithm using an environment model that dpsra
only in terms of direct observables: sensory input and astge-
lected, the elements of Predictive State RepresentatR®Rg).

PSRs [6, 16] are based on the fact that in some systems, given

the history of their development, it is enough to know onlyew f
predictions of their future development in order to prettitir en-

tire future. Among the benefits of PSRs (discussed below in Sec-
tion 2.1) is their representation of a system directly inmerof
observable and deliverable aspects of the environment,their
representation directly captures the relationship betvietire ob-
servations an agent may have, and the future actions it naly.ap

2.1 Predictive Representation of State

Predictive State Representations (PSRs) were introduc];i
the approach views a system as a set of dynamically developin
predictions of future observations.

Given a (discrete) set of actions available to an agent, and a
(discrete) seP of possible observations, PSRs focus on sequences
of future actions and observationstests(A x O)". A testt =
aior...aro- € (AxO)V is said to succeed if the sequence of obser-
vationsos, ..., o, iS obtained as the sequence of actiens..., a,
is executed. As actions are executed and observations aie ara
interaction historyh € (A x O)™* is obtained, and the probability
of any given tesp(t|h) varies.

The set of success probabilities of all tests is infinite. How
ever, in some systems it is possible to identify a suisef tests,
termedcore testssuch that the success probabilitft|h) of any
test can be computed from the success probabilities of the co
testsp(Q|h) = {p(q|lh)}qeq. The dependency betweeriQ|h)
and p(t|h) is independent of the interaction histohy though it
may be non-linear.

In this paper we will concentrate on Linear Discrete PSRs [6,
16], which can be defined by the tupteA, O, Q, p(Q[0), M, m >,
where:

e Ais the set of actions available to an agent under the model,;

[)
model;

Q is the set of key future pointspre testsQ C (A x O)*.
In a linear PSR this set is finite, and its size dictatesdihe
mensiorof the model:Q = {q¢1, ..., qx };

p(Ql0) = [p(q:1]9), ..., p(qx|0)] is the initial vector of pre-
dictions regarding the core tests. This is the probabilit t
the test will succeed, given that the interaction history is
empty. In generagh(Q|h), whereh € (AxO)* is the history

of interaction, is called thBSR state

M = {M], = [Maog;]le: € Qa € A, 0 € O} is the set
of one-step extension weight matrices. Each rowf, is a
weight vecton,,. , so thap(aog;|h) = m ., p(Q|h);

m = {maola € 4,0 € O} is the set of weight vectors for
the single-step testm, that is,p(aolh) = mI,p(Q|h).

It is important to note some notation abug&a101...aro0-|h) =
P(o1,...,0r|h,a1,...,ar). The left term is the probability of the
testai01...ar0-, While the right term is its correct interpretation

388

as a conditional probability: the probability that the segee of
observationsy, ..., o, will take place if the sequence of actions
ai, ..., ar Will take place after historjs € (A x O)*.

The linearity assumption states that for any testa 01 ...a-0, €
(A x O)7 there exists a constant vector of weights so that
p(tlh) = mT p(Qh), wherem; = mZ o Ma, o, ,...Ma,0,p(QlR).
The PSR state update after applying actior A and receiving
observatiorv € O is given by:

P(gi|hao) = %.

2.2 Dynamics Based Control

The Dynamics Based Control (DBC) framework introduced B [1
is based on two key features: the perceptual control pliecgnd
the focus on system dynamics.

The DBC framework can be decomposed into three major levels:

e TheEnvironment Designlevel describes the system model.
In this paper, we will concentrate on PSR models of the en-
vironment.

e The User level defines a system identification or a system
tracking algorithm, and a measure of similarity is estéigts
between feasible outcomes of the tracking algorithm. An
ideal dynamics (also termedactical targe), towards which
the outcome of the tracking algorithm has to be forced, is
also defined at this level. The ideal dynamics describesone’
preferences regarding, and requirements for, the systiam’s
velopment and performance.

e TheAgent level defines an on-line control procedure which
sets actions that force the tracking algorithm towardsdbali

dynamics.

The data flow for the framework is depicted in Figure 1.

Despite the generality of the DBC framework, we are thus far
aware of only one system-tracking algorithm capable of ajiey
within this framework, which has been publicised by the DRE a
thors [12, 13, 14, 15]—Extended Markov Tracking (EMT).

The EMT algorithm assumes that the system is an autonomous
single Markov chain, and it thus views the system dynamica as
single stochastic matrix. EMT performs a sequence of contiee

O is the set of observations an agent can encounter under theUPdates of the system dynamics matrix, minimising the kadio

Leibler divergence between the new and old estimates, \wih t
limitation that the new estimate has to match the systensitian
sample that triggered the update.

Assume that two probability distributions_1, p; are given that
describe two consecutive states of knowledge about thersysind
Tt IS the old estimate of the system dynamics. Then the EMT
updaters; ,,+ is the solution of the following optimisation problem,
whereDk , is the Kullback-Leibler divergence:

H(pi—1,pt, Tpprr)

argmin Di (T X pe—1||Tparr X Pr-1)
T

t
TEMT

s.t.

=S x pe) (@, 7)

x

peor(@) = 37 x proa)(@', @)

z!

pe(a’)

Note the following abbreviation of the update:
TEMT = H[ptﬂ,pt,ngR}T]-

Estimator
Ideal Dynamics

Model

Env. Design User Agent

t

" jf—
Estimator Dynamics Feasibilit

System Response Data

Figure 1: Data flow of the DBC framework

2.3 EMT-PSR Implementation of DBC

In this section, we present an implementation of the DBC &am
work with the following assumptions imposed on its constitu
levels:

e The Environment level produces a PSR environment model;

e The User level treats a distribution over future actionestation
pairs at timef as the state of knowledge about the system at
time ¢, and assumes consecutive time steps to be linked by a
Markovian process. The User level uses EMT as the system
tracking algorithm.

The core idea of the algorithm at the Agent level is to make EMT
track the difference between the observation distributithe next
time step (termedomorrow) and the time step after the next one
(termedthe day after tomorroyv

The Agent level control algorithm is a non-committing twes
lookahead. It selects a pair of actions based on the predici
EMT as to how similar the difference betwegmorrowandthe
day after tomorrowwould be, relative to the tactical target. The
algorithm then applies the first part of the pair, thus moving
system one step ahead. The dily after tomorronbecomes the
newtomorrow, and the algorithm uses the second action of the pair
it selected to recomputhe day after tomorrowvdistribution of ob-
servations. It then calls EMT to update its estimate, basethe
difference between the otdmorrowand the nevitomorrow

Given the PSR tuples A,0,Q,p(Q|0), M, m >, denote as
usualr™* as the tactical target, arfd [p, p:+1, 7] as the EMT opti-
misation procedure computation.

0. Initialise:

e Setthetimetad = 0.

e Set the EMT estimate; to be a conditional uniform
distribution.

e Setthe PSR model to its initial PSR state.

o Denote byp* € TI(O) the distribution over the ob-
servations at timeé + 1 (tomorrow), after taking action
a € A asis estimated at time denote byp; 172 ¢
I1(O) the distribution over the observations at titae2
(the day after tomorroyvafter taking actions:; and

az € A, as is estimated at time

1. Prediction stage: for each pair of actiongai,a2) € A?
compute:

e The distributionp;** = P(a101|h) € TI(O) by ap-
plying the PSR model and its current state:

Yoi € O,P(a1o1|h) = maTlolP(Q|h).

e The distributionP(a101a202|h:) € TI(O?) by apply-
ing the PSR model and its current state:

Yo1,02 € O, P(ai01a202|h) = maT2O2Ma]01P(Q|h).

= Y P(ai01a202|h).
01€0

e Computep; “1+*2

389

e ComputeD,,a, = H[p; ", p; 12 1.

2. Action selection:

+a1

min DKL(Da1a2 ijalHT*Xpt

(a1,a2)€A2

).

(a1,a3) = arg

3. Application and Update:

e Apply a7, receive observation; € O.

Computep; ** = P(a}o02|ha}o}) € TI(O) as before:

a30, P(Q[haio}).

a3 oz

Yoz € O, P(aso0z2|h) =m

* *
+aj +ag

Updatery+1 = Hlp, ‘,p; 2,7¢)-
Update the PSR historly = hajo].
Update the PSR state as prescribed.
t=t+1.

3. TESTING THE EMT-PSR ALGORITHM

When testing and evaluating the performance of the EMT-PSR
algorithm, one faces two challenges.

First, to the best of our knowledge, there is no optimal sotut
algorithm available within the DBC framework, nor a benchina
problem with a clear performance metric. Thus, instead afm-c
parative study, we have resorted to the use of a range ofgrah!
each with its own intrinsic domain-specific performance noet
Most of these domains are more commonly modelled and solved
using the POMDP approach [1, 8, 10, 4, 2]. However, in thisspap
we formalised them as PSRs, either directly or using theesion
algorithm provided in Littman et al. [6].

The second challenge comes from the need to provide DBC-type
solutions with arideal dynamics matrixor tactical target DBC
assumes that the tactical target is completely evident frandef-
inition of the domain or from a specific instance at hand. Wd,fin
however, that in many cases the ideal dynamics matrix isrgéiye
formed from a set ofieuristicsfor a domain.

3.1 Domain Dependent Tactical Targets

From the EMT point of view (and it is that to which the tactical
target has to conform), the system is guided by a single Méako
conditional distribution, a matrix that represents thealdeles of
system development. In general such rules would have tme for
of a conditional implication between two consecutive egprens
of system knowledge. Under our system modelling assunmgtion
the most simple rule would have a form off:tomorrow’s obser-
vationthen the day after tomorrow’s observatidrmas¢ degree of
preference.

This allows for a rather flexible specification of the desisgd-
tem behaviour, which may include dependencies betweeoragti
sensory observations, and an external feedback of perfmereval-
uation? Furthermore, if the exact rule set is unknown, one may
formulate the tactical target via a set of heuristic ruleshis case,
the ideal dynamics matrix can be viewed as behavioural gaila
to the Agent Level algorithm, rather than an ideal systeneligs
ment to which an agent has to adhere.

In the following subsections we apply the EMT-PSR algorithm
towards solving a range of control and continual plannirabfams
in stochastic domains. For each domain, we provide a speeific
of behavioural rules that were used to create the ideal dgsam

1Such an evaluation is commonly termevard in the Reinforce-
ment Learning literature [17].

matrix. These rules, although domain specific, stem fronegen
heuristics for solving the class of problems to which eacimaio
belongs. For instance, the Maze Domains (Sections 3.3,a8d)
the Shuttle Domain (Section 3.2) can be characterised g®eupf
motion through a graph. In this type of domain, the ideal esyst
development is simply a path through the graph which hasnapbti
properties with respect to the specifications of the domais.a
result, the set of rules that form the ideal dynamics mairixpsy
describes the path, or a heuristic for its reconstruction.

then on the day after tomorrow you should TurnAround and
hope to see nothing or the MRV ahead.

e If tomorrow you performed a TurnAround action and see
nothing or the MRV station ahead, then on the day after to-
morrow Backup and hope to see yourself docked in the LRV.

To verify the quality of the action sequence produced by the
EMT-PSR control solution, we have chosen two domain charac-
teristic measurements. The first is the number of stepséistitie

The domains of Sections 3.2—-3.6 adhere to the development ofagent to reach the LRV. This enables us to see how close the rou

the EMT-PSR evaluation, and form an ascending order of cexapl
ity and challenge to the control algorithm. From the simpleshe
most difficult, all domain descriptions follow the same mstion
pattern. Every section begins with a description of the dopand
introduces the rules used to form the ideal dynamics maink.
then discuss the performance measures relevant to the olcana
provide experimental results of the EMT-PSR algorithm’sax
tion with respect to that measure.

3.2 The Shuttle Domain

In the shuttle domain [1] there are two identical space atati
each containing a loading dock; the stations are sepanateddne
another. The goal of the problem is to provide continualspamnt
of supplies between the two stations. The agent’s aim is thus
continually move from the most-recently visited stationR¥) to
the least-recently visited (LRV) statidn.For docking, the agent
should reach the station, turn around so that he is posdiarita
his back to the dock, and back up into the station. If the agent
attempts to move into the station’s dock while facing it (@l of
backing in), a collision occurs.

Near
MRV

o7

Near
LRV

')

Docking
in LRV

Space Docking

in MRV

(e

(st
i

Figure 2: Shuttle domain environment description. The ageh
has 8 potential directed positions.

The domain'sActionsspace is {GoForward, Backup, TurnAround}.
Backup is the only noisy action, with a 70% success rate.Qle
servationsspace, {See LRV, See MRV, See docked in MRV, See
docked in LRV, See nothing}, provides the agent with the rorie
tation information relative to the two stations. Note thebéguity
of the See nothingbservation obtained in the open space between
the stations—it provides positioning, but not orientatinforma-
tion, and can be received both when the Shuttle is direictedrds
andaway fromthe LRV.

As can be seen from Figure 2, the shortest route from MRV to
LRV, assuming that all actions succeed, consists of fivesstipee
Forward actions, followed by th&urnAroundandBackupactions.

Intuitively, these five steps are characterised by the iolig
rules, which were used to create ideal dynamics matrifor this
domain:

e If tomorrow you go forward and see the LRV station ahead,

20f cause, once the LRV is reached it becomes the MRV, which
naturally resets the problem.

390

chosen by the agent is to the shortest, five step, route. Tomde
measure, which appears to be natural for control performawal-
uation in this domain, is the number of times the agent ciasite

a station compared to the number of times the agent has agdmp
to reach the LRV station.

In our experiment set, the agent attempted the MRV-LRV route
100,000 times using the EMT-PSR algorithm, and avoided ever
crashing into either of the stations. The empirical disttitn of
the number of actions required to reach LRV from MRV is shown
in Figure 3. In 71% of the attempts the agent reached its témge
five steps, in 20% it took six steps, and so on with exponedtal
crease. Analysis of the action sequences showed that thetagk
additional actions, beyond the necessary five, only if thechal-
ing Backupaction failed, and attempted to repeat it. This naturally
resulted in the exponential decay of the number of longekidgc
sequences.

The experimental results show that the Docking Domain, al-
though it contains both uncertain actions and sensoryiadjagresents
little challenge to the EMT-PSR control algorithm. We thus-p
ceeded to domains that supersede the Docking Domain wiglndeg
to the amount of sensory and system noise (uncertain agtiosais
they present, seeking the limit of the control algorithneésilience.

0.8

0.7

0.6

05

04

Times taken(ratio)

0.3

0.2

5 (MIN) 6 7 8 9 10
Route length

12
Figure 3: Shuttle Domain: Number of steps from MRV to LRV

3.3 The Cheese Maze Domain

In the cheese maze domain [8], the agent is placed on a non-
regular grid (a maze), with one of the cells of the grid markes,
containing a chunk of cheese). The agent is allowed to attemp
to move in four directions on the grid, and is tasked to re&eh t
cheese. Each time the agent reaches its target, it is rapdetot
cated to another cell of the grid.

Unlike in the Shuttle domain, th&ctionsspace, {North, South,
East, West}, consists of completely deterministic action¥he

3Actions can (deterministically) fail if the agent attempsmove

Average number of extra steps taken for the cheese maze domain
T T T T T T T T

12 | L2 |L3 | L4 | L5 ol | 02 | 03 |02 | o4

05 b

L6 L7 L8 o5 o5 o5
0.4 4
L9 L11 L10 06 o7 06 ~
Cheese Cheese 0
03 B
(a) Feasible locations (b) Observation pattern f
£

0.2 b

Figure 4: Cheese maze grid environment

0.1 b
only uncertainty comes from the random relocation and sgnso
aliasing. The agent’'s sensors provide information aboeitstlr-
rounding walls and the presence of the cheese chunk; thitimgsu L
space of seven possib@bservationss depicted in Figure 4(b).
These rules were used for defining tbeal dynamics matrix

Figure 5: Cheese Maze: extra steps taken (0 denotes takingeh

o If tomorrow you go north and reach a corridor going east °Ptimal route)
(west), then the day after tomorrow you should go east (west)
and hope to see in front of you a corridor going east (west).

1

Pl | P2 | P3 | P4

) NONE | NONE | ufjm
e If tomorrow you go east (west) and see that you are in a cor-

ridor going east (west), then on the day after tomorrow you

should go east (west) and hope to see an intersection of eas P5 P6 | P7 - —
west-south directions.

e If tomorrow you go east or west and see an intersection of P8 | P9 | P10| P11 um | NONE | NONE | mump
east-west-south directions, then on the day after tomorrow
go south and hope to see a corridor leading south. (a) Positioning Grid (b) Observation Map

e Iftomorrow you go south and see a corridor going south, then
on the day after tomorrow you should go south and hope to Figure 6: 4x3 maze domain environment description. Goals &

get the cheese. reaching the “+” sign and avoiding the “-" sign.

To check the quality of the solution, we measured the number o
steps needed for reaching the cheese for each of the poskiltie ¢ If tomorrow you move east or north and see no walls, then
ing positions. After 500,000 iteratichshe number of extra steps on the day after tomorrow go north and hope to see a wall to
was averaged over all possible starting locations, and rifgre your left or go east and hope to see no walls or the “+” sign.
cal distribution of extra steps depicted in Figure 5 was ioleth
Once again, the number of extra steps decreases rapidlyhgt w e If tomorrow you move north and see no walls, then on the
appears to be an exponential rate), which seems to implhtbat day after tomorrow move east and hope to see a “+” sign.

controller quickly recovers from the location ambiguitguTted by

- e e If tomorrow you perform any action and get observation “-”,
the random relocation and the sensory aliasing.

then on the day after tomorrow you should move west and

3.4 The 4x3 Maze Domain hope to see a wall to your left.

The 4x3 maze domain [10] is also a grid world domain where the Notice that the two tasks, reaching the “+" marks, and avwjdi
agent can move in four directions, with tAetionsspace of {North, the “-" mark, are not strictly unifiable, and can be in conflieterg-
South, East, West}. However, in this domain even a feasittiem ing them into one singléactical targetmeans that the behavioural
can fail with some probability. The 4x3 Maze also has two radrk trends have to be balanced at a low level, and their relateights
positions: “+” denoting the desired goal, and “-” denotinglace depend on the relative numerical values each one of the ablase
to avoid. Every time the agent reaches any marked positids, i IS given in the tactical target.
relocated to a random cell of the grid. For this domain we measured two parameters: the number of

While in motion, the agent can perceive the properties dbits steps required beyond traversing the optimal route to theybal
cation, i.e., the walls surrounding it and the markers, witOb- position, and the ratio between the number of times the aganhed
servationsset being {Wall to your left, Wall to your right, Walls on the “+” goal position and the number of times it reached tHe -
both sides, No walls, “+”, “-"}. avoidance position.

These rules were used for defining ileal dynamics matrix After 500,000 iterations of the problem, with a 90.1% susces

) o rate of reaching the “+” goal position, the empirical fregog of
o If tomorrow you move in any direction and see walls to your the number of extra steps taken beyond the optimal route @ras c
left and right, then on the day after tomorrow move north and pyted, averaging over all possible starting positions Egere 7).

hope to see a wall to your left. As with the previous domains involving route traversal, detay en
off the grid, in which case it remains at its old location. route from starting position to goal position decays ex|ptiaéy.
“Similarly to the Shuttle Domain, reaching the target ndlyira- In our tests, we used an ideal dynamics matrix that resuéted (
sets the system. mentioned above) in a 90.1% success rate of reaching the &R.m

391

Average number of extra steps taken for the 4x3 maze domain
0.14 T T T T T T T

Times taken(ratio)

15

20 25

Extra steps

30 35 40 45 50

Figure 7. 4x3 Maze: Extra steps taken (0 denotes taking the
optimal route)

This was accompanied by a larger divergence from the optimal o

route length, compared to previously described domains6941
of the time, the route taken exceeded the optimal route byemor
than 5 steps. This trade-off, however, was expected. Seazhing
the “+” mark and avoiding the “-” mark comprise two confliagin
behaviours, it results in a trade-off between the lengtthefroute
to the “+” mark, and the failure rate of reaching the “-” makie
conjecture that, since both conflicting behaviours werdieixy
weighed and merged into a single ideal dynamics matrix, H&-E
PSR algorithm reproduced that trade-off in practise. Addil
experiments with a modified tactical target support thigeciare;
these results are excluded from the paper due to spacetlonga

3.5 The Network Domain

In [4], Littman describes a network domain with a controlled
transmission rate that influences the general networlsatitn level,
with the seventh and last of the levels being an overload hithw
the network “crashes”. By applying one of the four availahte
tions {unrestricted, steady, restricted, reboot}, the agentutates
the transmission rate (or the flow) of data through the ndtwaod
thus its utilisation level. Th&nrestrictedflow increases the net-
work load, theSteadyflow may both increase or decrease the net-
work load, and th&estrictionof the flow reduces the network load.
If the network crashes, then only tiRebootaction can recover it
and reset the system to the first and lowest utilisation IeSeice
both low utilisation level and an overload are disadvarmagethe
task of this domain is to keep the network away from both exée
of the utilisation scale.

The observations available to an agent in this domain aré-mul
parametric, or multidimensional. First, the agent may ss#ethe
network has actually crashed or not, is it “up” or “down”, hbe
assessment is noisy and both values can appear even forrmediu
network loads. Second, the agent can also assess the gadisfa
of network users: if the network flow is too restricted, or the-
work is close to overload, the users are “unhappy”, otheniligy
are “content”. As a result four possib@bservationsare formu-
lated that describe the utilisation of the system: {undedu&he
network is “up”, but users are “unhappy”), low-load (“up’né
“happy”), high-load (“down”, and “happy”), overload (“daw and
“unhappy”, the network has crashed)}.

These rules were used for defining ideal dynamics matrix

o If tomorrow you perform any action but unrestricted and ob-
serve low-load, then on the day after tomorrow you should

392

perform steady and hope to observe low-load.

e If tomorrow you perform any action and observe underused,
then on the day after tomorrow you should perform unre-
stricted and hope to see low-load.

e If tomorrow you perform any action and observe high-load,
then on the day after tomorrow you should perform restricted
and hope to see low-load or high-load.

e If tomorrow you perform any action and observe overload,
then on the day after tomorrow you should perform a reboot
and hope to see any other observation.

To test the solution quality for the Network Domain, we mea-
sured the number of times each of the load levels was reaahed,
the number of times each one of the actions was taken. Tha-empi
ical frequencies after 500,000 runs are shown in Figure 8.

02

1 2 3 4

Levels

(a) Utilisation Level Frequency

5) crash stead) reboot

unrestrict

festiict
Actions

(b) Action Frequency

Figure 8: Network Domain: Empirical frequencies

As can be seen in Figure 8(a), the crash level was reached 2% of
the time, and in complete accordance with that the “harsbdoé
operation was used 2% of the time (as can be seen in Figure 8(b)
This means that the control algorithm correctly interpietee sys-
tem model—it identified and consistently utilised the “refaac-
tion as the only action capable of restoring a crashed n&twor

Though the behaviour rules that define the ideal dynamigetar
explicitly require the agent to avoid utilisation level hétlowest),
the empirical results show that level was most frequenthjted.
Problem analysis showed that the mathematical model ofttlie u
sation level transitions had a strong preference for néyuraain-
taining the low utilisation level, once it had been reach&iven
that the utilisation level transitions also have a stodbasdture,
this artificially kept the network at the low utilisation kely despite
the controlling agent’s efforts. The Network Domain is ammx
ple of a domain possessing strong tendencies towardsrcgaals
that are derived from the environment’s representatiot nat only
from the ideal dynamics matrix created for governing moveime

3.6 The Tiger Domain

In the Tiger Domain, an agent is facing the choice of opening
one of two available doors. Behind one of the doors lurks ghun
tiger, and the agent would like to avoid such an encountere Th
tiger growls slightly, and hearing the growl may assist tgerd in
determining which one of the doors not to open. Unforturyatake
growl echoes, and the agent may sometimes be misled.

1 0.4
\
A} o -g-p
-] 7 . a
099F ' . B 0351 -
n
' o n !
‘ L Py I [l
b, N ‘a
0,98 \ I'm ! 9 03 '
L] RS Pl 1
AY 1 a 1 ‘I 1 [}
= Y 1 N , & s 1
£ 097 L] ' ' . ' 1 £2ozsf
= ! 1 LY i ! < R
3 ! 1 \ R o8 N
< Y ' . KN \ S -
209 | h | | o ' ‘F 2 o2r Saa
Z 1 o L -]
: | ’ \ ! a | £ =
@ I I} \
g oosf ll- 1 \ ' v §oasF
\ : ' L] \
\] ’
L] 1 \ ’ L B
0941 v \ 0 B 01F a
b L} \ ’ -
v \ /] - a
Vi e ‘o=
093 " 14 B 0051 .
092 . . L . . o . .
005 01 0.15 02 025 03 0 0.05 0.1 015 02 025 03
Noise Added(ratio) Noise Added(ratio)
(a) Right/Wrong door ratio (b) Door opening rate

Figure 9: Tiger Domain: Performance under noise 0-30%.

Unlike the classical modelling of the problem [2], we avoid e noise level with 1000 problem iterations in each run. Theieog

plicit labelling of the doors as left and right, and the asstoen of data of the success level as a function of the noise levebisisin
each door with an “open” action. Instead, we place the adesec Figure 9(a). One would expect that the agent’s performaraédv
to one of the doors, and implicitly label them as the doorelde gradually decay with the increase in noise level, and it dayden

the agent, and the door further away. The agent can compare th the wrong door more often. Surprisingly, this is not the cagee

sound that issues from behind each door by moving from orfesto t ratio between the correct door openings and wrong door ogeni

other, or open the door which at the moment is closest, thus-fo spikes and fluctuates (Figure 9(a)), but never decays beR8&. 9

ing the set of availabléctions:{Open, Compare}. While compar- Figure 9(b) suggests the source of the noise resistancauthber

ing the sound coming from the doors, the agent may receieethr of times the agent actually opened a door, out of the 100G step

possibleObservations{Louder, Same, Quieter}Louderindicates of each system run, decays—the agent appears to become more

that the sound of the tiger has become stronger when mowasecl careful, and tends to repeat the comparison of doors, rataer

to a different doorSamendicates that the sound remains the same opening one. This link is further supported by the apparéiasp

as before, anQuieterindicates that the sound appears to weaken. transitions in both ratios betwedn10 and0.12 noise values: as
The agent’s observations depend on the system transittbes: the rate of door openings plummets, the ratio of the correot d

Openaction produces bouderobservation if the tiger is behind the being open recovers to abo0e5.

opened door, and Quieterobservation if the tiger remains behind

the closed door. The outcomes of tBempareaction simulate 4. REMARK ON DOMAIN MODELLING

the misleading echo of a growl that confuses the agent. Tinenac When attempting to solve different domains using the EMRPS
produces the correct observation of the tiger's locatidg 86% of algorithm, we can identify two classes of domains that difiehe
the time, the rest of the time giving the agent 8@meobservation. 4, a1ity and feasibility of their solution, compared to atdemains
In this domain, the ideal dynamics matrix is determined byyas .o have encountered.
gle rule: if tomorrow you perform an open operation and obser The first group of domains are theulti-dimensional observation
louder sound, then on the day after tomorrow you should p&rfo 45 maing such as the Network Domain [4]. In some control meth-
a compare action and hope to hear a quieter sound. _ ods these domains would be divided, and only a subset of them
The algorithm was first run for 100,000 iterations onthe doma 14 be used directly as a source of on-line informationtfer
An interesting result was obtained—the agent always saietes controller, while others would be used to drive the solvethaf
opening the correct door without encountering the tigee @gent method. It occurs, for instance, in POMDPs where performaanc

always performed the sequence of operations where he fitst CO foeqhack (reward) and environment observations are tteaténo
pared doors, until getting tH@uieterobservation, then opened the separate classes of observable quantities, even in domdiere
door. Taking a closer look at t.he obse.rvability of the domadin the reward is not arbitrary delayed. We find such separatidret
became obvious that once an informative observatianider or in a sense, “improper”, and treat all available observablntjties
Quiete) was obtained, the domain’s uncertainty was completely ,q 5 squrce of information. Thus, the observation spacedP8R
resolved, which means the sequence created by the EMT-RSR al models we have used explicitly i,ncludes actions, sensosgiva-

gorithm will be optimal. Although the solution to the domainder tions, and the external performance signal (if one is abki)a

thg !nltlal opservablllty assumptlons ended up belng.&nvlt was The second group igomains containing identical “reset” ac-
still interesting to note that this optimal solution wasaibed auto- tions When modelling some problems, one may be tempted to use
matically, through the use of a general purpose controlralgo. several “reset” actions, which return the system to théiihowl-

To complicate the domain, additional forms of noise wereedldd ¢ 4qq anq situation conditions. This can be allowed onlyefab-
to the observations, with values from 1% to 30%. The meaning tions are provided with some differentiating property wigspect
of adding 5% noise, for example, was that now instead of geein to obtained observations. Otherwise, we again considemtel
the proper door 85% of the time, the agent sees the proper door;, pa in a sense “improper”; there are several actions thatatede
80% of the time. Then, the algorithm was run 50 times for each igsinguished, and which require remodelling of the domain

393

5. GUIDELINES FOR CREATING AN
IDEAL DYNAMICS MATRIX

Ideally, we would like to state a set of behavioural rulegoste
them into the ideal dynamics matrix, and run EMT-PSR to abtai
the necessary behaviour. However, there are two issuesasi® h
consider during the process of behaviour rule encoding:

1. The relative numerical expression each of the behavioules
has within the ideal dynamics matrix is important. The rafithe
numerical expression translates through the EMT-PSR igthgor
into expressiveness of each of the rules in the overall obetr
system behaviour. Since the EMT-PSR uses a logarithmilerat
than a linear, comparison procedure, in many cases the ioenav
rules’ numerical encodings need to differ by an order of nitage
in order to express the proper overall mixture of expresssgs.

2. From our series of tests, it appeared that most systenesehav
strong tendency towards certain goals. This behaviour Veaslg

seen when the ideal dynamics matrix was replaced by a uniform

dynamics matrix. Despite the uniform tactical target, thstem

did not perform in a random fashion, but rather moved towards
clear goals that were not present in the dynamics matrix. &/e r
fer to this behaviour asatural system tendencie$his behaviour
results from EMT-PSR choosing future actions based on daiwer
tors, such as the PSR system'’s representatioand M. When
encoding the behavioural rules into the ideal dynamicsimatre
natural system’s tendencies must be taken into accountories

domains, this influence is weak compared to the encoded, rules (71

and can be disregarded. In other domains, the influenceosgstr
and behavioural rules contradicting the system’s nateraléncies
must also be encoded into the ideal dynamics matrix in ordler t
obtain clear results. An example of natural system tenésneas
observed in the Network Domain, Section 3.5.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a new instantiation of th€DB
control framework, namely the EMT-PSR algorithm. It has-pro
vided a novel way for planning in PSR-modelled environments
using the concept of aideal dynamics matrix By combining

the DBC approach and the PSR environment, we have achieved

a tighter relationship between the environment and thercling
algorithm, since both use only actions and observations.
We have demonstrated the performance and viability of the al

gorithm on a number of small domains that were represented by

PSR models. Several of the environment models were cotetiuc
by conversion from other modelling techniques using the@ro
dure from [6]. For each of the domains, an ideal dynamicsimatr
was constructed based on domain-specific properties ofdhe ¢
trol task. These control task properties were first expreasebe-
havioural rules describing the system motion through the tveo
steps of development, and then numerically encoded intaltee
dynamics matrix. In all the domains, the algorithm showeddyo
performance trends.

From the experimental data we obtained, we were able togeovi
some insight into the DBC framework’s operation, includihg
treatment of multi-dimensional observable quantities! emultiple
reset actions during the formal modelling of the domainsn&ex-
periments have suggested that the automated discovenytitisga-u
tion of the intrinsic system dynamic properties can be distadux,
and it is a part of our future work to do so.

We also plan to explore the possibility of minimising the egc
sary set of behavioural rules for the construction of thalidly-
namics matrix, and to consider the improvement of the algori
with respect to multiple behavioural trends along the lioild.4].

394

7. ACKNOWLEDGEMENT

This work was partially supported by Israel Science Foundat
grant #898/05.

8. REFERENCES

[1] L. Chrisman. Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. In
Proceedings of the Tenth National Conference on Atrtificial
Intelligence pages 183-188, 1992.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domainsAtrtificial Intelligence 101(1-2):99-134, 1998.

M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. The 11th Int.
Conference on Machine Learningages 157-163, 1994.

M. L. Littman. Algorithms for sequential decision making
PhD thesis, Brown University, 1996.

M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the
complexity of solving Markov decision problems. In
Proceedings of the 11th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-95) pages 394-402, 1995.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive
representation of state. ’kdvances in Neural Information
Processing Systems (NIPS-ldages 1555-1561, 2001.

0. Madani, S. Hanks, and A. Condon. On the undecidability
of probabilistic planning and related stochastic optinicra
problems Artificial Intelligence 147(1-2):5-34, July 2003.
R. A. McCallum. Overcoming incomplete perception with
utile distinction memory. IfProceedings of the 10th
International Conference on Machine Learnjri93.

K. P. Murphy. A survey of POMDP solution techniques.
Technical report, University of California at Berkeley,(®0

R. Parr and S. Russell. Approximating optimal polidies
partially observable stochastic domainsTime 14th Int.

Joint Conference on Artificial Intelligenc&995.

M. L. PutermanMarkov Decision Processe¥Viley Series in
Probability and Mathematical Statistics: Applied Proliapi
and Statistics. Wiley-Interscience, New York, 1994.

Z. Rabinovich and J. S. Rosenschein. Extended Markov
Tracking with an application to control. lhhe Workshop on
Agent Tracking: Modeling Other Agents from Observations,
at AAMAS'04 pages 95-100, New-York, July 2004.

Z. Rabinovich and J. S. Rosenschein. Multiagent
coordination by Extended Markov Tracking. Tine Fourth
International Joint Conference on Autonomous Agents and
Multiagent Systempages 431-438, July 2005.

Z. Rabinovich and J. S. Rosenschein. On the response of
EMT-based control to interacting targets and model§:Ha
5th Int. Joint Conference on Autonomous Agents and
Multiagent Systempages 465-470, May 2006.

Z. Rabinovich, J. S. Rosenschein, and G. A. Kaminka.
Dynamics based control with an application to area-swegpin
problems. InThe Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2007)
pages 785-792, Honolulu, Hawaii, May 2007.

S. Singh, M. R. James, and M. R. Rudary. Predictive state
representations: A new theory for modeling dynamical
systems. InThe 20th Conference on Uncertainty in Artificial
Intelligence (UAI) pages 512-519, 2004.

R. S. Sutton and A. G. Bart®einforcement Learning: An
introduction The MIT Press, 1998.

(2]

(3]

(4]
(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

