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ABSTRACT

Many important problems in multiagent systems can be seen as re-

source allocation problems. For such problems, the well-known
Vickrey-Clarke-Groves (VCG) mechanism is efficient, incentive
compatible, individually rational, and does not incur a deficit. How-

ever, the VCG mechanism is not (strongly) budget balanced: gen-

erally, the agents’ payments will sum to more titaivery recently,
several mechanisms have been proposedréths$tributea signif-

icant percentage of the VCG payments back to the agents while

maintaining the other properties. This increases the agents’ utili-
ties.
One redistribution mechanisdominatesanother if it always re-
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agents’ valuations are private knowledge, and self-interested agents
will lie about their valuations if this is to their benefit. One solu-
tion is toauctionoff the items. By carefully deciding how much
the winning agents pay, it is possible to create an auction in which
agents have no incentive to lie about their valuations. The best-
known way of doing so is to use théCG mechanisn22, 5, 11]

for determining the payments. This mechanism has various de-
sirable properties. One disadvantage of this approach is that the
payments that the agents make flow out of the system, and this
reduces the agents’ utilities. To minimize this disadvantage, very
recently, several mechanisms have been proposedétiiatribute

a significant percentage of the VCG payments back to the agents

distributes at least as much to each agent (and sometimes more). (VNile maintaining the other properties [20, 3, 12, 17, 13]. In this

this paper, we provide a characterization of undominated redistri-

paper, we continue this line of research. We introduce several gen-

bution mechanisms. We also propose several techniques that take gral;eghnlques that ﬁan.be apﬂhe(atwlrgdlstnbuélon. mechgmsyg
dominated redistribution mechanism as input, and produce as out-© 0Ptain a new mechanism. The resulting mechanism redistributes

put another redistribution mechanism that dominates the original.

One technique immediately produces an undominated redistribu-
tion mechanism that is not necessarily anonymous. Another tech-
nigue preserves anonymity, and repeated application results in an2.

undominated redistribution mechanism in the limit. We show ex-
perimentally that these techniques improve the known redistribu-
tion mechanisms.
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1. INTRODUCTION

Many important problems in multiagent systems can be seen
as resource allocation problems, in which we want to allocate re-
sources (oitemg to the agents that value them the most. However,
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at least as much, and typically more, for any prior distribution over
agents’ valuations.

MECHANISM DESIGN BACKGROUND

In this section, we briefly review basic elements of mechanism
design, as well as redistribution mechanisms.

2.1 Mechanism Design Basics

A typical setting in mechanism design is given by the following.
Thereis asetddigents/ = {1,2,...,n}, and a set of possiblzut-
comeg). For example, in @ombinatorial auctiona set of itemsS
is (simultaneously) for sale, and the set of outcomes is the set of all
possibleallocationsof the items to the agents (also knowntad-
ders. An allocation is given by a functioa: S — {0,1,...,n},
where forany € S, a(s) is the agent that obtaing(if no agent ob-
tainss, thena(s) = 0%). Each agent has privately held preferences
over the outcomes. As is common in mechanism design, these pref-
erences are represented as follows. For each agémdre is a set
of possibletypes®;. Somed; is the agent’s actual type; this is in-
formation that is private té. There is also a (commonly known)
valuation functionv; : ©; x O — R. (We assume that there al-
ways exists &; € ©; such thatw;(6;,0) = 0 for all o € O; for
example, in an auction, it is possible that an agent does not care for
any of the items.) For example, in a single-item auctibne R
is agent’s valuation for the item, and;(6;,0) = 0; if o allocates
the item to: (and it isO otherwise)? In a combinatorial auction, in
general ¢; consists oR!°l — 1 real numbers, where each number
represents the valuation for receiving a certain nonenptydle

The assumption that items can remain unallocated is known as the
free disposahssumption.

2This is assumingo externalitiesif an agent does not receive the
item, the agent does not care which other agent receives it.



(subset) of the items. Often, the type space is assumed to be more For single-item auctions, the VCG mechanism coincides with the

restricted. For example, if each agent is only interested in a single
bundle (that is, agents asengle-minde}l then a typ&); consists of

a pair(S;, z;), whereS; is the bundle that the agent is interested
in, andv; (0;, 0) = z; if the bundle thab allocates ta includess;

(and it isO otherwise). Another special case isalti-unitauction,

in which m indistinguishable items are for sale (equivalently, there

second-price sealed-bid auctiothat is, the agent with the highest
bid wins the item and pays the second highest bid.

2.2 Redistribution Mechanisms
For the VCG mechanism, sometimeE pi(01,...,0,) # 0.

7

=1
are multiple units of the same item for sale). Here, a type consists That is, the VCG mechanism is ngtrongly) budget balancedn

of m real numbers, where thggh number indicates the value for
obtaining;j units. A special case is a multi-unit auction withit
demandin which each agents wants to obtain only one unit—that

general, no mechanism that is budget balanced also satisfies all of
efficiency, incentive compatibility, and individual rationality [16,
10, 18]. In light of this impossibility result, several authors have

is, allm numbers are always the same, so a type effectively consistsobtained budget balance by sacrificing some of the other desirable

of a single number.

In a (direct-revelation) mechanisneach agent reports a type
6; € ©; (not necessarily equal t#), and based on this, an out-
come is chosen, as well as a payment to be made by each &gent.
Thus, a mechanism is given by an outcome selection fungtion
01 X...x 0, — O, as well an payment selection functions :

O X ... x 0, — R. Asis common, we assume that preferences
arequasilinear that is, agent’s utility is w;(0;, (61,...,0,)) =
0i(0:, f(61,...,600))—pi(61,...,6,). Amechanism igdominant-
strategies) incentive compatihifét is a dominant strategy for each
agent to reveal his true type, that is, for @, ...,0,) € ©1 x

... x Oy andalld; € 0;,u; (0, (01,...,6i,...,0,)) >

wi(0i, (01, ... ,0;,...,00)).

Perhaps the most famous mechanism idfiokrey-Clarke-Groves
(VCG) mechanism [22, 5, 11]. This mechanism chooses an out-
comeo* that maximizes the sum of agents’ reported valuations,

that is,o* € argmax, 3. v;(0;,0). That is, the mechanism is

=1
efficient Then, to determine agerits payment, it computes an
outcomeo’ ; that would have been optimal if agehhad not been
present, that isp” ; € argmax, Y. v;(6;,0). Finally, it deter-

i#A]
mines ageny’s payment ag; (61, ...,60,) = 3 vi(6;,0";) —
i#g

S wi(6;, 0*). This mechanism is well-known to be incentive com-

i#£]

patible. It has several other nice properties. Under certain minimal
assumptions (which are satisfied in (combinatorial) auctions with
free disposal), it also satisfies:

e individual rationality. forall (61, ...,0,) € ©1 X ... X Oy,
for all 4, w;(0;, (61,...,0:,...,60,)) > 0. That is, partici-
pating in the mechanism does not make anyone worse off.

,0n) €91 X ... X O,
> pi(61,...,0,) > 0. That is, the mechanism does not
i=1

non-deficit for all (64, ...

properties [2, 9, 19, 8]. Another approach that is perhaps prefer-
able is to use a mechanism that is “more” budget balanced than
the VCG mechanism, and maintains all the other desirable prop-
erties. One way of trying to design such a mechanism is to re-
distribute some of the VCG payment back to the agents in a way
that will not affect the agents’ incentives (so that incentive compat-
ibility is maintained), and that will maintain the other properties.
This idea has resulted in a few recent paper\d@G) redistri-
bution mechanismsSuch a mechanism works as follows. First,
the agents report their types, and the VCG mechanism is run (so
that the efficient outcome is chosen). Second, some of the VCG
payments collected in the first step are redistributed back to the
agents, in a way that maintains incentive compatibility, individual
rationality, and non-deficit. To maintain incentive compatibility, an
agent’s redistribution payment should not depend on his own re-
ported type [3]F Thus, a redistribution mechanism is defined by
a functionr; : ©1 x ... X ©;—1 X Qi1 X ... X O, — R for
each agent. That is, lettingd_; be the vector of types submitted
by agents other thai r;(f_;) indicates the amount redistributed
to ¢. For an anonymous redistribution mechanist= r for all i.

Let us say that a redistribution mechanisnfigasibleif it satis-
fies individual rationality and non-deficit. (Efficiency and incentive
compatibility follow immediately from the above definition of a re-
distribution mechanism.) The trivial redistribution mechanism that
redistributes nothing is always feasible. In some settings, this is the
only feasible redistribution mechanism—for example, in a single-
item auction with two agents.

For example, Cavallo’s mechanism [3] is given by0_;) =
L enéiél VCG(0;,0-;), whereV CG(6;, 0—;) is the total VCG pay-

ment collected for those reportsin the special case of a single-
item auction, under Cavallo’s mechanism, an agent'’s redistribu-
tion payment isl/n times the second-highest bid amoather
agents’ bids. That is, the agent with the highest bid wins and pays
the second-highest bid, as in a second-price sealed-bid (Vickrey)
auction; then, the agents with the highest and the second-highest
bids each receive a redistribution paymentugfn, wherews is

need to be subsidized by external funds, because the totale thirg-highest bid; and the remaining agents each receive a re-
payments to agents never exceed the total payments from gistripution payment of» /n, whereu, is the second-highest bid.

agents.

anonymity the mechanism treats all agents the same. That
is, forall (01,...,0,) € ©1 X ... x O,, if we swapd; and
0, then the results of the mechanism for agerasd; are

swapped, and the results of the mechanism for agents othery

than: andj remain the same.

We will assume throughout that we are in a setting where the
VCG mechanism obtains all of the above properties.

Hence, the total redistributed2®3 /n + (n — 2)ve /n < nve /n =

v2, SO that there is never a deficit. It should also be noted that no
agent can affect his redistribution payment (since it is the second-
highestotherbid, divided byn), hence the incentives are the same

Mechanisms which differ from the VCG mechanism only by an
additional term in the payment function that does not depend on the
agent’s own bid are known droves mechanismdience, all the
mechanisms in this paper are Groves mechanisms. In sufficiently
general settings, Groves mechanisms are the only incentive com-

3We allow for payments to be negative, that is, agents may receive Patible mechanisms that satisfy efficiency [10, 15].
payments. For cases where payments must be nonnegative, sev®We use; rather thard; when there is no need to emphasize the
eral authors have proposed mechanisms that maximize the agentstifference between reported and true types (since the mechanism is

combined utility after deducting the payments [14, 4].
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as in the Vickrey auction, which is incentive compatible. In this is satisfied. For any and#,...,60,, Equation 2 implies that
(single-item) case, Cavallo’s mechanism coincides with the mech- r;(6_;) < VCG(0;,6—-:) — Y r;(6";) for any6; € ©,. If we let
anisms proposed by Bailey [2] and Poregral. [20]. Cavallo’s , ) J#

mechanism and Bailey’s mechanism are in fact the same in any % = 0i, we obtainry(0—:)+ > _ r;(0—;) < VCG(6:,60-4). Thus,
§etting underl wh?ch V(;G satjsfieeyenue monotoniciﬂllwhi.ch the non-deficit property hoﬁ:

mclude_s mult_l—unlt auctions with unit d_emand. For mul_tl-unlt auc- We now prove the “only if" direction. For anyandd_;, there
tlgns_wnh unit de_mand, we ha_ve_ previously Characterlze'd a fe‘?“s' exists som@; such that will not derive any utility from the allo-
tribution mechanism that maximizes the worst-case redistribution 5o Thus, if~:(6_:) < 0, i would have negative utility, contra-
percentage [12]. The same mechanism was independently pro-

- ) . dicting individual rationality. Thus Equation 1 must hold. By the
posed by Moulin [17], who pursues a different worst-case objec- non-deficit property, for any, anyé: . .., 0i_1, 0is1, .. . , O, and

tive: whereas the objective in our paper is to maximize the per- any0/, we must have; (0_;) + > r;(0"_;) < VCG(60;,0_,), or

centage of VCG payments that are redistributed, Moulin tries to SZi
minimize the overall payments from agents as a percentage of ef-equivalentlyr;(0_;) < VCG(6},6_;) — > r;(6";). Sinced; is
ficiency. It turns out that the resulting mechanisms are the same. J#i

We do not present the (complex) general form of this worst-case arbitrary, Equation 2 follows. []
optimal (WCO) redistribution mechanism here.
Example 1.Consider a combinatorial auction with two items

{a, b} and three agent$1,2,3}. Agent1 bids 10 on the bun-
3. UNDOMINATED REDISTRIBUTION dle {a,b}; agent2 bids e on {a}; agent3 bids 10 — 2¢ on {b}.
MECHANISMS For sufficiently smalk, agentl wins both items and payd) — e.

How should we select a redistribution mechanism? In general, For any feasible redistribution mechanispEquation 1 and Equa-
we prefer to redistribute as much as possible. However, two redis- tion 2 together imply-; (6_;) < min {VCG(0;,0_;)}. Ford; =
tribution mechanisms may be incomparable in the sense that one o . 0;€0: ,
redistributes more for one vector of reported types, and the other re- ({@; b}, 0) (i.e.if 1 had bid0 on {a, b} instead) V CG(01,0-1) =
distributes more for another vector. Our earlier work [12] focused 0» hence it must be thaﬁ(({a},/e), ({b},10—2¢)) = 0/('-3- noth-
on maximizing the percentage of VCG payments redistributed in g is redistributed ta). For6, = ({a},11), VCG(62,0-2) =
the worst case. However, that paper only studied multi-unit auc- 2¢: S072(({a, b}, 10), ({b},10 — 2¢)) < 2e. Finally, for 05 =
tions with unit demand. It turns out that in more general settings, ({6},0), VCG(05,0-3) = €, sors(({a,b},10), ({a},€)) < e

the worst-case redistribution percentage is ofidwe will see ex-  Hence, the percentage redistributed is at mght;, which ap-

amples shortly). This does not mean that nothing can ever be redis-Proaches) ase approache$. Thus,everyredistribution mecha-

tributed, but it does mean that a different criterion is needed. nism has a worst-case redistribution percentageinfthis setting.
We will require the following claim for our examples. If we add any number of additional agents who bfd}, 0), then

the bounds on the first three agents’ redistribution payments remain
the same, and each additional agent can have a redistribution pay-

sib(lfaLi?:ad tnIA rife?cl)ft:ﬁfgzg r;”eechanls%ﬂ = (r1,..ooma) isfea- ment of at mosee (if any one of them bids more thai on {a},
y Lo Un then the resulting total VCG paymentls). By lettinge — 0, it
ri(6—;) >0 (1) can be seen that the worst-case percentage redistributed refnains
for any number of agents. This is in contrast to the case of multi-
ri(6—;) < min {VCOG(6,,0_;) — er(e’_j)} ) unit auctions with _uni_t de_mand, where additional agents improve
6/€0; Py the worst-case redistribution percentage [12].
Here, 6" ; are the reported types of the agents other thiavhené; Example 2.Consider a multi-unit auction with two units and
is replaced by);. VCG((%; 0—:) is the total VCG payments forthe  three agentg1,2,3}. Agent1 bids (0, 10) (0 for getting one unit
type vectows, ..., 0i—1,0;,0it1,. .., 0n. and 10 for getting two units). Agen® bids (e, ¢). Agent3 bids

(10 — 2¢,10 — 2¢). For sufficiently smalle, agentl wins both
units and pay40 — e. As in the previous example, for any feasi-

PrROOF We first prove the “if” direction. Because the VCG ble redistribution mechanismr: (6_y) < min {VCG(0.,0_)}.
0.€O;

mechanism is individually rational, and by Equation 1 the redis-
tribution can only increase agents’ utilities, individual rationality Forg} = (0,0), VCG(6},60_1) = 0, sor((e, ), (10 — 2¢,10 —

®Bailey’'s mechanism redistributes to each agent of the total 2¢)) = 0. For6; = (11, 11), VOG(63,0-2) = 2¢, sor2((0, 10),
VCG payment that would result if this agent were removed from (10 — 2¢,10 — 2¢)) < 2e. Forfs = (0,0), VCG(05,0-3) = ¢,
the auction. Cavallo’s mechanism considers how small an agentsor3((0, 10), (¢,€)) < e. Hence, the percentage redistributed is

could make the total VCG payment by changing her type, and re- at most--2<—, which approaches ase approache®. It follows

H : 10—e
distributes1/n of that to the agent. If the total VCG payment qieveryredistribution mechanism has a worst-case redistribution
is monotonically nondecreasing in the agents, then the type that

would minimize the total VCG payment is the one that has a valu- percentage ab in this setting. As in the preyious example, this
ation of0 for everything, which is equivalent to not participating in ~ "émains true for any number of agents (which can be shown by
the auction. It is well known that in general, the VCG mechanism adding agents that bi@, 0)).

doesnot satisfy this revenue monotonicity criterion [1, 7, 23, 24,

25] (this is in fact true for a much wider class of mechanisms [21]).  The previous examples show that the worst-case criterion is not

E&‘ggven in more restricted settings, revenue monotonicity often a helpful guide in designing redistribution mechanisms for more

"In other work, we study settings where a prior distribution over complex auction settings. Instead, we will pursue a new objective:

agents’ preferences is available, and try to maximizeettgected we will design redistribution mechanisms that arelominatedA
redistribution [13]. However, in this paper, we continue the prior- redistribution mechanism is undominated if there does not exist an-
free approach. other redistribution mechanism that always redistributes at least as
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much to each agent, and, in at least one case, strictly more. The One interesting property of nontrivial undominated redistribu-

following definition makes this precise.

Definition 1. A redistribution mechanism is undominatedf it

is feasible, and there does not exist a feasible redistribution mech-

anismr’ thatdominatest, that is,
,0n, 7":-(9_1-) > 7"7’,(9_7:).
< On, T;(‘g—i) > ri(0-).

e foralli, forall 64,...

e for somei, for someds, ..

tion mechanisms is that there is alwag@mecase where they re-
distribute 100% of the VCG payments. (A redistribution mecha-
nism istrivial if it never redistributes anything.) So (non-trivial)
undominated VCG redistribution mechanisms are also optimal in
the sense of best-case redistribution percentage.

CLAIM 2. If a nontrivial redistribution mechanismis undom-
inated, then there exists a case where it redistribd@®% of the

For example, the trivial redistribution mechanism that redistributes(Nonzero) total VCG payments.

nothing is dominated by both WCO and Cavallo’s mechanism; nei-
ther of WCO and Cavallo’s mechanism dominates the other; and in

general, WCO and Cavallo's mechanism are not undominated (as

we will see later). The following theorem provides an alternative
characterization.

THEOREM 1. A redistribution mechanism is undominated if

and only if for alli and all 64, ..., 6,
i\V—i) = i £> —i) — j l, 4
ri(0-:) = min {VCG(0;,0-) Dm0ty @

J#i
Here,0"_; are the reported types of the agents other thavhend;
is replaced by);.

It should be noted that the only difference between Equation 2
and Equation 4 is that<” is replaced by £

PROOF We prove the “if” direction first. Any redistribution
mechanisnr that satisfies Equation 3 and Equation 4 is feasible
by Claim 1. Now suppose thatis dominated, that is, there ex-
ists a feasible redistribution mechanisfmsuch that for alk and
6_;, we haver;(0_;) > r;(6_;), and for some andf_;, we have
ri(6—;) > m(6_;). For thei and6_; that make this inequality
strict, we haver;(6—;) > ri(0—;) 91,128 {VCG(6;,0-;) —

>ori(0-;) (0;,0-:) — > ri(0-;)}. But this

J# J#i

contradicts the feasibility of’. It follows thatr is undominated.
Now we prove the “only if” direction. An undominated mecha-

nism is feasible by definition, so by Claim 1, Equation 3 must hold.

Suppose Equation 4 is not satisfied. Then, there exists $s@me

6_; such that; (9_2) < el;nlél {VCG(@;, 9_1)7 Z T (9/,])} Let

i€9i j 71

J#i
(0,6, — ; (0" ;)} — ri(0—;) (so thata >
17

0), and letr’ be the same as except that for the aforementionéd
andf_;, r;(0—;) = r;(6—;) + a. To show that this does not break
the non-deficit constraint, consider any type ve¢tar6_;) where

i andf_; are the same as before (that is, any type vector that is af-
fected). Theny}(6_;) = a +ri(0_;) = Jnin {VCG(6,,0-;) —

Sori(0-;) (6;,0-:) — > ri(0-;)}. Thus, by
J#i J#i

Claim 1, r’ is feasible. This contradicts thatis undominated.
Hence, Equation 4 must hold []

> min {VCG
bz er;%lg,i{

a = min {VCG
0,cO;

= min {VCG
b= min{

PrROOFE If r is not trivial, then for some& and6_;, we have
ri(6—;) > 0. By Theorem 1y;(6—;) = min {VCG(6;,0—;) —
0/cO;

Z 7’]-(0'_3-)}, so for some% € 0;, VCG(Q;,G_l) =S 7”1‘(9_1') +
J#i
> r;(0-;) > 0. Thus the redistribution percentage &, 6_;)
J#
is100%. O

An undominated redistribution mechanism always exists; in gen-
eral, it is not unique. We now give two examples of undominated
redistribution mechanisms.

Example 3.Consider a single-item auction with > 3 agents.
Agents bidsé; € [0, c0). Letp(j,0) be thejth highest element of
6. If r is Cavallo's mechanism, ther(¢_;) = Lp(2,6_;) (Cav-
allo’s mechanism is anonymous, so we omit the subscript)ofo
showr is undominated, it suffices to show Equation 3 and Equa-
tion 4 are satisfied. For Equation 3, this is clear. For Equation 4,
we first observe that for all;, VCG(0;,0_,;) = p(2, (0;,0—_;)) >
p(2,0—;) and for allj # i, VCG(6;,0_;) = p(2,(0;,0_;)) >
p(2,0" ;). Because; (0_;) + ; ri(0-;) = Lp(2,6-;) +

JF

1 > p(2,0), itfollows that for allg;, 7 (0—:;) < VCG(0;,0-:)
i(6_;). Moreover, ifd; = p(2,6_;), then all of the above

inequalities become equalities. Hence Equation 4 holds. It follows
that Cavallo’s mechanism is undominated in this setting. (We will
show that it is not undominated in more general settings.)

Example 4.Consider again a single-item auction with> 5
agents. Agent bidsé;. Letr be the following anonymous redistri-
bution mechanismz(0—:) = -25p(2,0-i)— =gy P(3, 0-1)

+ mp(zl, 0_;). Equation 3 and Equation 4 can be shown
to hold (the equality in Equation 4 is achieved by settitig=
p(47 0*1))

Because in general, there are multiple undominated redistribu-
tion mechanisms, it is not clear which one is the best. If a prior
distribution over agents’ types is available, then we would prefer
the one that redistributes the most in expectation; however, in this
paper, we do not wish to assume that such a prior is available. Nev-
ertheless, for any (feasible) redistribution mechanism that we might
consider using, if it is dominated, then there exists another (feasi-
ble) redistribution mechanism that always redistributes at least as
much to each agent, and more in some cases. Thus, in expecta-

As an aside, suppose we were only interested in anonymoustion, the latter mechanism redistributes at least as much for any
mechanisms, and we would therefore only consider a mechanismprior distribution, and strictly more if the prior assigns positive

dominated if it were dominated by amonymousnechanism. Then,
the characterization in Theorem 1 remains idenficgherefore, all
of our results apply to this modified definition as well.

8This can be proved by modifying the proof of Theorem 1, adding
a/n to each agent’s redistribution function instead of addintg
one agent’s redistribution function.
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probability to the set of type vectors on which the latter mecha-
nism redistributes more. Hence, we would certainly prefer the latter
mechanism—and if that mechanism is not undominated, we would
prefer to find one that dominates étc. But how do we find such

an improved mechanism? This is what we study in the rest of the
paper.



4. METHODS FOR CONSTRUCTING min (VOGOh0-) ~ri(0-) — 3 r(07;) -
UNDOMINATED REDISTRIBUTION C @20 T
MECHANISMS wG<ny T

In this section, we propose several techniques that, given a redis-  Considerp = ?71(77(1') — 1) (the agent immediately before
tribution mechanism that is feasible and dominated, find a feasible in terms of priority). For any;, 6, we haveVCG(0;,6-:) —
redistribution mechanism that dominates it. (If the initial mecha- 7#(0-)— > 7;(0—5)— > rj(0-;) =VCG(0:,0-:)—

nism is already undominated, then the techniques will return the w(#>= @) () <n(@) .
- ique i i 2 ri0-) = X ri(0-5) —rp(0-p) 2
same mechanism.) One technique immediately produces an un-_ <~ wGi<np)
dominated mechanism that is not anonymous; the other techniques min {VCG(0),0 ,)— Y r(0)— S 17(0-,)}—
preserve anonymity, and after repeated application converge to ané;, e, 7(j)>m(p) w(5)<m(p)

undominated mechanism. We emphasize that we can start withr;(f),p) = 0. (For the above inequality onIﬁLj is the set of
anyfeasible redistribution mechanism, including Cavallo’s mecha- types reported by the agents other tjawhené,, is replaced by
nism, the WCO mechanism from our earlier paper [12]/Moulin [17] 9;,) Becaus®; is arbitrary, it follows thatmin {VCG(6,0_;) —
(which, even though is optimal in the worst case, is generally not 0;€0;

undominated), or even the trivial redistribution mechanism that re- 7:(0—:) — > 7;(02;) — 3

distributes nothing. These techniques can also be useful in settings, .~ ™@)>7( m(G)<m(i)
where we do have a prior distribution. For example, after design- thatry (0—) 2 ri(6) forall i andé_;. [
ing a redistribution mechanism based on a prior distribution, we
can further improve it and make it undominated, which will never
decrease the redistribution payment to any agent.

r7 (67 ;)} > 0. It follows

CLAIM 4. r™ is an undominated redistribution mechanism.

PrROOF By Claim 3, for alli andf_;, r] (0—;) > r:i(6—:) > 0.
So,r™ is individually rational.

Leti =~ '(n). Forallfy, ...

4.1 A Priority-Based Technique

. . o ) . , 0, the total VCG payment that
Given a feasible redistribution mechanisrand a priority order

! ‘ : Ty TR is not redistributed by ™ isVCG(01,...,0,)— > 77(0—5) >
over agentsr, we can improve into an undominated redistribution j=1,...,n
mechanism that is not anonymous. The technique works as follows. min {VCG(6;,0-:) — > r7(0_;)} — r(6—:) = 0. Hencer™

0,€0; 44

J#i
never incurs a deficit. Se;" is feasible.

Using Claim 3, we have[ (0_;) = Gmig {VCG(9;,0-;) —
1€0i

1) Letr: {1,...,n} — {1,...,n} be a permutation represent-
ing the priority order. That isy(¢) is agent’s priority value (the
lower the value, the higher the priority}:—* (k) is the agent with ,
the kth-highest priority. > ri0t)— X

m(§)>m(4) m(7)<m (i)
2) Leti = 7~ !(1), and update’s redistribution function to > rf(0-,)}. Because™ is feasible, the opposite inequality must

™ ) = mi / N (0 . i Jj#n
ri(0-) g?éléll{VCG(e“e‘z) ﬂ(]z);r](eﬂ)}' That is, we also be satisfied (Equation 2)—hence we must have equality, that

redistribute as much as possible to this agent without breaking fea-iS, Equation 4 must hold. Because Equation 3 is also satisfied by
sibility. Claim 1, it follows thatr™ is undominated. [J

7O} > min {VOG!,0-)-

Example 5.Consider a single-item auction with four agents
1,2, 3,4. In this setting, the redistribution under the WCO mech-
anism to agent is r(6—;) = (2/7)p(2,0—;) — (1/7)p(3,6—;)
(wherep(k, 6_;) is thekth highest bid among bids other thés).

om0l )— X Consider a specific set of bid8, 10, 13, 5) and letr (i) = 4 for all
T()>k () <k ] ) o ) i. (That is, agent bids 8 for the item and has the highest priority,
as possible to this agent without breaking feasibility, taking the pre- etc) If we apply the above technique, the resulting redistribution
viousk — 1 updates into account. paymentto ageritis 7 (10,13, 5) = o rr[%n ){VCG( 1,10,13,5)
1€10,00

3) We will now consider the remaining agents in turn, according
to the orderr. In the kth step, we update the redistribution func-
tion of agenti = 7~ (k) to r7 (0—;) = Jnin {VCG(0,60-;) —

i€9i

rT(0_;)}. Thatis, we redistribute as much

—r(01,13,5) —r(01,10,5) — (01, 10,13)} (wherer is the WCO
mechanism). It turns out that the expression is minimizetf at
0, so thatr{ (10,13,5) = 2. This is twice the amount would
have received under WC®(10, 13,5) = (2/7)-10—(1/7)-5 =
15

Thus, for every agent, r[(6_;) = emig {VCG(6],0-;) —
€9

ri(0-;) — > rf(0-;)}. The new redistribution
m(§)>m () m(§)<m ()
mechanism™ satisfies the following properties:

7

CLaim 3. Forall 4, forall 0_;, r] (0—;) > ri(6—;).

PROOF. First consideri = 7~ (1), the agent with the highest
priority. For any6_;, we haver] (§—;) = min {VCG(0;,0-;) —
0.€0;
> r;(6”;)}. Since the original redistribution mechanistis fea-
3
sible, by Equation 2, we hawe(6_;) < min {VCG(6;,0_;) —

CASCH
> ri(075)}. Hencerf (0—:) > ri(6-:).
JFi
Foranyi # 7~ *(1), 77 (0—;) = ri(é?,i)—&—emiél {VCG(6;,6-;)
€9
—ri(0-)— > r(0_,)— > ri(0-;)}. Wemustshow

w(§)>m (i) m(§)<m (i)
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For agen®, 75 (8,13,5) = min ){VCG(8,0§,13,5) —

04 €(0,00
r7(05,13,5) —r(8,05,5) — (8, 05, 13)}. This expression is min-
imized até; = 8, so thatr3(8,13,5) = . (Under WCO,2
receives only:!.)
For agenB, v (8,10,5) = , n?in ){VCG(S, 10, 65,5) —
éE 0,00
r7(10,03,5) — r3(8,605,5) — r(8,10,05)}. This expression is
minimized atf; = 8, so thatrj (8,10,5) = 1. (Under WCO,3
receivest! as well.)
For agent4 r7(8,10,13) = n%in ){VCG(& 10,13,04) —
0, €[0,00

r7(10,13,603) —r5(8,13,04) —r3(8,10,64)}. This expression is



minimized atd; = 5, so thatrj (8,10, 13) =
receivestZ as well.)

We note that for this priority order, the total amount redistributed
is S0HITHILEL2 — (), that is, all of the VCG payments are redis-
tributed. This is not true for all priority orders; averaging over all
priority orders,0.315 remains undistributed (comparedddor the
WCO mechanism). The following table shows the results for all
priority orders for this example.

2. (Under WCO4

Bids Increase Remaining
5,13,10,8 6/7,917,477,0 217
5,13,8,10 6/7,9/7,0,1/7 517
5,10,13,8 6/7,9/7,4/7,0 217
5,10,8,13 6/7,9/7,0,1/7 517
5,8,10,13 6/7,15/7,0,0 0
5,8,13,10 6/7,15/7,0,0 0
13,5,10,8 9/7,6/7,6/7,0 0
13,5,8,10 9/7,6/7,0,0 6/7
13,10,5,8 9/7,6/7,6/7,0 0
13,10,8,5 9/7,6/7,0,6/7 0
13,8,10,5 9/7,0,0,6/7 6/7
13,8,5,10 9/7,0,6/7,0 6/7
10,13,5,8 9/7,6/7,6/7,0 0
10,13,8,5 9/7,6/7,0,6/7 0
10,5,13,8 9/7,6/7,6/7,0 0
10,5,8,13 9/7,6/7,0,0 6/7
10,8,5,13 9/7,0,6/7,0 6/7
10,8,13,5 9/7,0,0,3/7 9/7
8,13,10,5 15/7,6/7,0,0 0
8,13,5,10 15/7,6/7,0,0 0
8,10,13,5 15/7,6/7,0,0 0
8,10,5,13 15/7,6/7,0,0 0
8,5,10,13 15/7,6/7,0,0 0
8,5,13,10 15/7,6/7,0,0 0
Average (1)| 1.39,0.89,0.26,0.14 0.315
Average (2)| 0.71,0.64,0.64,0.7(

Increase in redistribution payments relative to WCO, and total
VCG payments that are not redistributed, for different priority
orders. Note that increases are ordered according to the priority
order. The “average” item gives the average increase to the agent
ordered in thekth place (first), as well as the average increase to
agent; (second).

Generally, most of the increase in redistribution payment goes to

high-priority agents. Hence, a reasonable approximation can be ob-

tained by only updating the redistribution payment functions of the

first few agents. This still results in a feasible mechanism that dom-
inates the original (or is the same), but it is no longer guaranteed to
be undominated.

4.2

The technique from the previous subsection will, in general, not
produce an anonymous redistribution mechanism, even if the orig-
inal mechanisnr is anonymous. This is because agents higher in
the priority order tend to receive higher redistribution payments. In

this subsection, we will introduce techniques that preserve anonymit

One way to obtain an anonymous mechanism is to consitler
for all permutationsr, and take the average. That is, febe de-

fined byr; = &, > (rf), whereS,, is the set of all permutations
weSy
of n elements. Given that the setting and the initial mechanism

t
PROOF Let > a, = 1 with eachay, > 0; we must show
k=1

t
thatr = 3 ayr™ is feasible. For any andé_;, for any k,
k=1

t
we haver™ (6_;) > 0, hencer;(6_;) = 3 axr™(6_;) > 0.
k=1
This implies individual rationality. Also, for an¢,,...,0,, for
anyk, > r(0-:) < VCG(61,...,0n), hence ri(6-;)

=1 =1
t n
S a3 r™(6-,) < VCG(6,...,0,). This implies the non-
k=1 i=1
deficit property. [1

Becauser is anonymous, alf; are the same, so we will sim-
ply user. Even thoughr is an average of a set of undominated
redistribution mechanisms, in general, it itself is not undominated.
In principle, we can take the resulting mechanism and apply the
technique again. Unfortunately, this approach is not practical—in
fact, it may not be feasible to perform even one iteration of this
technique ifn is large, since we have to take an average oMer
mechanism&.However, as we mentioned, it is also possible to ap-
ply the priority-based technique only to the fifsagents. This still
results in a feasible (but not necessarily undominated) mechanism,
and tends to obtain most of the increase in redistribution payments.
Taking the average over all such mechanisms is feasible for suffi-
ciently smallh (there will beP;’ = n!/(n—h)! such mechanisms),
and will result in an anonymous mechanism. We will consider the
extreme case where = 1 (i.e. we only change one agent’s redis-
tribution function), so that we have to take an average over only
mechanisms. This we can do iteratively.

Given a feasible and anonymous redistribution mechamidet
r® = r, and letr® be the mechanism that results afteiterations
of the above technique (with = 1). Then, for ali and6, ..., 6,,

TR 0-;) = 2=LrR(0-)+1 Jmin {VCG(0;,0-)—> (0" ,)}.
€9

1

0

3 JFT

This technique can be interpreted as a generalization of the basic

idea underlying Cavallo’s mechanism. We can rewrfté (6_;)
r*(0_i)+1 min {VCG(6;,0-:)—> r*(0";)—r"(0_;)}. If the

0;€9i JFi '
starting mechanism = r° is the trivial redistribution mechanism
that redistributes nothing, then(6_;) = + Juin {VCG(6;,0-,)},
i€©i

which is exactly Cavallo’s mechanism.
CLAIM 6. If r* is feasibley** is feasible.

k

PrRoOOF. r** is an average of feasible mechanisms, so Claim 5

applies. O

Iterative Techniques that Preserve Anonymity

CLAIM 7. Foranyiandd_;, 7" (6_;) is nondecreasing it.
PROOF r*1(0_;) = r*(6_;) + L min {VCG(6;,0-;) —
0.cO;

g_ rk (O

min {VCG(0;,0_;) —
0;€0; j#i
Tk+1(9_i) 2 Tk(9_7) |:|

SComputational limitations often prevent us from using certain

) —r¥(6_,;)}. Because" is feasible by Claim 6,

S rF(0;) — r*(0-:)} > 0. Hence

are anonymous, this results in an anonymous mechanism. It is alsomechanisms. As an extreme example, it is possible to have a com-

feasible:

CLAIM 5. Any convex combination of a sgt™, ... r®} of

feasible redistribution mechanisms is itself feasible.
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puter search over the space of all possible (incentive compatible)
mechanisms for the setting at hand and find the best one [6], but
this does not scale to very large instances. By contrast, here, we
have an analytical characterization of the mechanism, but comput-
ing its outcomes is still hard.



CLAIM 8. Ask — oo, r* converges (pointwise) to an undomi-  the amount that WCO fails to redistribute that the new mechanism
nated redistribution mechanism. also fails to redistribute. Lower numbers are better—100% indi-
cates no improvement over WCO, 0% indicates that everything is
redistributed. For the nonanonymous (priority-based) technique, to
save computation time, we only update the redistribution payments
for the first three agents. This technique redistributes more than the
anonymity-preserving technique.

PROOF. By Claim 7, ther®(9_;) are nondecreasing ik, and
since every-* is feasible by Claim 6, they must be bounded; hence
they must converge (pointwise). For anyand 6_;, let di, =
Jnin {VCG(0;,0-;) — S r*(0";)} — r*(6—:). Using Claim 7,

J#i
we deriVe the f0||0Wing inequalith+1 = ggfélél{VCG(@;, 9_1)— n m Nonanon. Anonymous Anonymous
. L 3updates| 1iteration | 2 iterations
;ir’fﬂ(egj)}—r’f“(e_i) < G?g&{vcc(eg,e_i)—Jgirk(eLj)} 71 150 56% =504
k+1 s / k(g n—1_k 5] 1 49% 69% 55%
—r 0_;) = min {VCG(6;,0_;)—> r"(0_.)}—=r"(0_;
(0-2) o;eei{ ( ) ; =)} (0-) 6| 1| 32% 55% 39%
— £ min {VCG(6;,0-:) — > r*(0-,)} = 5[ 2 44% 68% 54%
0;€0; J#i 6| 3 45% 68% 54%
=t Jnin {VCG(0;,0-:)—Y r* (0 ;) —2=Lrk (0_) = 2=Ld.
i€9; j#i . .
. / N kig \\_ ok ' Improving Cavallo’s mechanism. We recall that Cavallo’s mech-
Ask — oo, d = 9%3,,{VCG(0“ 0-:) %;i (0=} = (0-:) anism is undominated in the single-item auction setting (in fact, this
— 0. Soin the limit, Equation 4 is satisfied. Thug, converges remains true for multi-unit auctions with unit demand). However,
(pointwise) to an undominated redistribution mechanisifi as the experiment below shows, it is not undominated in general.
For a combinatorial auction with single-minded agents arid
COROLLARY 1. If r*t1 = v thenr® is undominated. items, we generatetl00 random instances. For each agent, we
randomly chose a nonempty bundle of items, and randomly chose
CLAIM 9. If 7* is not undominated, therf*! dominates-*. a per-item value fronf0, 1] (which is multiplied by two if the agent

desires the bundle of two items). The percentages have the same
meaning as before. We distinguish between the known single-
minded case (where the auctioneer knows which bundle the agent
wants) and the unknown case. Again, the nonanonymous technique
redistributes more; also, more is redistributed in the known case.

ProoF. r**1 always redistributes at least as much-$o each
agent by Claim 7. Moreover,**! £ r* (otherwise Corollary 1
would implyr* is undominated). Hence there must be a case where
r**1 redistributes more tharf. [

5. NUMERICAL RESULTS Nonanon. An_onym_ous Nonanon. An_onym_ous
. . . . n | 2 updates| 1iteration | 2 updates| 1 iteration

In this section, we present the results of some experiments in unknown | unknown known Kknown

which we use the techniques from the previous sections to im-
- \ . 5 81% 84% 61% 75%
prove both the WCO mechanism and Cavallo’s mechanism. For the
. ; . . . 6 76% 82% 64% 69%

purpose of completeness, in the combinatorial auction setting, we 7 730 81 500 680
also apply the nonanonymous (priority-based) technique to the triv- ) 780/0 830/0 590/0 660/0
ial redistribution mechanism that redistributes nothing, and com- 0 0 0 0

pare the resulting mechanism’s performance with that of Cavallo’s  For the same set df00 random instances, the table below shows
mechanism. (We omit the result of applying the anonymity-preservintie ratio between the average amount that is not redistributed by
technique to the trivial redistribution mechanism because, as we the mechanism which results from applying the nonanonymous
mentioned, after one iteration, we just obtain Cavallo’s mechanism. technique to the trivial redistribution mechanism, and the average
We also omit the result of applying the nonanonymous technique to amount that is not redistributed by Cavallo's mechanism.

the trivial redistribution mechanism in multi-unit auctions with unit

demand, because the resulting mechanism always has the same ex-y T Nonanon. 3 updates, unknownNonanon. 3 updates, known
pected redistribution amount as Cavallo’s mechanisrtvn+1) /n 5 88% 68%
times them + 2th highest bid, plusn(n — m — 1)/n times the 3 91% 67%
m + 1th highest bid.) = 95% 519
Improving the WCO mechanism. The WCO mechanism ap- 8 96% 81%

plies only to multi-unit auctions with unit demande( in which
each agent only wants a single unit); in this setting, this mecha- 6. CONCLUSIONS
nism maximizes the percentage that is redistributed in the worst  For resource allocation problems, the well-known VCG mecha-
case. This, however, does not mean that it is undominated, becausaism is efficient, incentive compatible, individually rational, and
it could be dominated by another mechanism that does equally well does not incur a deficit. However, the VCG mechanism is not
in the worst case, and better in other cases. Indeed, we can improvestrongly) budget balanced: generally, the agents’ payments will
the WCO mechanism using the techniques from this paper (result- sum to more tha. Very recently, several mechanisms have been
ing in another, better, worst-case optimal mechanism). proposed thatedistributea significant percentage of the VCG pay-
For variousm (number of units) and (number of agents), we  ments back to the agents while maintaining the other properties.
generated 00 random instances with each agent’s valuation drawn This increases the agents’ utilities. In this paper, we provided a
uniformly from [0,1]. The table below shows the ratio between characterization of undominated redistribution mechanisms. We
the average amount that is not redistributed by the new mechanismalso proposed several techniques that take a dominated redistribu-
(which results from applying one of our techniques to the WCO tion mechanism as input, and produce as output another redistri-
mechanism), and the average amount that is not redistributed bybution mechanism that dominates the original. The dominating re-
the (original) WCO mechanism. That is, it is the percentage of distribution mechanism always redistributes at least as much, and
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in some cases more. Hence, for any prior distribution over agents’
types, the dominating mechanism redistributes at least as much as
the original in expectation; if the prior assigns positive probability
to the set of type vectors where the dominating mechanism redis-
tributes more, then the dominating mechanism redistributes strictly
more in expectation.

One of the techniques that we proposed takes as input a priority
order over the agents. It first redistributes as much as possible to the
highest-priority agent, then it redistributes as much of the remain- [10]
der as possible to the second-highest priority ageint At the end
of this process, the mechanism is guaranteed to be undominated—
but it is generally not anonymous. Another technique that we pro- 11]
posed does preserve anonymity, and can be seen as taking the aJ—
erage over all priority orders of the first step of the priority-based 12]
technique. It can also be seen as a generalization of the basic idez;
underlying Cavallo’s mechanism, and Cavallo’s mechanism results
after one iteration of the technique when starting with the mecha-
nism that redistributes nothing. Repeated application of this tech-
nique produces an undominated mechanism in the limit.

Finally, we showed experimentally that these techniques improve
both the WCO mechanism and Cavallo’'s mechanism. In our ex-
periment on multi-unit auctions with unit demand, the improved
mechanisms redistributed (on average) betw&ErR and68% of
what WCO failed to redistribute. In our experiment on combinato-
rial auctions with single-minded agents, the improved mechanisms [15]
redistributed (on average) betwekit%s and46% of what Cavallo’s
mechanism failed to redistribute.

Future research on the dominance concept proposed in this pa-
per can take a number of directions. For one, it is possible to apply
the techniques in this paper to other mechanisms, including mech-
anisms that allocate inefficiently. It may also be worthwhile to try [17]
to find other techniques for improving a given mechanism; it is
possible that such techniques will scale to larger auctions than the[18]
ones presented in this paper. Another direction is to try to derive
analytical characterizations of undominated mechanisms, perhaps
in more restricted settings. Finally, one can try to identify circum- [19]
stances under which there is a unique undominated mechanism.

(8]

9]

[13]

(14]

[16]
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