Autonomous Agent Learning using an Actor-Critic
Algorithm and Behavior Models

(Short Paper)

Victor Uc Cetina
Department of Computer Science
Humboldt University of Berlin
Unter den Linden 6, 10099 Berlin, Germany

cetina@informatik.hu-berlin.de

ABSTRACT

We introduce a Supervised Reinforcement Learning (SRL)
algorithm for autonomous learning problems where an agent
is required to deal with high dimensional spaces. In our
learning algorithm, behavior models learned from a set of
examples; are used to dynamically reduce the set of rele-
vant actions at each state of the environment encountered
by the agent. Such subsets of actions are used to guide the
agent through promising parts of the action space, avoiding
the selection of useless actions. The algorithm handles con-
tinuous states and actions. Our experimental work with a
difficult robot learning task shows clearly how this approach
can significantly speed up the learning process and improve
the final performance.

Categories and Subject Descriptors

1.2.6 [Computing Methodologies|: Artificial Intelligence—

learning

General Terms

Algorithms, Experimentation

Keywords

reinforcement learning, behavior model, actor-critic

1. INTRODUCTION

The idea of supervision or advice giving was first proposed
in 1958 by McCarthy [9]. More recently, Clouse and Utgoff
[5] presented an online method of SRL. With this method, a
human teacher monitors the agent’s progress. If the teacher
determines that the agent is not performing well, the teacher
takes control and offers advice in the form of an action that is
executed at that time. Then, the agent learns from such ad-
vice by reinforcing the tendency to choose the action recom-
mended and performed by the teacher. Another attempt to
accelerate the learning process was the one proposed by Lin
[6]. He introduced a very effective way to speed up the Re-
inforcement Learning (RL) process through the replaying of

Cite as: Autonomous Agent Learning using an Actor-Critic Algorithm

and Behavior Models (Short Paper), Victor Uc Cetiftapc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-

MAS 2008), Padgham, Parkes, Miiller and Parsons (eds.), May, 12-16.,

2008, Estoril, Portugal, p.353-1356.

Copyright@ 2008, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights resetve

experiences. The advice-giver provides complete sequences
of states and actions s, @41, St+1, Gtt2,... that the agent
replays internally many times. By doing so backwards, the
learning process is further accelerated. Maclin and Shavlik
[7, 8] approached the advice giving problem in a different
way, by using connectionist Q-learning. The advice-giver
watches the learner and occasionally makes suggestions, ex-
pressed as instructions in a simple programming language.
Using knowledge-based neural networks, those programs are
included into the agent’s utility function. Later, Rosenstein
and Barto [10] proposed a combination of supervised learn-
ing with and actor-critic architecture. They used a super-
vised learning method to include the knowledge provided by
a human supervisor into the actor-critic learning process. A
composite actor is formed with the actor, a supervisor and
a gain scheduler. The action executed at each moment is
the result of a linear combination of the actions provided by
the actor and the supervisor. Abbeel and Ng [1, 2] studied
the use of an expert in order to learn to perform a task in
situations where the reward function is not provided or it is
difficult to design. The main idea consists of using inverse
reinforcement learning to try to obtain the unknown reward
function which is supposed to be implicit in the expert’s be-
havior. Their method manages to get performances close to
that of the expert. Moreover, Atkeson and Schaal [3] used
human demonstrations to have a robot learn to perform a
task. First, they learn from the demonstrations a reward
function and a task model. Then, based on the learned
reward function and task model, they compute a policy.
Finally, another work that is worth to mention is that by
Carpenter et al [4], who approached the problem of how to
handle advice from several sources and also how to solve
conflicting advices. Due to space constraints we can only
mention those approaches more similar to ours.

All of the works mentioned above have one thing in com-
mon, the fact that the supervisor provides one action or
sequences of actions which should be directly performed by
the agent in order to learn from the expert. One exception
is the method proposed by Rosenstein and Barto[10], where
the action executed is a combination of the action suggested
by the supervisor and the action selected by the agent. We
use an approach where the action suggested by the supervi-
sor is not directly executed by the agent, not even a mod-
ification of it. Instead, the action is used to dynamically
generate a reduced set of current relevant actions. We call
relevant actions to those actions in the close neighborhood



Environment

Reward - Action

Reinforcement
Learning
Agent

\

State

Subset of current
relevant actions

Behavior
Model

(Supervisor)

\

Figure 1: A supervised reinforcement learning ar-
chitecture that uses a behavior model

of the action suggested by the supervisor. This subset of
actions is then passed to the agent which uses it to select
the next greedy action. The experiments performed show
that our algorithm can significantly reduce the amount of
training episodes required to learn a difficult task.

The rest of this paper is organized as follows. In Section
2 we explain the SRL architecture and introduce the algo-
rithm. Section 3 contains the description of our testbed.
In Section 4 we present the experimental results. Finally,
in Section 5 we conclude the paper and mention our future
work.

2. SUPERVISED REINFORCEMENT
LEARNING

2.1 Architecture

The SRL architecture, which we have tested previously
with Sarsa and Q-learning in [12], focuses on reducing the
amount of exploration of the action space, by giving advice
to the agent about what actions would be good to try, given
the current state of the environment. Figure 1 illustrates
the main idea of having the standard RL agent interacting
with the environment, meanwhile a behavior model is used
to provide the agent with a subset of current relevant ac-
tions. Such subset of actions includes the action suggested
by the behavior model, and its n closest neighbor actions.
Notice that two different actions are considered to be neigh-
bors if they are expected to produce similar results in the
environment, when they are applied in similar states.

Two are the key features in this architecture: (1) it al-
lows to considerably reduce the amount of exploration of
the action space, and (2) the supervisor does not need to
be a perfect teacher with the possession of the optimal pol-
icy. Instead, its expertise is used to guide the agent through
relevant parts of the action space and not explicitly indi-
cating which action should be performed at each moment.
Given that the behavior model can be seen as a Multilayer
Perceptron (MLP), or any other Supervised Learning (SL)
method, trained with a set of collected examples, it will al-
ways provide an action, and therefore the subset of actions
can be generated. If the suggested action is wrong, then the
reduced action set would probably be also wrong. In those
cases, the greedy action selected by the agent could be sim-

ply seen as an exploratory action. Of course, our behavior
model is expected to be as accurate as possible. Under this
condition, the agent will always have much to win and noth-
ing to lose.

2.2 Algorithm

The whole learning process is divided in two phases. In the
first phase, an expert is used to generate a set of examples
of the form s; — at4+1. That is, given the current state of
the environment s;, knowing which is the action a¢+1 that
our expert would perform in the next time step. Using such
examples and a SL method we build the behavior model.
Once we have built the behavior model, we proceed with
the second learning phase.

The second learning phase is shown in Algorithm 1, which
is a modified version of the typical actor-critic algorithm
described by Sutton and Barto [11]. At each state s the
behavior model is used to generate what we call the expert
action a.. Such action a. is considered to be a near optimal
action and we use it to create the set of current relevant
actions As, wheAre Ag CAA. Such su})set As is defined by the
interval (ae — B,ae + B), where B specifies how far from
the expert action a. we are willing to explore the action
space. By doing so, the agent will always have to select the
greedy action from the set of most promising actions, which
causes an improvement in the learning rate. The optimal
size of B grows inversely proportional to the accuracy of
our behavior model. In other words, with more accurate
behavior models, we need a smaller B. Notice that the set
A, is used only to choose the greedy action. Random actions
are selected from the whole set A. By doing so, we let the
agent exploit the knowledge provided by the supervisor as
much as possible, at the same time that we allow it to explore
the whole action space looking for better actions that are
beyond the knowledge of the same supervisor.

The first learning phase can be seen as a straightforward
application of SL. Meanwhile, the second learning phase
could be implemented using modified versions of any RL
algorithm.

3. ROBOT DRIBBLING TASK

In the RoboCup simulation league, one of the most dif-
ficult skills that the robots can perform is dribbling. Drib-
bling can be defined as the skill that allows a player to run
on the field while keeping the ball always in its kick range. In
order to accomplish this skill, the player must alternate run
and kick actions. The run action is performed through the
use of the command (dash Power), while the kick action
is performed using the command (kick Power Direction),
where Power € [—100,100] and Direction € [—180,180].
Such commands, belong to the set of basic commands pro-
vided by the simulator.

There are three factors that make this skill a difficult one
to accomplish. First, the simulator adds noise to the move-
ment of objects, and to the parameters of commands. This is
done to simulate a noisy environment and make the compe-
tition more challenging. Second, since the ball must remain
close to the robot without collisioning with it, and at the
same time it must be kept in the kick range, the margin
for error is small. And third, the most challenging factor,
the use of heterogeneous players during competitions. Using
heterogeneous players means that for each game the simu-
lator generates seven different player types at startup, and



Algorithm 1: Supervised Actor-Critic Algorithm

[y

initialize the weights vectors of the Actor and Critic
arbitrarily
foreach training episode do

2
3 initialize s
4 take suggested action ae from Behavior Model
5 generate set (ae — 37 Qe + B)
6 take greedy action a € (ae — 37 Qe + B)
7 with probability € choose random action a € A
8 repeat for each step of episode
9 perform action a, observe r, s’
10 TDError « r + vCritic(s’) — Critic(s)
11 Target Value «— Critic(s) + aTDError
12 train Critic with example (s, Target Value)
13 if TDError > 0 then
14 | train Actor with example (s, a)
15 end
16 take suggested action al from Behavior Model
17 generate set (a, — B, al, + B)
18 take greedy action a’ € (a, — B, a. + B)
19 with probability € choose random action a’ € A
20 s« s, a+<ad
21 until s is terminal
22 end

the eleven players of each team are selected from this set of
seven types. Given that each player type has different “phys-
ical” capacities, an optimal policy learned with one type of
player is simply suboptimal when followed by another player
of different type. In theory, the number of player types is
infinite.

Due to these three reasons, a good performance in the
dribbling skill is very difficult to obtain. Up today, even
the best teams perform only a reduced number of dribbling
sequences during a game. Most of the time the ball is simply
passed from one player to another.

4. EXPERIMENTSAND RESULTS

For the first learning phase, we constructed our dribbling
behavior model based on the Wright Eagle team, which is
a RoboCup team with highly developed skills. We collected
the information of 500 games and with the help of some
scripts, we extracted the sequences of the games where a
player managed to dribble for at least 3 meters. Once that
we gathered the examples, we filtered them using an appli-
cation developed specifically to identify and eliminate incor-
rect examples. The final set of 18,000 examples were used to
train 2 multilayer perceptrons. One MLP learned to predict
the dash power and the other the kick power. The input
of both MLPs is the current state, seen as a 12-dimensional
vector. This vector consists of the following variables: player
decay, dash power rate, kickable margin, kick rand, ball po-
sitton © - player position z, ball position y - player position
y, ball velocity = - player velocity z, ball velocity y - player
velocity y, ball velocity z, ball velocity y, player velocity z,
player velocity y. The first 4 variables are some of the pa-
rameters that define a type of player, and for this problem,
they were the most useful during our experimentation. The
other 8 variables are needed to specify the current physical
state of the ball and player. The output of the MLPs are

one output unit

k RBFs

m input units

b) »

one output unit

n hidden units

Figure 2: Different structures used to approximate
the value function. (a) Radial basis functions. (b)
Multilayer perceptron with one layer of radial basis
functions

the dash power and kick power respectively, and together
formed the behavior model. These MLPs predict the power
of dashes and kicks with an error of 15 units. This error is
big enough to prevent us from using those MLPs to directly
control our agents. However, the knowledge encapsulated in
them proved to be very useful when used as a supervisory
source of information.

For the second learning phase, we implemented a RL agent
that perceives the current state of the environment using the
same input vector used by the behavior model. Each train-
ing episode was initiated placing the player in the center of
the field with the ball besides it, at a distance of 0.5 me-
ters, both with velocity zero. The training episodes were
terminated either when the robot kicked the ball away from
its kick margin, or when 35 actions were performed. The
reward function gives always the scalar value resulting from
the calculation of: 0.25(player position z + ball position z +
player velocity © + ball velocity z). There is also a punish-
ment of —100 everytime the player loses the ball or when
there is a collision with it. The learning parameters were:
€ =0.3, « =0.01 and 7 = 0.5. A key design point when we
work with reinforcement learning in continuous spaces is the
structure used to approximate the value function. In our ex-
perimental work we employed two different structures: (1)
an array of radial basis functions, and (2) a multilayer per-
ceptron enhanced with one layer of radial basis functions.
Such structures which are a linear and a non-linear function
approximator respectively, are illustrated in Fig. 2.

Figure 3 shows the learning curves of the actor-critic algo-
rithm using radial basis functions to approximate the value
function, and 2 different implementations of the SRL algo-
rithm, for different sizes of the relevant actions set As. The
curves represent moving averages of size 1,000 that were av-
eraged over 10 runs. From these results we can see that
the supervised actor-critic method is clearly superior to the
pure actor-critic version, when we use B = 15. However
when we use B = 10, the resulting learning curve is worse
than that obtained with the pure actor-critic algorithm. The
reason for this is simple. We are reducing the exploration
space much more than we should do, given the accuracy



86— r—— 71— 8

— AC with RBFs
<< SAC 15 with RBF$
0-0 SAC 10 with RBF§

Meters
S
T
L
S

0 L 1 L 1 L 1 L 1 L 0
0 20k 40 k 60 k 80k 100 k

Training episodes

Figure 3: Learning curves of the Actor-Critic and
the Supervised Actor-Critic algorithms using radial
basis functions

8 " " T " T " T " 8

— AC with MLPs-RBFs
<O~ SAC 15 with MLPs-RBFs
0-0 SAC 10 with MLPs-RBFs

Meters

0 L 1 L 1 L 1 L 1 L 0
0 20k 40 k 60 k 80k 100 k

Training episodes

Figure 4: Learning curves of the Actor-Critic and
the Supervised Actor-Critic algorithms using multi-
layer perceptrons with one layer of radial basis func-
tions

of our behavior model. The typical actor-critic algorithm
has a performance of 2 meters, after training for 100,000
episodes. Meanwhile; the best SRL algorithm, has a perfor-
mance slightly under 5 meters.

In Fig. 4 we can see the learning curves of the same three
algorithms, but using instead the non-linear value function.
It is clear that the supervised actor-critic algorithm has also
a much better performance than the typical actor-critic al-
gorithm. Besides, we can see that the result with the sim-
ple actor-critic method is slightly better than that obtained
with the linear value function in Fig. 3. We can also see that
the performance of the supervised algorithm with B =15
is better than that obtained using a linear value function.
Finally, when we check the performance of the supervised
algorithm with B =10, something interesting occurs, the
learning curve is identical to the curve obtained with the
non-linear value function and B = 15. In this case, the
learning rate was not affected by the reduction of B, as it
happened when we used the linear function approximator.
This difference is due to a better ability of the non-linear
function approximator to generalize, which makes it more
robust to changes in B than a linear function approximator.

5. CONCLUSION AND FUTURE WORK

We have presented one algorithm to implement super-
vised actor-critic learning. In our algorithm, behavior mod-
els previously learned from examples, are used to dynami-
cally generate subsets of relevant actions at each moment.
Using these subsets of actions, the agent can accelerate its
learning rate. Performances obtained after 100,000 training
episodes are better when we use the supervised version of
the actor-critic algorithm, being more robust when the non-
linear function approximator is used to represent the value
function. We tested our algorithms with the robot drib-
bling problem; in the framework of the RoboCup simulation
league. Such problem involves continuous state and action
spaces with high dimensionality. Our future work will con-
sider the use of eligibility traces and options, as a way to
improve the final performances.

Acknowledgements This research work was supported by
a PROMEP scholarship from the Education Secretariat of
Mexico (SEP), and Universidad Auténoma de Yucatan.

6. REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the
21st International Conference on Machine Learning,
2004.

[2] P. Abbeel and A. Y. Ng. Exploration and
apprenticeship learning in reinforcement learning. In
Proceedings of the 22nd International Conference on
Machine Learning, 2005.

[3] C. Atkeson and S. Schaal. Robot learning from
demonstration. In Proceedings of the Fourteenth
International Conference on Machine Learning, 1997.

[4] P. V. M. Carpenter P., Riley and G. Kaminka.
Integration of advice in an action-selection
architecture. RoboCup 2002: Robot Soccer World Cup
VI. Lecture Notes in Computer Science, 2003.

[5] J. A. Clouse and P. E. Utgoft. A teaching method for
reinforcement learning. In Proceedings of the Ninth
International Workshop on Machine Learning, 1992.

[6] L.-J. Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching.
Machine Learning, (8):293 321, 1992.

[7] R. Maclin and J. W. Shavlik. Incorporating advice
into agents that learn from reinforcements. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, 1994.

[8] R. Maclin and J. W. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning,
(22):251-282, 1996.

[9] J. McCarthy. Programs with common sense. In
Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, 1958.

[10] M. T. Rosenstein and A. G. Barto. Supervised
actor-critic reinforcement learning. In Learning and
Approzimate Dynamic Programming: Scaling Up to
the Real World. John Wiley & Sons, 2004.

[11] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[12] V. Uc-Cetina. Supervised reinforcement learning using
behavior models. In Proceedings of the 6th
International Conference on Machine Learning and
Applications, 2007.





