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ABSTRACT
Many important problems in multiagent systems can be seen as re-
source allocation problems. For such problems, the well-known
Vickrey-Clarke-Groves (VCG) mechanism is efficient, incentive
compatible, individually rational, and does not incur a deficit. How-
ever, the VCG mechanism is not (strongly) budget balanced: gen-
erally, the agents’ payments will sum to more than0. Very recently,
several mechanisms have been proposed thatredistributea signif-
icant percentage of the VCG payments back to the agents while
maintaining the other properties. This increases the agents’ utili-
ties.

One redistribution mechanismdominatesanother if it always re-
distributes at least as much to each agent (and sometimes more). In
this paper, we provide a characterization of undominated redistri-
bution mechanisms. We also propose several techniques that take a
dominated redistribution mechanism as input, and produce as out-
put another redistribution mechanism that dominates the original.
One technique immediately produces an undominated redistribu-
tion mechanism that is not necessarily anonymous. Another tech-
nique preserves anonymity, and repeated application results in an
undominated redistribution mechanism in the limit. We show ex-
perimentally that these techniques improve the known redistribu-
tion mechanisms.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.11 [Distributed Artificial Intelligence ]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Mechanism design, Vickrey-Clarke-Groves mechanism, payment
redistribution, comparing and improving redistribution mechanisms

1. INTRODUCTION
Many important problems in multiagent systems can be seen

as resource allocation problems, in which we want to allocate re-
sources (oritems) to the agents that value them the most. However,
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agents’ valuations are private knowledge, and self-interested agents
will lie about their valuations if this is to their benefit. One solu-
tion is to auctionoff the items. By carefully deciding how much
the winning agents pay, it is possible to create an auction in which
agents have no incentive to lie about their valuations. The best-
known way of doing so is to use theVCG mechanism[22, 5, 11]
for determining the payments. This mechanism has various de-
sirable properties. One disadvantage of this approach is that the
payments that the agents make flow out of the system, and this
reduces the agents’ utilities. To minimize this disadvantage, very
recently, several mechanisms have been proposed thatredistribute
a significant percentage of the VCG payments back to the agents
while maintaining the other properties [20, 3, 12, 17, 13]. In this
paper, we continue this line of research. We introduce several gen-
eral techniques that can be applied toanyredistribution mechanism
to obtain a new mechanism. The resulting mechanism redistributes
at least as much, and typically more, for any prior distribution over
agents’ valuations.

2. MECHANISM DESIGN BACKGROUND
In this section, we briefly review basic elements of mechanism

design, as well as redistribution mechanisms.

2.1 Mechanism Design Basics
A typical setting in mechanism design is given by the following.

There is a set ofagentsI = {1, 2, . . . , n}, and a set of possibleout-
comesO. For example, in acombinatorial auction, a set of itemsS
is (simultaneously) for sale, and the set of outcomes is the set of all
possibleallocationsof the items to the agents (also known asbid-
ders). An allocation is given by a functiona : S → {0, 1, . . . , n},
where for anys ∈ S, a(s) is the agent that obtainss (if no agent ob-
tainss, thena(s) = 01). Each agent has privately held preferences
over the outcomes. As is common in mechanism design, these pref-
erences are represented as follows. For each agenti, there is a set
of possibletypesΘi. Someθi is the agent’s actual type; this is in-
formation that is private toi. There is also a (commonly known)
valuation functionvi : Θi × O → R. (We assume that there al-
ways exists aθi ∈ Θi such thatvi(θi, o) = 0 for all o ∈ O; for
example, in an auction, it is possible that an agent does not care for
any of the items.) For example, in a single-item auction,θi ∈ R

is agenti’s valuation for the item, andvi(θi, o) = θi if o allocates
the item toi (and it is0 otherwise).2 In a combinatorial auction, in
general,θi consists of2|S| − 1 real numbers, where each number
represents the valuation for receiving a certain nonemptybundle

1The assumption that items can remain unallocated is known as the
free disposalassumption.
2This is assumingno externalities: if an agent does not receive the
item, the agent does not care which other agent receives it.
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(subset) of the items. Often, the type space is assumed to be more
restricted. For example, if each agent is only interested in a single
bundle (that is, agents aresingle-minded), then a typeθi consists of
a pair(S′

i, xi), whereS′
i is the bundle that the agent is interested

in, andvi(θi, o) = xi if the bundle thato allocates toi includesS′
i

(and it is0 otherwise). Another special case is amulti-unitauction,
in whichm indistinguishable items are for sale (equivalently, there
are multiple units of the same item for sale). Here, a type consists
of m real numbers, where thejth number indicates the value for
obtainingj units. A special case is a multi-unit auction withunit
demand, in which each agents wants to obtain only one unit—that
is, allm numbers are always the same, so a type effectively consists
of a single number.

In a (direct-revelation) mechanism, each agent reports a type
θ̂i ∈ Θi (not necessarily equal toθi), and based on this, an out-
come is chosen, as well as a payment to be made by each agent.3

Thus, a mechanism is given by an outcome selection functionf :
Θ1 × . . .×Θn → O, as well asn payment selection functionsρi :
Θ1 × . . . × Θn → R. As is common, we assume that preferences
arequasilinear, that is, agenti’s utility is ui(θi, (θ̂1, . . . , θ̂n)) =

vi(θi, f(θ̂1, . . . , θ̂n))−ρi(θ̂1, . . . , θ̂n). A mechanism is(dominant-
strategies) incentive compatibleif it is a dominant strategy for each
agent to reveal his true type, that is, for all(θ1, . . . , θn) ∈ Θ1 ×

. . . × Θn and allθ̂i ∈ Θi, ui(θi, (θ1, . . . , θi, . . . , θn)) ≥

ui(θi, (θ1, . . . , θ̂i, . . . , θn)).
Perhaps the most famous mechanism is theVickrey-Clarke-Groves

(VCG) mechanism [22, 5, 11]. This mechanism chooses an out-
comeo∗ that maximizes the sum of agents’ reported valuations,

that is, o∗ ∈ arg maxo

n
P

i=1

vi(θ̂i, o). That is, the mechanism is

efficient. Then, to determine agentj’s payment, it computes an
outcomeo∗−j that would have been optimal if agentj had not been
present, that is,o∗−j ∈ arg maxo

P

i6=j

vi(θ̂i, o). Finally, it deter-

mines agentj’s payment asρj(θ̂1, . . . , θ̂n) =
P

i6=j

vi(θ̂i, o
∗
−j) −

P

i6=j

vi(θ̂i, o
∗). This mechanism is well-known to be incentive com-

patible. It has several other nice properties. Under certain minimal
assumptions (which are satisfied in (combinatorial) auctions with
free disposal), it also satisfies:

• individual rationality: for all (θ1, . . . , θn) ∈ Θ1× . . .×Θn,
for all i, ui(θi, (θ1, . . . , θi, . . . , θn)) ≥ 0. That is, partici-
pating in the mechanism does not make anyone worse off.

• non-deficit: for all (θ1, . . . , θn) ∈ Θ1 × . . . × Θn,
n

P

i=1

ρi(θ1, . . . , θn) ≥ 0. That is, the mechanism does not

need to be subsidized by external funds, because the total
payments to agents never exceed the total payments from
agents.

• anonymity: the mechanism treats all agents the same. That
is, for all (θ1, . . . , θn) ∈ Θ1 × . . . × Θn, if we swapθi and
θj , then the results of the mechanism for agentsi andj are
swapped, and the results of the mechanism for agents other
thani andj remain the same.

We will assume throughout that we are in a setting where the
VCG mechanism obtains all of the above properties.
3We allow for payments to be negative, that is, agents may receive
payments. For cases where payments must be nonnegative, sev-
eral authors have proposed mechanisms that maximize the agents’
combined utility after deducting the payments [14, 4].

For single-item auctions, the VCG mechanism coincides with the
second-price sealed-bid auction, that is, the agent with the highest
bid wins the item and pays the second highest bid.

2.2 Redistribution Mechanisms
For the VCG mechanism, sometimes,

n
P

i=1

ρi(θ1, . . . , θn) 6= 0.

That is, the VCG mechanism is not(strongly) budget balanced. In
general, no mechanism that is budget balanced also satisfies all of
efficiency, incentive compatibility, and individual rationality [16,
10, 18]. In light of this impossibility result, several authors have
obtained budget balance by sacrificing some of the other desirable
properties [2, 9, 19, 8]. Another approach that is perhaps prefer-
able is to use a mechanism that is “more” budget balanced than
the VCG mechanism, and maintains all the other desirable prop-
erties. One way of trying to design such a mechanism is to re-
distribute some of the VCG payment back to the agents in a way
that will not affect the agents’ incentives (so that incentive compat-
ibility is maintained), and that will maintain the other properties.
This idea has resulted in a few recent papers on(VCG) redistri-
bution mechanisms. Such a mechanism works as follows. First,
the agents report their types, and the VCG mechanism is run (so
that the efficient outcome is chosen). Second, some of the VCG
payments collected in the first step are redistributed back to the
agents, in a way that maintains incentive compatibility, individual
rationality, and non-deficit. To maintain incentive compatibility, an
agent’s redistribution payment should not depend on his own re-
ported type [3].4 Thus, a redistribution mechanism is defined by
a functionri : Θ1 × . . . × Θi−1 × Θi+1 × . . . × Θn → R for
each agenti. That is, lettingθ̂−i be the vector of types submitted
by agents other thani, ri(θ̂−i) indicates the amount redistributed
to i. For an anonymous redistribution mechanism,ri = r for all i.

Let us say that a redistribution mechanism isfeasibleif it satis-
fies individual rationality and non-deficit. (Efficiency and incentive
compatibility follow immediately from the above definition of a re-
distribution mechanism.) The trivial redistribution mechanism that
redistributes nothing is always feasible. In some settings, this is the
only feasible redistribution mechanism—for example, in a single-
item auction with two agents.

For example, Cavallo’s mechanism [3] is given byri(θ−i) =
1
n

min
θi∈Θi

V CG(θi, θ−i), whereV CG(θi, θ−i) is the total VCG pay-

ment collected for those reports.5 In the special case of a single-
item auction, under Cavallo’s mechanism, an agent’s redistribu-
tion payment is1/n times the second-highest bid amongother
agents’ bids. That is, the agent with the highest bid wins and pays
the second-highest bid, as in a second-price sealed-bid (Vickrey)
auction; then, the agents with the highest and the second-highest
bids each receive a redistribution payment ofv3/n, wherev3 is
the third-highest bid; and the remaining agents each receive a re-
distribution payment ofv2/n, wherev2 is the second-highest bid.
Hence, the total redistributed is2v3/n+(n−2)v2/n ≤ nv2/n =
v2, so that there is never a deficit. It should also be noted that no
agent can affect his redistribution payment (since it is the second-
highestotherbid, divided byn), hence the incentives are the same

4Mechanisms which differ from the VCG mechanism only by an
additional term in the payment function that does not depend on the
agent’s own bid are known asGroves mechanisms. Hence, all the
mechanisms in this paper are Groves mechanisms. In sufficiently
general settings, Groves mechanisms are the only incentive com-
patible mechanisms that satisfy efficiency [10, 15].
5We useθi rather than̂θi when there is no need to emphasize the
difference between reported and true types (since the mechanism is
incentive compatible).
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as in the Vickrey auction, which is incentive compatible. In this
(single-item) case, Cavallo’s mechanism coincides with the mech-
anisms proposed by Bailey [2] and Porteret al. [20]. Cavallo’s
mechanism and Bailey’s mechanism are in fact the same in any
setting under which VCG satisfiesrevenue monotonicity,6 which
includes multi-unit auctions with unit demand. For multi-unit auc-
tions with unit demand, we have previously characterized a redis-
tribution mechanism that maximizes the worst-case redistribution
percentage [12]. The same mechanism was independently pro-
posed by Moulin [17], who pursues a different worst-case objec-
tive: whereas the objective in our paper is to maximize the per-
centage of VCG payments that are redistributed, Moulin tries to
minimize the overall payments from agents as a percentage of ef-
ficiency. It turns out that the resulting mechanisms are the same.
We do not present the (complex) general form of this worst-case
optimal (WCO) redistribution mechanism here.

3. UNDOMINATED REDISTRIBUTION
MECHANISMS

How should we select a redistribution mechanism? In general,
we prefer to redistribute as much as possible. However, two redis-
tribution mechanisms may be incomparable in the sense that one
redistributes more for one vector of reported types, and the other re-
distributes more for another vector. Our earlier work [12] focused
on maximizing the percentage of VCG payments redistributed in
the worst case. However, that paper only studied multi-unit auc-
tions with unit demand. It turns out that in more general settings,
the worst-case redistribution percentage is often0 (we will see ex-
amples shortly). This does not mean that nothing can ever be redis-
tributed, but it does mean that a different criterion is needed.7

We will require the following claim for our examples.

CLAIM 1. A redistribution mechanismr = (r1, . . . , rn) is fea-
sible if and only if for all i and allθ1, . . . , θn

ri(θ−i) ≥ 0 (1)

ri(θ−i) ≤ min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

X

j 6=i

rj(θ
′
−j)} (2)

Here,θ′
−j are the reported types of the agents other thanj whenθi

is replaced byθ′
i. V CG(θ′

i, θ−i) is the total VCG payments for the
type vectorθ1, . . . , θi−1, θ

′
i, θi+1, . . . , θn.

PROOF. We first prove the “if” direction. Because the VCG
mechanism is individually rational, and by Equation 1 the redis-
tribution can only increase agents’ utilities, individual rationality
6Bailey’s mechanism redistributes to each agent1/n of the total
VCG payment that would result if this agent were removed from
the auction. Cavallo’s mechanism considers how small an agent
could make the total VCG payment by changing her type, and re-
distributes1/n of that to the agent. If the total VCG payment
is monotonically nondecreasing in the agents, then the type that
would minimize the total VCG payment is the one that has a valu-
ation of0 for everything, which is equivalent to not participating in
the auction. It is well known that in general, the VCG mechanism
doesnot satisfy this revenue monotonicity criterion [1, 7, 23, 24,
25] (this is in fact true for a much wider class of mechanisms [21]).
However, in more restricted settings, revenue monotonicity often
holds.
7In other work, we study settings where a prior distribution over
agents’ preferences is available, and try to maximize theexpected
redistribution [13]. However, in this paper, we continue the prior-
free approach.

is satisfied. For anyi and θ1, . . . , θn, Equation 2 implies that
ri(θ−i) ≤ V CG(θ′

i, θ−i)−
P

j 6=i

rj(θ
′
−j) for anyθ′

i ∈ Θi. If we let

θ′
i = θi, we obtainri(θ−i)+

P

j 6=i

rj(θ−j) ≤ V CG(θi, θ−i). Thus,

the non-deficit property holds.
We now prove the “only if” direction. For anyi andθ−i, there

exists someθi such thati will not derive any utility from the allo-
cation. Thus, ifri(θ−i) < 0, i would have negative utility, contra-
dicting individual rationality. Thus Equation 1 must hold. By the
non-deficit property, for anyi, anyθ1, . . . , θi−1, θi+1, . . . , θn, and
anyθ′

i, we must haveri(θ−i) +
P

j 6=i

rj(θ
′
−j) ≤ V CG(θ′

i, θ−i), or

equivalentlyri(θ−i) ≤ V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j). Sinceθ′

i is

arbitrary, Equation 2 follows.

Example 1.Consider a combinatorial auction with two items
{a, b} and three agents{1, 2, 3}. Agent 1 bids 10 on the bun-
dle {a, b}; agent2 bids ǫ on {a}; agent3 bids 10 − 2ǫ on {b}.
For sufficiently smallǫ, agent1 wins both items and pays10 − ǫ.
For any feasible redistribution mechanismr, Equation 1 and Equa-
tion 2 together implyri(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)}. Forθ′

1 =

({a, b}, 0) (i.e. if 1 had bid0 on{a, b} instead),V CG(θ′
1, θ−1) =

0, hence it must be thatr1(({a}, ǫ), ({b}, 10−2ǫ)) = 0 (i.e. noth-
ing is redistributed to1). For θ′

2 = ({a}, 11), V CG(θ′
2, θ−2) =

2ǫ, so r2(({a, b}, 10), ({b}, 10 − 2ǫ)) ≤ 2ǫ. Finally, for θ′
3 =

({b}, 0), V CG(θ′
3, θ−3) = ǫ, so r3(({a, b}, 10), ({a}, ǫ)) ≤ ǫ.

Hence, the percentage redistributed is at most3ǫ
10−ǫ

, which ap-
proaches0 asǫ approaches0. Thus,everyredistribution mecha-
nism has a worst-case redistribution percentage of0 in this setting.

If we add any number of additional agents who bid({a}, 0), then
the bounds on the first three agents’ redistribution payments remain
the same, and each additional agent can have a redistribution pay-
ment of at most2ǫ (if any one of them bids more than10 on {a},
then the resulting total VCG payment is2ǫ). By letting ǫ → 0, it
can be seen that the worst-case percentage redistributed remains0
for any number of agents. This is in contrast to the case of multi-
unit auctions with unit demand, where additional agents improve
the worst-case redistribution percentage [12].

Example 2.Consider a multi-unit auction with two units and
three agents{1, 2, 3}. Agent1 bids(0, 10) (0 for getting one unit
and10 for getting two units). Agent2 bids (ǫ, ǫ). Agent3 bids
(10 − 2ǫ, 10 − 2ǫ). For sufficiently smallǫ, agent1 wins both
units and pays10 − ǫ. As in the previous example, for any feasi-
ble redistribution mechanismr,ri(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)}.

For θ′
1 = (0, 0), V CG(θ′

1, θ−1) = 0, sor1((ǫ, ǫ), (10 − 2ǫ, 10 −
2ǫ)) = 0. Forθ′

2 = (11, 11), V CG(θ′
2, θ−2) = 2ǫ, sor2((0, 10),

(10 − 2ǫ, 10 − 2ǫ)) ≤ 2ǫ. For θ′
3 = (0, 0), V CG(θ′

3, θ−3) = ǫ,
so r3((0, 10), (ǫ, ǫ)) ≤ ǫ. Hence, the percentage redistributed is
at most 3ǫ

10−ǫ
, which approaches0 as ǫ approaches0. It follows

thateveryredistribution mechanism has a worst-case redistribution
percentage of0 in this setting. As in the previous example, this
remains true for any number of agents (which can be shown by
adding agents that bid(0, 0)).

The previous examples show that the worst-case criterion is not
a helpful guide in designing redistribution mechanisms for more
complex auction settings. Instead, we will pursue a new objective:
we will design redistribution mechanisms that areundominated. A
redistribution mechanism is undominated if there does not exist an-
other redistribution mechanism that always redistributes at least as
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much to each agent, and, in at least one case, strictly more. The
following definition makes this precise.

Definition 1. A redistribution mechanismr is undominatedif it
is feasible, and there does not exist a feasible redistribution mech-
anismr

′ thatdominatesit, that is,

• for all i, for all θ1, . . . , θn, r′i(θ−i) ≥ ri(θ−i).

• for somei, for someθ1, . . . , θn, r′i(θ−i) > ri(θ−i).

For example, the trivial redistribution mechanism that redistributes
nothing is dominated by both WCO and Cavallo’s mechanism; nei-
ther of WCO and Cavallo’s mechanism dominates the other; and in
general, WCO and Cavallo’s mechanism are not undominated (as
we will see later). The following theorem provides an alternative
characterization.

THEOREM 1. A redistribution mechanismr is undominated if
and only if for alli and allθ1, . . . , θn

ri(θ−i) ≥ 0 (3)

ri(θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

X

j 6=i

rj(θ
′
−j)} (4)

Here,θ′
−j are the reported types of the agents other thanj whenθi

is replaced byθ′
i.

It should be noted that the only difference between Equation 2
and Equation 4 is that “≤” is replaced by “=”.

PROOF. We prove the “if” direction first. Any redistribution
mechanismr that satisfies Equation 3 and Equation 4 is feasible
by Claim 1. Now suppose thatr is dominated, that is, there ex-
ists a feasible redistribution mechanismr′ such that for alli and
θ−i, we haver′i(θ−i) ≥ ri(θ−i), and for somei andθ−i, we have
r′i(θ−i) > ri(θ−i). For thei andθ−i that make this inequality
strict, we haver′i(θ−i) > ri(θ−i) = min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j)} ≥ min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

r′j(θ
′
−j)}. But this

contradicts the feasibility ofr′. It follows thatr is undominated.
Now we prove the “only if” direction. An undominated mecha-

nism is feasible by definition, so by Claim 1, Equation 3 must hold.
Suppose Equation 4 is not satisfied. Then, there exists somei and
θ−i such thatri(θ−i) < min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rj(θ
′
−j)}. Let

a = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j)} − ri(θ−i) (so thata >

0), and letr′ be the same asr, except that for the aforementionedi
andθ−i, r′i(θ−i) = ri(θ−i) + a. To show that this does not break
the non-deficit constraint, consider any type vector(θi, θ−i) where
i andθ−i are the same as before (that is, any type vector that is af-
fected). Then,r′i(θ−i) = a + ri(θ−i) = min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j)} = min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

r′j(θ
′
−j)}. Thus, by

Claim 1, r′ is feasible. This contradicts thatr is undominated.
Hence, Equation 4 must hold.

As an aside, suppose we were only interested in anonymous
mechanisms, and we would therefore only consider a mechanism
dominated if it were dominated by ananonymousmechanism. Then,
the characterization in Theorem 1 remains identical.8 Therefore, all
of our results apply to this modified definition as well.
8This can be proved by modifying the proof of Theorem 1, adding
a/n to each agent’s redistribution function instead of addinga to
one agent’s redistribution function.

One interesting property of nontrivial undominated redistribu-
tion mechanisms is that there is alwayssomecase where they re-
distribute100% of the VCG payments. (A redistribution mecha-
nism is trivial if it never redistributes anything.) So (non-trivial)
undominated VCG redistribution mechanisms are also optimal in
the sense of best-case redistribution percentage.

CLAIM 2. If a nontrivial redistribution mechanismr is undom-
inated, then there exists a case where it redistributes100% of the
(nonzero) total VCG payments.

PROOF. If r is not trivial, then for somei and θ−i, we have
ri(θ−i) > 0. By Theorem 1,ri(θ−i) = min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j)}, so for someθ′

i ∈ Θi, V CG(θ′
i, θ−i) = ri(θ−i) +

P

j 6=i

rj(θ
′
−j) > 0. Thus the redistribution percentage for(θ′

i, θ−i)

is 100%.

An undominated redistribution mechanism always exists; in gen-
eral, it is not unique. We now give two examples of undominated
redistribution mechanisms.

Example 3.Consider a single-item auction withn ≥ 3 agents.
Agenti bidsθi ∈ [0,∞). Let p(j, θ) be thejth highest element of
θ. If r is Cavallo’s mechanism, thenr(θ−i) = 1

n
p(2, θ−i) (Cav-

allo’s mechanism is anonymous, so we omit the subscript ofr.) To
showr is undominated, it suffices to show Equation 3 and Equa-
tion 4 are satisfied. For Equation 3, this is clear. For Equation 4,
we first observe that for allθ′

i, V CG(θ′
i, θ−i) = p(2, (θ′

i, θ−i)) ≥
p(2, θ−i) and for allj 6= i, V CG(θ′

i, θ−i) = p(2, (θ′
i, θ−i)) ≥

p(2, θ′
−j). Becauseri(θ−i) +

P

j 6=i

rj(θ
′
−j) = 1

n
p(2, θ−i) +

1
n

P

j 6=i

p(2, θ′
−j), it follows that for allθ′

i, ri(θ−i) ≤ V CG(θ′
i, θ−i)

−
P

j 6=i

rj(θ
′
−j). Moreover, ifθ′

i = p(2, θ−i), then all of the above

inequalities become equalities. Hence Equation 4 holds. It follows
that Cavallo’s mechanism is undominated in this setting. (We will
show that it is not undominated in more general settings.)

Example 4.Consider again a single-item auction withn ≥ 5
agents. Agenti bidsθi. Let r be the following anonymous redistri-
bution mechanism:r(θ−i) = 1

n−2
p(2, θ−i)−

2
(n−2)(n−3)

p(3, θ−i)

+ 6
n(n−2)(n−3)

p(4, θ−i). Equation 3 and Equation 4 can be shown

to hold (the equality in Equation 4 is achieved by settingθ′
i =

p(4, θ−i)).

Because in general, there are multiple undominated redistribu-
tion mechanisms, it is not clear which one is the best. If a prior
distribution over agents’ types is available, then we would prefer
the one that redistributes the most in expectation; however, in this
paper, we do not wish to assume that such a prior is available. Nev-
ertheless, for any (feasible) redistribution mechanism that we might
consider using, if it is dominated, then there exists another (feasi-
ble) redistribution mechanism that always redistributes at least as
much to each agent, and more in some cases. Thus, in expecta-
tion, the latter mechanism redistributes at least as much for any
prior distribution, and strictly more if the prior assigns positive
probability to the set of type vectors on which the latter mecha-
nism redistributes more. Hence, we would certainly prefer the latter
mechanism—and if that mechanism is not undominated, we would
prefer to find one that dominates it,etc. But how do we find such
an improved mechanism? This is what we study in the rest of the
paper.
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4. METHODS FOR CONSTRUCTING
UNDOMINATED REDISTRIBUTION
MECHANISMS

In this section, we propose several techniques that, given a redis-
tribution mechanism that is feasible and dominated, find a feasible
redistribution mechanism that dominates it. (If the initial mecha-
nism is already undominated, then the techniques will return the
same mechanism.) One technique immediately produces an un-
dominated mechanism that is not anonymous; the other techniques
preserve anonymity, and after repeated application converge to an
undominated mechanism. We emphasize that we can start with
anyfeasible redistribution mechanism, including Cavallo’s mecha-
nism, the WCO mechanism from our earlier paper [12]/Moulin [17]
(which, even though is optimal in the worst case, is generally not
undominated), or even the trivial redistribution mechanism that re-
distributes nothing. These techniques can also be useful in settings
where we do have a prior distribution. For example, after design-
ing a redistribution mechanism based on a prior distribution, we
can further improve it and make it undominated, which will never
decrease the redistribution payment to any agent.

4.1 A Priority-Based Technique
Given a feasible redistribution mechanismr and a priority order

over agentsπ, we can improver into an undominated redistribution
mechanism that is not anonymous. The technique works as follows.

1) Letπ : {1, . . . , n} → {1, . . . , n} be a permutation represent-
ing the priority order. That is,π(i) is agenti’s priority value (the
lower the value, the higher the priority).π−1(k) is the agent with
thekth-highest priority.

2) Let i = π−1(1), and updatei’s redistribution function to
rπ

i (θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

π(j)>1

rj(θ
′
−j)}. That is, we

redistribute as much as possible to this agent without breaking fea-
sibility.

3) We will now consider the remaining agents in turn, according
to the orderπ. In thekth step, we update the redistribution func-
tion of agenti = π−1(k) to rπ

i (θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

π(j)>k

rj(θ
′
−j)−

P

π(j)<k

rπ
j (θ′

−j)}. That is, we redistribute as much

as possible to this agent without breaking feasibility, taking the pre-
viousk − 1 updates into account.

Thus, for every agenti, rπ
i (θ−i) = min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

π(j)>π(i)

rj(θ
′
−j) −

P

π(j)<π(i)

rπ
j (θ′

−j)}. The new redistribution

mechanismrπ satisfies the following properties:

CLAIM 3. For all i, for all θ−i, rπ
i (θ−i) ≥ ri(θ−i).

PROOF. First consideri = π−1(1), the agent with the highest
priority. For anyθ−i, we haverπ

i (θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rj(θ
′
−j)}. Since the original redistribution mechanismr is fea-

sible, by Equation 2, we haveri(θ−i) ≤ min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rj(θ
′
−j)}. Hencerπ

i (θ−i) ≥ ri(θ−i).

For anyi 6= π−1(1), rπ
i (θ−i) = ri(θ−i)+ min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)

−ri(θ−i)−
P

π(j)>π(i)

rj(θ
′
−j)−

P

π(j)<π(i)

rπ
j (θ′

−j)}. We must show

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) − ri(θ−i) −

P

π(j)>π(i)

rj(θ
′
−j) −

P

π(j)<π(i)

rπ
j (θ′

−j)} ≥ 0.

Considerp = π−1(π(i) − 1) (the agent immediately beforei
in terms of priority). For anyθi, θ−i, we haveV CG(θi, θ−i) −
ri(θ−i)−

P

π(j)>π(i)

rj(θ−j)−
P

π(j)<π(i)

rπ
j (θ−j) = V CG(θi, θ−i)−

P

π(j)>π(p)

rj(θ−j) −
P

π(j)<π(p)

rπ
j (θ−j) − rπ

p (θ−p) ≥

min
θ′

p∈Θp

{V CG(θ′
p, θ−p)−

P

π(j)>π(p)

rj(θ
′
−j)−

P

π(j)<π(p)

rπ
j (θ′

−j)}−

rπ
p (θ−p) = 0. (For the above inequality only,θ′

−j is the set of
types reported by the agents other thanj whenθp is replaced by
θ′

p.) Becauseθi is arbitrary, it follows thatmin
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

ri(θ−i) −
P

π(j)>π(i)

rj(θ
′
−j) −

P

π(j)<π(i)

rπ
j (θ′

−j)} ≥ 0. It follows

thatrπ
i (θ−i) ≥ ri(θ−i) for all i andθ−i.

CLAIM 4. r
π is an undominated redistribution mechanism.

PROOF. By Claim 3, for alli andθ−i, rπ
i (θ−i) ≥ ri(θ−i) ≥ 0.

So,rπ is individually rational.
Let i = π−1(n). For allθ1, . . . , θn, the total VCG payment that

is not redistributed byrπ isV CG(θ1, . . . , θn)−
P

j=1,...,n

rπ
j (θ−j) ≥

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rπ
j (θ′

−j)} − rπ
i (θ−i) = 0. Hencerπ

never incurs a deficit. So,rπ is feasible.
Using Claim 3, we haverπ

i (θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

π(j)>π(i)

rj(θ
′
−j)−

P

π(j)<π(i)

rπ
j (θ′

−j)} ≥ min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=n

rπ
j (θ′

−j)}. Becauserπ is feasible, the opposite inequality must

also be satisfied (Equation 2)—hence we must have equality, that
is, Equation 4 must hold. Because Equation 3 is also satisfied by
Claim 1, it follows thatrπ is undominated.

Example 5.Consider a single-item auction with four agents
1, 2, 3, 4. In this setting, the redistribution under the WCO mech-
anism to agenti is r(θ−i) = (2/7)p(2, θ−i) − (1/7)p(3, θ−i)
(wherep(k, θ−i) is thekth highest bid among bids other thani’s).
Consider a specific set of bids(8, 10, 13, 5) and letπ(i) = i for all
i. (That is, agent1 bids8 for the item and has the highest priority,
etc.) If we apply the above technique, the resulting redistribution
payment to agent1 isrπ

1 (10, 13, 5) = min
θ′

1
∈[0,∞)

{V CG(θ′
1, 10, 13, 5)

−r(θ′
1, 13, 5)−r(θ′

1, 10, 5)−r(θ′
1, 10, 13)} (wherer is the WCO

mechanism). It turns out that the expression is minimized atθ′
1 =

0, so thatrπ
1 (10, 13, 5) = 30

7
. This is twice the amount1 would

have received under WCO:r(10, 13, 5) = (2/7) ·10− (1/7) ·5 =
15
7

.

For agent2, rπ
2 (8, 13, 5) = min

θ′

2
∈[0,∞)

{V CG(8, θ′
2, 13, 5) −

rπ
1 (θ′

2, 13, 5)− r(8, θ′
2, 5)− r(8, θ′

2, 13)}. This expression is min-
imized atθ′

2 = 8, so thatrπ
2 (8, 13, 5) = 17

7
. (Under WCO,2

receives only11
7

.)

For agent3, rπ
3 (8, 10, 5) = min

θ′

3
∈[0,∞)

{V CG(8, 10, θ′
3, 5) −

rπ
1 (10, θ′

3, 5) − rπ
2 (8, θ′

3, 5) − r(8, 10, θ′
3)}. This expression is

minimized atθ′
3 = 8, so thatrπ

3 (8, 10, 5) = 11
7

. (Under WCO,3
receives11

7
as well.)

For agent4 rπ
4 (8, 10, 13) = min

θ′

4
∈[0,∞)

{V CG(8, 10, 13, θ′
4) −

rπ
1 (10, 13, θ′

4)− rπ
2 (8, 13, θ′

4)− rπ
3 (8, 10, θ′

4)}. This expression is
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minimized atθ′
4 = 5, so thatrπ

4 (8, 10, 13) = 12
7

. (Under WCO,4
receives12

7
as well.)

We note that for this priority order, the total amount redistributed
is 30+17+11+12

7
= 10, that is, all of the VCG payments are redis-

tributed. This is not true for all priority orders; averaging over all
priority orders,0.315 remains undistributed (compared to3 for the
WCO mechanism). The following table shows the results for all
priority orders for this example.

Bids Increase Remaining
5,13,10,8 6/7,9/7,4/7,0 2/7
5,13,8,10 6/7,9/7,0,1/7 5/7
5,10,13,8 6/7,9/7,4/7,0 2/7
5,10,8,13 6/7,9/7,0,1/7 5/7
5,8,10,13 6/7,15/7,0,0 0
5,8,13,10 6/7,15/7,0,0 0
13,5,10,8 9/7,6/7,6/7,0 0
13,5,8,10 9/7,6/7,0,0 6/7
13,10,5,8 9/7,6/7,6/7,0 0
13,10,8,5 9/7,6/7,0,6/7 0
13,8,10,5 9/7,0,0,6/7 6/7
13,8,5,10 9/7,0,6/7,0 6/7
10,13,5,8 9/7,6/7,6/7,0 0
10,13,8,5 9/7,6/7,0,6/7 0
10,5,13,8 9/7,6/7,6/7,0 0
10,5,8,13 9/7,6/7,0,0 6/7
10,8,5,13 9/7,0,6/7,0 6/7
10,8,13,5 9/7,0,0,3/7 9/7
8,13,10,5 15/7,6/7,0,0 0
8,13,5,10 15/7,6/7,0,0 0
8,10,13,5 15/7,6/7,0,0 0
8,10,5,13 15/7,6/7,0,0 0
8,5,10,13 15/7,6/7,0,0 0
8,5,13,10 15/7,6/7,0,0 0

Average (1) 1.39,0.89,0.26,0.14 0.315
Average (2) 0.71,0.64,0.64,0.70

Increase in redistribution payments relative to WCO, and total
VCG payments that are not redistributed, for different priority

orders. Note that increases are ordered according to the priority
order. The “average” item gives the average increase to the agent
ordered in thekth place (first), as well as the average increase to

agenti (second).

Generally, most of the increase in redistribution payment goes to
high-priority agents. Hence, a reasonable approximation can be ob-
tained by only updating the redistribution payment functions of the
first few agents. This still results in a feasible mechanism that dom-
inates the original (or is the same), but it is no longer guaranteed to
be undominated.

4.2 Iterative Techniques that Preserve Anonymity
The technique from the previous subsection will, in general, not

produce an anonymous redistribution mechanism, even if the orig-
inal mechanismr is anonymous. This is because agents higher in
the priority order tend to receive higher redistribution payments. In
this subsection, we will introduce techniques that preserve anonymity.

One way to obtain an anonymous mechanism is to considerrπ

for all permutationsπ, and take the average. That is, letr̄ be de-
fined byr̄i = 1

n!

P

π∈Sn

(rπ
i ), whereSn is the set of all permutations

of n elements. Given that the setting and the initial mechanism
are anonymous, this results in an anonymous mechanism. It is also
feasible:

CLAIM 5. Any convex combination of a set{r(1), . . . , r(t)} of
feasible redistribution mechanisms is itself feasible.

PROOF. Let
t

P

k=1

αk = 1 with eachαk ≥ 0; we must show

that r =
t

P

k=1

αkr
(k) is feasible. For anyi and θ−i, for any k,

we haver(k)
i (θ−i) ≥ 0, henceri(θ−i) =

t
P

k=1

αkr
(k)
i (θ−i) ≥ 0.

This implies individual rationality. Also, for anyθ1, . . . , θn, for

any k,
n

P

i=1

r
(k)
i (θ−i) ≤ V CG(θ1, . . . , θn), hence

n
P

i=1

ri(θ−i) =

t
P

k=1

αk

n
P

i=1

r
(k)
i (θ−i) ≤ V CG(θ1, . . . , θn). This implies the non-

deficit property.

Becausēr is anonymous, all̄ri are the same, so we will sim-
ply use r̄. Even though̄r is an average of a set of undominated
redistribution mechanisms, in general, it itself is not undominated.
In principle, we can take the resulting mechanism and apply the
technique again. Unfortunately, this approach is not practical—in
fact, it may not be feasible to perform even one iteration of this
technique ifn is large, since we have to take an average overn!
mechanisms.9 However, as we mentioned, it is also possible to ap-
ply the priority-based technique only to the firsth agents. This still
results in a feasible (but not necessarily undominated) mechanism,
and tends to obtain most of the increase in redistribution payments.
Taking the average over all such mechanisms is feasible for suffi-
ciently smallh (there will beP n

h = n!/(n−h)! such mechanisms),
and will result in an anonymous mechanism. We will consider the
extreme case whereh = 1 (i.e. we only change one agent’s redis-
tribution function), so that we have to take an average over onlyn
mechanisms. This we can do iteratively.

Given a feasible and anonymous redistribution mechanismr, let
r0 = r, and letrk be the mechanism that results afterk iterations
of the above technique (withh = 1). Then, for alli andθ1, . . . , θn,
rk+1(θ−i) = n−1

n
rk(θ−i)+

1
n

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)}.

This technique can be interpreted as a generalization of the basic
idea underlying Cavallo’s mechanism. We can rewriterk+1(θ−i) =
rk(θ−i)+

1
n

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)−rk(θ−i)}. If the

starting mechanismr = r0 is the trivial redistribution mechanism
that redistributes nothing, thenr1(θ−i) = 1

n
min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)},

which is exactly Cavallo’s mechanism.

CLAIM 6. If rk is feasible,rk+1 is feasible.

PROOF. rk+1 is an average of feasible mechanisms, so Claim 5
applies.

CLAIM 7. For anyi andθ−i, rk(θ−i) is nondecreasing ink.

PROOF. rk+1(θ−i) = rk(θ−i) + 1
n

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rk(θ′
−j) − rk(θ−i)}. Becauserk is feasible by Claim 6,

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rk(θ′
−j) − rk(θ−i)} ≥ 0. Hence

rk+1(θ−i) ≥ rk(θ−i).
9Computational limitations often prevent us from using certain
mechanisms. As an extreme example, it is possible to have a com-
puter search over the space of all possible (incentive compatible)
mechanisms for the setting at hand and find the best one [6], but
this does not scale to very large instances. By contrast, here, we
have an analytical characterization of the mechanism, but comput-
ing its outcomes is still hard.
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CLAIM 8. Ask → ∞, rk converges (pointwise) to an undomi-
nated redistribution mechanism.

PROOF. By Claim 7, therk(θ−i) are nondecreasing ink, and
since everyrk is feasible by Claim 6, they must be bounded; hence
they must converge (pointwise). For anyi and θ−i, let dk =
min

θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rk(θ′
−j)} − rk(θ−i). Using Claim 7,

we derive the following inequality:dk+1 = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk+1(θ′
−j)}−rk+1(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)}

−rk+1(θ−i) = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)}−

n−1
n

rk(θ−i)

− 1
n

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i) −

P

j 6=i

rk(θ′
−j)} =

n−1
n

min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)}−

n−1
n

rk(θ−i) = n−1
n

dk.

Ask → ∞, dk = min
θ′

i
∈Θi

{V CG(θ′
i, θ−i)−

P

j 6=i

rk(θ′
−j)}−rk(θ−i)

→ 0. So in the limit, Equation 4 is satisfied. Thus,rk converges
(pointwise) to an undominated redistribution mechanism.

COROLLARY 1. If rk+1 = rk, thenrk is undominated.

CLAIM 9. If rk is not undominated, thenrk+1 dominatesrk.

PROOF. rk+1 always redistributes at least as much asrk to each
agent by Claim 7. Moreover,rk+1 6= rk (otherwise Corollary 1
would implyrk is undominated). Hence there must be a case where
rk+1 redistributes more thanrk.

5. NUMERICAL RESULTS
In this section, we present the results of some experiments in

which we use the techniques from the previous sections to im-
prove both the WCO mechanism and Cavallo’s mechanism. For the
purpose of completeness, in the combinatorial auction setting, we
also apply the nonanonymous (priority-based) technique to the triv-
ial redistribution mechanism that redistributes nothing, and com-
pare the resulting mechanism’s performance with that of Cavallo’s
mechanism. (We omit the result of applying the anonymity-preserving
technique to the trivial redistribution mechanism because, as we
mentioned, after one iteration, we just obtain Cavallo’s mechanism.
We also omit the result of applying the nonanonymous technique to
the trivial redistribution mechanism in multi-unit auctions with unit
demand, because the resulting mechanism always has the same ex-
pected redistribution amount as Cavallo’s mechanism:m(m+1)/n
times them + 2th highest bid, plusm(n − m − 1)/n times the
m + 1th highest bid.)

Improving the WCO mechanism. The WCO mechanism ap-
plies only to multi-unit auctions with unit demand (i.e. in which
each agent only wants a single unit); in this setting, this mecha-
nism maximizes the percentage that is redistributed in the worst
case. This, however, does not mean that it is undominated, because
it could be dominated by another mechanism that does equally well
in the worst case, and better in other cases. Indeed, we can improve
the WCO mechanism using the techniques from this paper (result-
ing in another, better, worst-case optimal mechanism).

For variousm (number of units) andn (number of agents), we
generated100 random instances with each agent’s valuation drawn
uniformly from [0, 1]. The table below shows the ratio between
the average amount that is not redistributed by the new mechanism
(which results from applying one of our techniques to the WCO
mechanism), and the average amount that is not redistributed by
the (original) WCO mechanism. That is, it is the percentage of

the amount that WCO fails to redistribute that the new mechanism
also fails to redistribute. Lower numbers are better—100% indi-
cates no improvement over WCO, 0% indicates that everything is
redistributed. For the nonanonymous (priority-based) technique, to
save computation time, we only update the redistribution payments
for the first three agents. This technique redistributes more than the
anonymity-preserving technique.

n m Nonanon. Anonymous Anonymous
3 updates 1 iteration 2 iterations

4 1 42% 66% 52%
5 1 49% 69% 55%
6 1 32% 55% 39%
5 2 44% 68% 54%
6 3 45% 68% 54%

Improving Cavallo’s mechanism.We recall that Cavallo’s mech-
anism is undominated in the single-item auction setting (in fact, this
remains true for multi-unit auctions with unit demand). However,
as the experiment below shows, it is not undominated in general.

For a combinatorial auction withn single-minded agents and2
items, we generated100 random instances. For each agent, we
randomly chose a nonempty bundle of items, and randomly chose
a per-item value from[0, 1] (which is multiplied by two if the agent
desires the bundle of two items). The percentages have the same
meaning as before. We distinguish between the known single-
minded case (where the auctioneer knows which bundle the agent
wants) and the unknown case. Again, the nonanonymous technique
redistributes more; also, more is redistributed in the known case.

Nonanon. Anonymous Nonanon. Anonymous
n 2 updates 1 iteration 2 updates 1 iteration

unknown unknown known known
5 81% 84% 61% 75%
6 76% 82% 64% 69%
7 73% 81% 54% 68%
8 78% 83% 59% 66%

For the same set of100 random instances, the table below shows
the ratio between the average amount that is not redistributed by
the mechanism which results from applying the nonanonymous
technique to the trivial redistribution mechanism, and the average
amount that is not redistributed by Cavallo’s mechanism.

n Nonanon. 3 updates, unknownNonanon. 3 updates, known
5 88% 68%
6 91% 67%
7 95% 51%
8 96% 81%

6. CONCLUSIONS
For resource allocation problems, the well-known VCG mecha-

nism is efficient, incentive compatible, individually rational, and
does not incur a deficit. However, the VCG mechanism is not
(strongly) budget balanced: generally, the agents’ payments will
sum to more than0. Very recently, several mechanisms have been
proposed thatredistributea significant percentage of the VCG pay-
ments back to the agents while maintaining the other properties.
This increases the agents’ utilities. In this paper, we provided a
characterization of undominated redistribution mechanisms. We
also proposed several techniques that take a dominated redistribu-
tion mechanism as input, and produce as output another redistri-
bution mechanism that dominates the original. The dominating re-
distribution mechanism always redistributes at least as much, and
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in some cases more. Hence, for any prior distribution over agents’
types, the dominating mechanism redistributes at least as much as
the original in expectation; if the prior assigns positive probability
to the set of type vectors where the dominating mechanism redis-
tributes more, then the dominating mechanism redistributes strictly
more in expectation.

One of the techniques that we proposed takes as input a priority
order over the agents. It first redistributes as much as possible to the
highest-priority agent, then it redistributes as much of the remain-
der as possible to the second-highest priority agent,etc.At the end
of this process, the mechanism is guaranteed to be undominated—
but it is generally not anonymous. Another technique that we pro-
posed does preserve anonymity, and can be seen as taking the av-
erage over all priority orders of the first step of the priority-based
technique. It can also be seen as a generalization of the basic idea
underlying Cavallo’s mechanism, and Cavallo’s mechanism results
after one iteration of the technique when starting with the mecha-
nism that redistributes nothing. Repeated application of this tech-
nique produces an undominated mechanism in the limit.

Finally, we showed experimentally that these techniques improve
both the WCO mechanism and Cavallo’s mechanism. In our ex-
periment on multi-unit auctions with unit demand, the improved
mechanisms redistributed (on average) between31% and68% of
what WCO failed to redistribute. In our experiment on combinato-
rial auctions with single-minded agents, the improved mechanisms
redistributed (on average) between16% and46% of what Cavallo’s
mechanism failed to redistribute.

Future research on the dominance concept proposed in this pa-
per can take a number of directions. For one, it is possible to apply
the techniques in this paper to other mechanisms, including mech-
anisms that allocate inefficiently. It may also be worthwhile to try
to find other techniques for improving a given mechanism; it is
possible that such techniques will scale to larger auctions than the
ones presented in this paper. Another direction is to try to derive
analytical characterizations of undominated mechanisms, perhaps
in more restricted settings. Finally, one can try to identify circum-
stances under which there is a unique undominated mechanism.
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