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ABSTRACTWe introdu
e a Supervised Reinfor
ement Learning (SRL)algorithm for autonomous learning problems where an agentis required to deal with high dimensional spa
es. In ourlearning algorithm, behavior models learned from a set ofexamples, are used to dynami
ally redu
e the set of rele-vant a
tions at ea
h state of the environment en
ounteredby the agent. Su
h subsets of a
tions are used to guide theagent through promising parts of the a
tion spa
e, avoidingthe sele
tion of useless a
tions. The algorithm handles 
on-tinuous states and a
tions. Our experimental work with adi�
ult robot learning task shows 
learly how this approa
h
an signi�
antly speed up the learning pro
ess and improvethe �nal performan
e.
Categories and Subject DescriptorsI.2.6 [Computing Methodologies℄: Arti�
ial Intelligen
e�learning
General TermsAlgorithms, Experimentation
Keywordsreinfor
ement learning, behavior model, a
tor-
riti

1. INTRODUCTIONThe idea of supervision or advi
e giving was �rst proposedin 1958 by M
Carthy [9℄. More re
ently, Clouse and Utgo�[5℄ presented an online method of SRL. With this method, ahuman tea
her monitors the agent's progress. If the tea
herdetermines that the agent is not performing well, the tea
hertakes 
ontrol and o�ers advi
e in the form of an a
tion that isexe
uted at that time. Then, the agent learns from su
h ad-vi
e by reinfor
ing the tenden
y to 
hoose the a
tion re
om-mended and performed by the tea
her. Another attempt toa

elerate the learning pro
ess was the one proposed by Lin[6℄. He introdu
ed a very e�e
tive way to speed up the Re-infor
ement Learning (RL) pro
ess through the replaying ofCite as: Autonomous Agent Learning using an Actor-Critic Algorithm
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experien
es. The advi
e-giver provides 
omplete sequen
esof states and a
tions st, at+1, st+1, at+2, . . . that the agentreplays internally many times. By doing so ba
kwards, thelearning pro
ess is further a

elerated. Ma
lin and Shavlik[7, 8℄ approa
hed the advi
e giving problem in a di�erentway, by using 
onne
tionist Q-learning. The advi
e-giverwat
hes the learner and o

asionally makes suggestions, ex-pressed as instru
tions in a simple programming language.Using knowledge-based neural networks, those programs arein
luded into the agent's utility fun
tion. Later, Rosensteinand Barto [10℄ proposed a 
ombination of supervised learn-ing with and a
tor-
riti
 ar
hite
ture. They used a super-vised learning method to in
lude the knowledge provided bya human supervisor into the a
tor-
riti
 learning pro
ess. A
omposite a
tor is formed with the a
tor, a supervisor anda gain s
heduler. The a
tion exe
uted at ea
h moment isthe result of a linear 
ombination of the a
tions provided bythe a
tor and the supervisor. Abbeel and Ng [1, 2℄ studiedthe use of an expert in order to learn to perform a task insituations where the reward fun
tion is not provided or it isdi�
ult to design. The main idea 
onsists of using inversereinfor
ement learning to try to obtain the unknown rewardfun
tion whi
h is supposed to be impli
it in the expert's be-havior. Their method manages to get performan
es 
lose tothat of the expert. Moreover, Atkeson and S
haal [3℄ usedhuman demonstrations to have a robot learn to perform atask. First, they learn from the demonstrations a rewardfun
tion and a task model. Then, based on the learnedreward fun
tion and task model, they 
ompute a poli
y.Finally, another work that is worth to mention is that byCarpenter et al [4℄, who approa
hed the problem of how tohandle advi
e from several sour
es and also how to solve
on�i
ting advi
es. Due to spa
e 
onstraints we 
an onlymention those approa
hes more similar to ours.All of the works mentioned above have one thing in 
om-mon, the fa
t that the supervisor provides one a
tion orsequen
es of a
tions whi
h should be dire
tly performed bythe agent in order to learn from the expert. One ex
eptionis the method proposed by Rosenstein and Barto[10℄, wherethe a
tion exe
uted is a 
ombination of the a
tion suggestedby the supervisor and the a
tion sele
ted by the agent. Weuse an approa
h where the a
tion suggested by the supervi-sor is not dire
tly exe
uted by the agent, not even a mod-i�
ation of it. Instead, the a
tion is used to dynami
allygenerate a redu
ed set of 
urrent relevant a
tions. We 
allrelevant a
tions to those a
tions in the 
lose neighborhood



Figure 1: A supervised reinfor
ement learning ar-
hite
ture that uses a behavior modelof the a
tion suggested by the supervisor. This subset ofa
tions is then passed to the agent whi
h uses it to sele
tthe next greedy a
tion. The experiments performed showthat our algorithm 
an signi�
antly redu
e the amount oftraining episodes required to learn a di�
ult task.The rest of this paper is organized as follows. In Se
tion2 we explain the SRL ar
hite
ture and introdu
e the algo-rithm. Se
tion 3 
ontains the des
ription of our testbed.In Se
tion 4 we present the experimental results. Finally,in Se
tion 5 we 
on
lude the paper and mention our futurework.
2. SUPERVISED REINFORCEMENT

LEARNING

2.1 ArchitectureThe SRL ar
hite
ture, whi
h we have tested previouslywith Sarsa and Q-learning in [12℄, fo
uses on redu
ing theamount of exploration of the a
tion spa
e, by giving advi
eto the agent about what a
tions would be good to try, giventhe 
urrent state of the environment. Figure 1 illustratesthe main idea of having the standard RL agent intera
tingwith the environment, meanwhile a behavior model is usedto provide the agent with a subset of 
urrent relevant a
-tions. Su
h subset of a
tions in
ludes the a
tion suggestedby the behavior model, and its n 
losest neighbor a
tions.Noti
e that two di�erent a
tions are 
onsidered to be neigh-bors if they are expe
ted to produ
e similar results in theenvironment, when they are applied in similar states.Two are the key features in this ar
hite
ture: (1) it al-lows to 
onsiderably redu
e the amount of exploration ofthe a
tion spa
e, and (2) the supervisor does not need tobe a perfe
t tea
her with the possession of the optimal pol-i
y. Instead, its expertise is used to guide the agent throughrelevant parts of the a
tion spa
e and not expli
itly indi-
ating whi
h a
tion should be performed at ea
h moment.Given that the behavior model 
an be seen as a MultilayerPer
eptron (MLP), or any other Supervised Learning (SL)method, trained with a set of 
olle
ted examples, it will al-ways provide an a
tion, and therefore the subset of a
tions
an be generated. If the suggested a
tion is wrong, then theredu
ed a
tion set would probably be also wrong. In those
ases, the greedy a
tion sele
ted by the agent 
ould be sim-

ply seen as an exploratory a
tion. Of 
ourse, our behaviormodel is expe
ted to be as a

urate as possible. Under this
ondition, the agent will always have mu
h to win and noth-ing to lose.
2.2 AlgorithmThe whole learning pro
ess is divided in two phases. In the�rst phase, an expert is used to generate a set of examplesof the form st → at+1. That is, given the 
urrent state ofthe environment st, knowing whi
h is the a
tion at+1 thatour expert would perform in the next time step. Using su
hexamples and a SL method we build the behavior model.On
e we have built the behavior model, we pro
eed withthe se
ond learning phase.The se
ond learning phase is shown in Algorithm 1, whi
his a modi�ed version of the typi
al a
tor-
riti
 algorithmdes
ribed by Sutton and Barto [11℄. At ea
h state s thebehavior model is used to generate what we 
all the experta
tion ae. Su
h a
tion ae is 
onsidered to be a near optimala
tion and we use it to 
reate the set of 
urrent relevanta
tions As, where As ⊂ A. Su
h subset As is de�ned by theinterval (ae − B̂, ae + B̂), where B̂ spe
i�es how far fromthe expert a
tion ae we are willing to explore the a
tionspa
e. By doing so, the agent will always have to sele
t thegreedy a
tion from the set of most promising a
tions, whi
h
auses an improvement in the learning rate. The optimalsize of B̂ grows inversely proportional to the a

ura
y ofour behavior model. In other words, with more a

uratebehavior models, we need a smaller B̂. Noti
e that the set
As is used only to 
hoose the greedy a
tion. Random a
tionsare sele
ted from the whole set A. By doing so, we let theagent exploit the knowledge provided by the supervisor asmu
h as possible, at the same time that we allow it to explorethe whole a
tion spa
e looking for better a
tions that arebeyond the knowledge of the same supervisor.The �rst learning phase 
an be seen as a straightforwardappli
ation of SL. Meanwhile, the se
ond learning phase
ould be implemented using modi�ed versions of any RLalgorithm.
3. ROBOT DRIBBLING TASKIn the RoboCup simulation league, one of the most dif-�
ult skills that the robots 
an perform is dribbling. Drib-bling 
an be de�ned as the skill that allows a player to runon the �eld while keeping the ball always in its ki
k range. Inorder to a

omplish this skill, the player must alternate runand ki
k a
tions. The run a
tion is performed through theuse of the 
ommand (dash Power), while the ki
k a
tionis performed using the 
ommand (ki
k Power Direction),where Power ∈ [−100, 100] and Direction ∈ [−180, 180].Su
h 
ommands, belong to the set of basi
 
ommands pro-vided by the simulator.There are three fa
tors that make this skill a di�
ult oneto a

omplish. First, the simulator adds noise to the move-ment of obje
ts, and to the parameters of 
ommands. This isdone to simulate a noisy environment and make the 
ompe-tition more 
hallenging. Se
ond, sin
e the ball must remain
lose to the robot without 
ollisioning with it, and at thesame time it must be kept in the ki
k range, the marginfor error is small. And third, the most 
hallenging fa
tor,the use of heterogeneous players during 
ompetitions. Usingheterogeneous players means that for ea
h game the simu-lator generates seven di�erent player types at startup, and



Algorithm 1: Supervised A
tor-Criti
 Algorithminitialize the weights ve
tors of the A
tor and Criti
1 arbitrarilyforea
h training episode do2 initialize s3 take suggested a
tion ae from Behavior Model4 generate set (ae − B̂, ae + B̂)5 take greedy a
tion a ∈ (ae − B̂, ae + B̂)6 with probability ǫ 
hoose random a
tion a ∈ A7 repeat for ea
h step of episode8 perform a
tion a, observe r, s′9 TDError ← r + γCriti
(s′)− Criti
(s)10 TargetValue ← Criti
(s) + αTDError11 train Criti
 with example (s,TargetValue)12 if TDError > 0 then13 train A
tor with example (s, a)14 end15 take suggested a
tion a′

e from Behavior Model16 generate set (a′

e − B̂, a′

e + B̂)17 take greedy a
tion a′
∈ (a′

e − B̂, a′

e + B̂)18 with probability ǫ 
hoose random a
tion a′
∈ A19

s← s′, a← a′20 until s is terminal21 end22the eleven players of ea
h team are sele
ted from this set ofseven types. Given that ea
h player type has di�erent �phys-i
al� 
apa
ities, an optimal poli
y learned with one type ofplayer is simply suboptimal when followed by another playerof di�erent type. In theory, the number of player types isin�nite.Due to these three reasons, a good performan
e in thedribbling skill is very di�
ult to obtain. Up today, eventhe best teams perform only a redu
ed number of dribblingsequen
es during a game. Most of the time the ball is simplypassed from one player to another.
4. EXPERIMENTS AND RESULTSFor the �rst learning phase, we 
onstru
ted our dribblingbehavior model based on the Wright Eagle team, whi
h isa RoboCup team with highly developed skills. We 
olle
tedthe information of 500 games and with the help of somes
ripts, we extra
ted the sequen
es of the games where aplayer managed to dribble for at least 3 meters. On
e thatwe gathered the examples, we �ltered them using an appli-
ation developed spe
i�
ally to identify and eliminate in
or-re
t examples. The �nal set of 18,000 examples were used totrain 2 multilayer per
eptrons. One MLP learned to predi
tthe dash power and the other the ki
k power. The inputof both MLPs is the 
urrent state, seen as a 12-dimensionalve
tor. This ve
tor 
onsists of the following variables: playerde
ay, dash power rate, ki
kable margin, ki
k rand, ball po-sition x - player position x, ball position y - player positiony, ball velo
ity x - player velo
ity x, ball velo
ity y - playervelo
ity y, ball velo
ity x, ball velo
ity y, player velo
ity x,player velo
ity y. The �rst 4 variables are some of the pa-rameters that de�ne a type of player, and for this problem,they were the most useful during our experimentation. Theother 8 variables are needed to spe
ify the 
urrent physi
alstate of the ball and player. The output of the MLPs are

Figure 2: Di�erent stru
tures used to approximatethe value fun
tion. (a) Radial basis fun
tions. (b)Multilayer per
eptron with one layer of radial basisfun
tionsthe dash power and ki
k power respe
tively, and togetherformed the behavior model. These MLPs predi
t the powerof dashes and ki
ks with an error of 15 units. This error isbig enough to prevent us from using those MLPs to dire
tly
ontrol our agents. However, the knowledge en
apsulated inthem proved to be very useful when used as a supervisorysour
e of information.For the se
ond learning phase, we implemented a RL agentthat per
eives the 
urrent state of the environment using thesame input ve
tor used by the behavior model. Ea
h train-ing episode was initiated pla
ing the player in the 
enter ofthe �eld with the ball besides it, at a distan
e of 0.5 me-ters, both with velo
ity zero. The training episodes wereterminated either when the robot ki
ked the ball away fromits ki
k margin, or when 35 a
tions were performed. Thereward fun
tion gives always the s
alar value resulting fromthe 
al
ulation of: 0.25(player position x + ball position x +player velo
ity x + ball velo
ity x ). There is also a punish-ment of −100 everytime the player loses the ball or whenthere is a 
ollision with it. The learning parameters were:
ǫ = 0.3, α = 0.01 and γ = 0.5. A key design point when wework with reinfor
ement learning in 
ontinuous spa
es is thestru
ture used to approximate the value fun
tion. In our ex-perimental work we employed two di�erent stru
tures: (1)an array of radial basis fun
tions, and (2) a multilayer per-
eptron enhan
ed with one layer of radial basis fun
tions.Su
h stru
tures whi
h are a linear and a non-linear fun
tionapproximator respe
tively, are illustrated in Fig. 2.Figure 3 shows the learning 
urves of the a
tor-
riti
 algo-rithm using radial basis fun
tions to approximate the valuefun
tion, and 2 di�erent implementations of the SRL algo-rithm, for di�erent sizes of the relevant a
tions set As. The
urves represent moving averages of size 1,000 that were av-eraged over 10 runs. From these results we 
an see thatthe supervised a
tor-
riti
 method is 
learly superior to thepure a
tor-
riti
 version, when we use B̂ = 15. Howeverwhen we use B̂ = 10, the resulting learning 
urve is worsethan that obtained with the pure a
tor-
riti
 algorithm. Thereason for this is simple. We are redu
ing the explorationspa
e mu
h more than we should do, given the a

ura
y
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Figure 4: Learning 
urves of the A
tor-Criti
 andthe Supervised A
tor-Criti
 algorithms using multi-layer per
eptrons with one layer of radial basis fun
-tionsof our behavior model. The typi
al a
tor-
riti
 algorithmhas a performan
e of 2 meters, after training for 100,000episodes. Meanwhile, the best SRL algorithm, has a perfor-man
e slightly under 5 meters.In Fig. 4 we 
an see the learning 
urves of the same threealgorithms, but using instead the non-linear value fun
tion.It is 
lear that the supervised a
tor-
riti
 algorithm has alsoa mu
h better performan
e than the typi
al a
tor-
riti
 al-gorithm. Besides, we 
an see that the result with the sim-ple a
tor-
riti
 method is slightly better than that obtainedwith the linear value fun
tion in Fig. 3. We 
an also see thatthe performan
e of the supervised algorithm with B̂ = 15is better than that obtained using a linear value fun
tion.Finally, when we 
he
k the performan
e of the supervisedalgorithm with B̂ = 10, something interesting o

urs, thelearning 
urve is identi
al to the 
urve obtained with thenon-linear value fun
tion and B̂ = 15. In this 
ase, thelearning rate was not a�e
ted by the redu
tion of B̂, as ithappened when we used the linear fun
tion approximator.This di�eren
e is due to a better ability of the non-linearfun
tion approximator to generalize, whi
h makes it morerobust to 
hanges in B̂ than a linear fun
tion approximator.
5. CONCLUSION AND FUTURE WORK

We have presented one algorithm to implement super-vised a
tor-
riti
 learning. In our algorithm, behavior mod-els previously learned from examples, are used to dynami-
ally generate subsets of relevant a
tions at ea
h moment.Using these subsets of a
tions, the agent 
an a

elerate itslearning rate. Performan
es obtained after 100,000 trainingepisodes are better when we use the supervised version ofthe a
tor-
riti
 algorithm, being more robust when the non-linear fun
tion approximator is used to represent the valuefun
tion. We tested our algorithms with the robot drib-bling problem, in the framework of the RoboCup simulationleague. Su
h problem involves 
ontinuous state and a
tionspa
es with high dimensionality. Our future work will 
on-sider the use of eligibility tra
es and options, as a way toimprove the �nal performan
es.A
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