
Autonomous Agent Learning using an Actor-Critic
Algorithm and Behavior Models

(Short Paper)

Victor Uc Cetina
Department of Computer Science

Humboldt University of Berlin
Unter den Linden 6, 10099 Berlin, Germany

cetina@informatik.hu-berlin.de

ABSTRACTWe introdue a Supervised Reinforement Learning (SRL)algorithm for autonomous learning problems where an agentis required to deal with high dimensional spaes. In ourlearning algorithm, behavior models learned from a set ofexamples, are used to dynamially redue the set of rele-vant ations at eah state of the environment enounteredby the agent. Suh subsets of ations are used to guide theagent through promising parts of the ation spae, avoidingthe seletion of useless ations. The algorithm handles on-tinuous states and ations. Our experimental work with adi�ult robot learning task shows learly how this approahan signi�antly speed up the learning proess and improvethe �nal performane.
Categories and Subject DescriptorsI.2.6 [Computing Methodologies℄: Arti�ial Intelligene�learning
General TermsAlgorithms, Experimentation
Keywordsreinforement learning, behavior model, ator-riti
1. INTRODUCTIONThe idea of supervision or advie giving was �rst proposedin 1958 by MCarthy [9℄. More reently, Clouse and Utgo�[5℄ presented an online method of SRL. With this method, ahuman teaher monitors the agent's progress. If the teaherdetermines that the agent is not performing well, the teahertakes ontrol and o�ers advie in the form of an ation that isexeuted at that time. Then, the agent learns from suh ad-vie by reinforing the tendeny to hoose the ation reom-mended and performed by the teaher. Another attempt toaelerate the learning proess was the one proposed by Lin[6℄. He introdued a very e�etive way to speed up the Re-inforement Learning (RL) proess through the replaying ofCite as: Autonomous Agent Learning using an Actor-Critic Algorithm
and Behavior Models (Short Paper), Victor Uc Cetina,Pro. of 7th Int.Conf. on Autonomous Agents and Multiagent Systems (AA-MAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16.,
2008, Estoril, Portugal, pp.1353-1356..
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

experienes. The advie-giver provides omplete sequenesof states and ations st, at+1, st+1, at+2, . . . that the agentreplays internally many times. By doing so bakwards, thelearning proess is further aelerated. Malin and Shavlik[7, 8℄ approahed the advie giving problem in a di�erentway, by using onnetionist Q-learning. The advie-giverwathes the learner and oasionally makes suggestions, ex-pressed as instrutions in a simple programming language.Using knowledge-based neural networks, those programs areinluded into the agent's utility funtion. Later, Rosensteinand Barto [10℄ proposed a ombination of supervised learn-ing with and ator-riti arhiteture. They used a super-vised learning method to inlude the knowledge provided bya human supervisor into the ator-riti learning proess. Aomposite ator is formed with the ator, a supervisor anda gain sheduler. The ation exeuted at eah moment isthe result of a linear ombination of the ations provided bythe ator and the supervisor. Abbeel and Ng [1, 2℄ studiedthe use of an expert in order to learn to perform a task insituations where the reward funtion is not provided or it isdi�ult to design. The main idea onsists of using inversereinforement learning to try to obtain the unknown rewardfuntion whih is supposed to be impliit in the expert's be-havior. Their method manages to get performanes lose tothat of the expert. Moreover, Atkeson and Shaal [3℄ usedhuman demonstrations to have a robot learn to perform atask. First, they learn from the demonstrations a rewardfuntion and a task model. Then, based on the learnedreward funtion and task model, they ompute a poliy.Finally, another work that is worth to mention is that byCarpenter et al [4℄, who approahed the problem of how tohandle advie from several soures and also how to solveon�iting advies. Due to spae onstraints we an onlymention those approahes more similar to ours.All of the works mentioned above have one thing in om-mon, the fat that the supervisor provides one ation orsequenes of ations whih should be diretly performed bythe agent in order to learn from the expert. One exeptionis the method proposed by Rosenstein and Barto[10℄, wherethe ation exeuted is a ombination of the ation suggestedby the supervisor and the ation seleted by the agent. Weuse an approah where the ation suggested by the supervi-sor is not diretly exeuted by the agent, not even a mod-i�ation of it. Instead, the ation is used to dynamiallygenerate a redued set of urrent relevant ations. We allrelevant ations to those ations in the lose neighborhood



Figure 1: A supervised reinforement learning ar-hiteture that uses a behavior modelof the ation suggested by the supervisor. This subset ofations is then passed to the agent whih uses it to seletthe next greedy ation. The experiments performed showthat our algorithm an signi�antly redue the amount oftraining episodes required to learn a di�ult task.The rest of this paper is organized as follows. In Setion2 we explain the SRL arhiteture and introdue the algo-rithm. Setion 3 ontains the desription of our testbed.In Setion 4 we present the experimental results. Finally,in Setion 5 we onlude the paper and mention our futurework.
2. SUPERVISED REINFORCEMENT

LEARNING

2.1 ArchitectureThe SRL arhiteture, whih we have tested previouslywith Sarsa and Q-learning in [12℄, fouses on reduing theamount of exploration of the ation spae, by giving advieto the agent about what ations would be good to try, giventhe urrent state of the environment. Figure 1 illustratesthe main idea of having the standard RL agent interatingwith the environment, meanwhile a behavior model is usedto provide the agent with a subset of urrent relevant a-tions. Suh subset of ations inludes the ation suggestedby the behavior model, and its n losest neighbor ations.Notie that two di�erent ations are onsidered to be neigh-bors if they are expeted to produe similar results in theenvironment, when they are applied in similar states.Two are the key features in this arhiteture: (1) it al-lows to onsiderably redue the amount of exploration ofthe ation spae, and (2) the supervisor does not need tobe a perfet teaher with the possession of the optimal pol-iy. Instead, its expertise is used to guide the agent throughrelevant parts of the ation spae and not expliitly indi-ating whih ation should be performed at eah moment.Given that the behavior model an be seen as a MultilayerPereptron (MLP), or any other Supervised Learning (SL)method, trained with a set of olleted examples, it will al-ways provide an ation, and therefore the subset of ationsan be generated. If the suggested ation is wrong, then theredued ation set would probably be also wrong. In thoseases, the greedy ation seleted by the agent ould be sim-

ply seen as an exploratory ation. Of ourse, our behaviormodel is expeted to be as aurate as possible. Under thisondition, the agent will always have muh to win and noth-ing to lose.
2.2 AlgorithmThe whole learning proess is divided in two phases. In the�rst phase, an expert is used to generate a set of examplesof the form st → at+1. That is, given the urrent state ofthe environment st, knowing whih is the ation at+1 thatour expert would perform in the next time step. Using suhexamples and a SL method we build the behavior model.One we have built the behavior model, we proeed withthe seond learning phase.The seond learning phase is shown in Algorithm 1, whihis a modi�ed version of the typial ator-riti algorithmdesribed by Sutton and Barto [11℄. At eah state s thebehavior model is used to generate what we all the expertation ae. Suh ation ae is onsidered to be a near optimalation and we use it to reate the set of urrent relevantations As, where As ⊂ A. Suh subset As is de�ned by theinterval (ae − B̂, ae + B̂), where B̂ spei�es how far fromthe expert ation ae we are willing to explore the ationspae. By doing so, the agent will always have to selet thegreedy ation from the set of most promising ations, whihauses an improvement in the learning rate. The optimalsize of B̂ grows inversely proportional to the auray ofour behavior model. In other words, with more auratebehavior models, we need a smaller B̂. Notie that the set
As is used only to hoose the greedy ation. Random ationsare seleted from the whole set A. By doing so, we let theagent exploit the knowledge provided by the supervisor asmuh as possible, at the same time that we allow it to explorethe whole ation spae looking for better ations that arebeyond the knowledge of the same supervisor.The �rst learning phase an be seen as a straightforwardappliation of SL. Meanwhile, the seond learning phaseould be implemented using modi�ed versions of any RLalgorithm.
3. ROBOT DRIBBLING TASKIn the RoboCup simulation league, one of the most dif-�ult skills that the robots an perform is dribbling. Drib-bling an be de�ned as the skill that allows a player to runon the �eld while keeping the ball always in its kik range. Inorder to aomplish this skill, the player must alternate runand kik ations. The run ation is performed through theuse of the ommand (dash Power), while the kik ationis performed using the ommand (kik Power Direction),where Power ∈ [−100, 100] and Direction ∈ [−180, 180].Suh ommands, belong to the set of basi ommands pro-vided by the simulator.There are three fators that make this skill a di�ult oneto aomplish. First, the simulator adds noise to the move-ment of objets, and to the parameters of ommands. This isdone to simulate a noisy environment and make the ompe-tition more hallenging. Seond, sine the ball must remainlose to the robot without ollisioning with it, and at thesame time it must be kept in the kik range, the marginfor error is small. And third, the most hallenging fator,the use of heterogeneous players during ompetitions. Usingheterogeneous players means that for eah game the simu-lator generates seven di�erent player types at startup, and



Algorithm 1: Supervised Ator-Criti Algorithminitialize the weights vetors of the Ator and Criti1 arbitrarilyforeah training episode do2 initialize s3 take suggested ation ae from Behavior Model4 generate set (ae − B̂, ae + B̂)5 take greedy ation a ∈ (ae − B̂, ae + B̂)6 with probability ǫ hoose random ation a ∈ A7 repeat for eah step of episode8 perform ation a, observe r, s′9 TDError ← r + γCriti(s′)− Criti(s)10 TargetValue ← Criti(s) + αTDError11 train Criti with example (s,TargetValue)12 if TDError > 0 then13 train Ator with example (s, a)14 end15 take suggested ation a′

e from Behavior Model16 generate set (a′

e − B̂, a′

e + B̂)17 take greedy ation a′
∈ (a′

e − B̂, a′

e + B̂)18 with probability ǫ hoose random ation a′
∈ A19

s← s′, a← a′20 until s is terminal21 end22the eleven players of eah team are seleted from this set ofseven types. Given that eah player type has di�erent �phys-ial� apaities, an optimal poliy learned with one type ofplayer is simply suboptimal when followed by another playerof di�erent type. In theory, the number of player types isin�nite.Due to these three reasons, a good performane in thedribbling skill is very di�ult to obtain. Up today, eventhe best teams perform only a redued number of dribblingsequenes during a game. Most of the time the ball is simplypassed from one player to another.
4. EXPERIMENTS AND RESULTSFor the �rst learning phase, we onstruted our dribblingbehavior model based on the Wright Eagle team, whih isa RoboCup team with highly developed skills. We olletedthe information of 500 games and with the help of somesripts, we extrated the sequenes of the games where aplayer managed to dribble for at least 3 meters. One thatwe gathered the examples, we �ltered them using an appli-ation developed spei�ally to identify and eliminate inor-ret examples. The �nal set of 18,000 examples were used totrain 2 multilayer pereptrons. One MLP learned to preditthe dash power and the other the kik power. The inputof both MLPs is the urrent state, seen as a 12-dimensionalvetor. This vetor onsists of the following variables: playerdeay, dash power rate, kikable margin, kik rand, ball po-sition x - player position x, ball position y - player positiony, ball veloity x - player veloity x, ball veloity y - playerveloity y, ball veloity x, ball veloity y, player veloity x,player veloity y. The �rst 4 variables are some of the pa-rameters that de�ne a type of player, and for this problem,they were the most useful during our experimentation. Theother 8 variables are needed to speify the urrent physialstate of the ball and player. The output of the MLPs are

Figure 2: Di�erent strutures used to approximatethe value funtion. (a) Radial basis funtions. (b)Multilayer pereptron with one layer of radial basisfuntionsthe dash power and kik power respetively, and togetherformed the behavior model. These MLPs predit the powerof dashes and kiks with an error of 15 units. This error isbig enough to prevent us from using those MLPs to diretlyontrol our agents. However, the knowledge enapsulated inthem proved to be very useful when used as a supervisorysoure of information.For the seond learning phase, we implemented a RL agentthat pereives the urrent state of the environment using thesame input vetor used by the behavior model. Eah train-ing episode was initiated plaing the player in the enter ofthe �eld with the ball besides it, at a distane of 0.5 me-ters, both with veloity zero. The training episodes wereterminated either when the robot kiked the ball away fromits kik margin, or when 35 ations were performed. Thereward funtion gives always the salar value resulting fromthe alulation of: 0.25(player position x + ball position x +player veloity x + ball veloity x ). There is also a punish-ment of −100 everytime the player loses the ball or whenthere is a ollision with it. The learning parameters were:
ǫ = 0.3, α = 0.01 and γ = 0.5. A key design point when wework with reinforement learning in ontinuous spaes is thestruture used to approximate the value funtion. In our ex-perimental work we employed two di�erent strutures: (1)an array of radial basis funtions, and (2) a multilayer per-eptron enhaned with one layer of radial basis funtions.Suh strutures whih are a linear and a non-linear funtionapproximator respetively, are illustrated in Fig. 2.Figure 3 shows the learning urves of the ator-riti algo-rithm using radial basis funtions to approximate the valuefuntion, and 2 di�erent implementations of the SRL algo-rithm, for di�erent sizes of the relevant ations set As. Theurves represent moving averages of size 1,000 that were av-eraged over 10 runs. From these results we an see thatthe supervised ator-riti method is learly superior to thepure ator-riti version, when we use B̂ = 15. Howeverwhen we use B̂ = 10, the resulting learning urve is worsethan that obtained with the pure ator-riti algorithm. Thereason for this is simple. We are reduing the explorationspae muh more than we should do, given the auray



0 20 k 40 k 60 k 80 k 100 k

Training episodes

0 0

2 2

4 4

6 6

8 8

M
et

er
s

AC with RBFs
SAC 15 with RBFs
SAC 10 with RBFs

Figure 3: Learning urves of the Ator-Criti andthe Supervised Ator-Criti algorithms using radialbasis funtions
0 20 k 40 k 60 k 80 k 100 k

Training episodes

0 0

2 2

4 4

6 6

8 8

M
et

er
s

AC with MLPs-RBFs
SAC 15 with MLPs-RBFs
SAC 10 with MLPs-RBFs

Figure 4: Learning urves of the Ator-Criti andthe Supervised Ator-Criti algorithms using multi-layer pereptrons with one layer of radial basis fun-tionsof our behavior model. The typial ator-riti algorithmhas a performane of 2 meters, after training for 100,000episodes. Meanwhile, the best SRL algorithm, has a perfor-mane slightly under 5 meters.In Fig. 4 we an see the learning urves of the same threealgorithms, but using instead the non-linear value funtion.It is lear that the supervised ator-riti algorithm has alsoa muh better performane than the typial ator-riti al-gorithm. Besides, we an see that the result with the sim-ple ator-riti method is slightly better than that obtainedwith the linear value funtion in Fig. 3. We an also see thatthe performane of the supervised algorithm with B̂ = 15is better than that obtained using a linear value funtion.Finally, when we hek the performane of the supervisedalgorithm with B̂ = 10, something interesting ours, thelearning urve is idential to the urve obtained with thenon-linear value funtion and B̂ = 15. In this ase, thelearning rate was not a�eted by the redution of B̂, as ithappened when we used the linear funtion approximator.This di�erene is due to a better ability of the non-linearfuntion approximator to generalize, whih makes it morerobust to hanges in B̂ than a linear funtion approximator.
5. CONCLUSION AND FUTURE WORK

We have presented one algorithm to implement super-vised ator-riti learning. In our algorithm, behavior mod-els previously learned from examples, are used to dynami-ally generate subsets of relevant ations at eah moment.Using these subsets of ations, the agent an aelerate itslearning rate. Performanes obtained after 100,000 trainingepisodes are better when we use the supervised version ofthe ator-riti algorithm, being more robust when the non-linear funtion approximator is used to represent the valuefuntion. We tested our algorithms with the robot drib-bling problem, in the framework of the RoboCup simulationleague. Suh problem involves ontinuous state and ationspaes with high dimensionality. Our future work will on-sider the use of eligibility traes and options, as a way toimprove the �nal performanes.Aknowledgements This researh work was supported bya PROMEP sholarship from the Eduation Seretariat ofMexio (SEP), and Universidad Autónoma de Yuatán.
6. REFERENCES[1℄ P. Abbeel and A. Y. Ng. Apprentieship learning viainverse reinforement learning. In Proeedings of the21st International Conferene on Mahine Learning,2004.[2℄ P. Abbeel and A. Y. Ng. Exploration andapprentieship learning in reinforement learning. InProeedings of the 22nd International Conferene onMahine Learning, 2005.[3℄ C. Atkeson and S. Shaal. Robot learning fromdemonstration. In Proeedings of the FourteenthInternational Conferene on Mahine Learning, 1997.[4℄ P. V. M. Carpenter P., Riley and G. Kaminka.Integration of advie in an ation-seletionarhiteture. RoboCup 2002: Robot Soer World CupVI. Leture Notes in Computer Siene, 2003.[5℄ J. A. Clouse and P. E. Utgo�. A teahing method forreinforement learning. In Proeedings of the NinthInternational Workshop on Mahine Learning, 1992.[6℄ L.-J. Lin. Self-improving reative agents based onreinforement learning, planning and teahing.Mahine Learning, (8):293�321, 1992.[7℄ R. Malin and J. W. Shavlik. Inorporating advieinto agents that learn from reinforements. InProeedings of the Twelfth National Conferene onArti�ial Intelligene, 1994.[8℄ R. Malin and J. W. Shavlik. Creating advie-takingreinforement learners. Mahine Learning,(22):251�282, 1996.[9℄ J. MCarthy. Programs with ommon sense. InProeedings of the Teddington Conferene on theMehanization of Thought Proesses, 1958.[10℄ M. T. Rosenstein and A. G. Barto. Supervisedator-riti reinforement learning. In Learning andApproximate Dynami Programming: Saling Up tothe Real World. John Wiley & Sons, 2004.[11℄ R. S. Sutton and A. G. Barto. ReinforementLearning: An Introdution. MIT Press, 1998.[12℄ V. U-Cetina. Supervised reinforement learning usingbehavior models. In Proeedings of the 6thInternational Conferene on Mahine Learning andAppliations, 2007.




