
Suspending and Resuming Tasks in BDI Agents

John Thangarajah, James Harland
RMIT University

Melbourne, Australia
{johnt,james.harland}@rmit.edu.au

David Morley, Neil Yorke-Smith
Artificial Intelligence Center, SRI International

Menlo Park, CA, U.S.A.
{morley,nysmith}@ai.sri.com

ABSTRACT
Intelligent agents designed to work in complex, dynamic environ-
ments must respond robustly and flexibly to environmental and
circumstantial changes. An agent must be capable of deliberat-
ing about appropriate courses of action, which may include re-
prioritising goals, aborting particular tasks, or scheduling tasks in
a particular order. This paper investigates the incorporation of a
mechanism to suspend and reconsider tasks within a BDI-style ar-
chitecture. Such an ability provides an agent designer greater flex-
ibility to direct agent operation, and it offers a generic means for
handling conflicts between tasks. We investigate conditions under
which a goal or a plan may be suspended, the process for suspend-
ing it, and the appropriate behaviours upon resumption. We give an
operational semantics for suspending tasks in terms of the abstract
agent language CAN, thus providing a general mechanism that can
be incorporated into any BDI-based agent programming language.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solving, Con-
trol Methods, and Search—Plan execution, formation, and genera-
tion; I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Arti-
ficial Intelligence—Intelligent agents

General Terms
Design, Reliability, Theory

Keywords
Agent reasoning::reasoning (single and multi-agent); Agent theo-
ries, models and architectures::formal models of agency

1. INTRODUCTION
A fundamental feature of intelligent agent systems is the abil-

ity to cope with complex and dynamic environments. In an un-
predictable environment, agents must behave robustly and flexibly
in order to achieve their goals. In agent architectures inspired by
the classic Belief-Desire-Intention (BDI) model [14], behavioural
properties are often characterized by the interactions between be-
liefs, goals, and plans [22]. In general, an agent that wishes to
achieve a particular set of goals will pursue a number of plans con-
currently. At regular intervals in the deliberation cycle, the agent
Cite as: Suspending and Resuming Tasks in BDI Agents, John Thangara-
jah, James Harland, David Morley and Neil Yorke-Smith, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril,Portugal,pp.405-412.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

will review its current choice of goals and plans. Its activity as a
consequence may involve seeking alternative plans for a particu-
lar goal, re-scheduling goals to better comply with resource con-
straints, or suspending some goals until a more appropriate time.

Consider Alice, a knowledge worker aided by a personal assis-
tive agent such as CALO [10]. Alice has in mind to attend the
AAMAS conference later in the year, and her CALO agent adopts
the goal of BookConferenceTravel (BCT) to assist her. A few days
later, Alice also instructs CALO to purchase a laptop for her. Since
Alice has limited funds, CALO is unable to perform both tasks for
her successfully. In this situation, assuming the laptop purchase
to be of lower priority, CALO may decide that the best course of
action is to abort the task [17]. However, if more funding is ex-
pected in the near future, it is more sensible for CALO to suspend
purchasing the laptop until additional funding is available.

Observe two points from this example. First, the BCT goal may
have sub-goals and sub-plans (obtaining travel authorization, re-
questing travel quotes, registering for the conference, and so on),
that will have to be suspended. However, as the request to suspend
may come at an arbitrary point in the process of achieving it, the
BCT goal may contain some sub-goals which have already been
achieved (or aborted), some sub-goals which are not yet achieved,
and possibly a set of concurrently executing plans at various stages
of completion. Suspending this potentially complex operation will
thus involve recursively suspending any sub-goals which have not
been achieved, as well as determining what to do with plans which
are to be suspended.

Second, the resumption of a goal after a period of suspension is
not necessarily automatic. In the above example, when the addi-
tional funding is available, CALO will need to reconsider its op-
tions rather than immediately resume the purchasing of the laptop,
since circumstances may have changed. For example, there now
may be other goals with higher priority competing for the same
resource, or Alice may no longer require the laptop. Hence, resum-
ing a suspended goal is a matter of reconsidering the dynamic set
of goals, rather than merely waiting for a trigger event to fire.

Whilst there are a number of agents systems that specifically
incorporate goals, very few of these provide mechanisms for sus-
pending goals. Systems that have some sort of mechanism for sus-
pending goals or plans include Jadex [12], JAM [5] and Jason [6],
and the architecture of Beaudoin [1].

Once adopted, goals in Jadex can be in one of the three states
option, active, or suspended. Each goal has an associated context.
When a goal is first adopted, it is in the option state. Once the
context becomes true, it is then in the active state. If the context be-
comes invalid at some point, the goal moves to the suspended state.
Once this occurs, all plans and sub-goals of the suspended goal are
terminated. Once the context becomes valid again, the goal returns

405

to the option state, which allows the agent to resume the goal when-
ever it decides it is appropriate. While this approach is similar in
spirit to that proposed in this paper, we also provide mechanisms
for the suspension and resumption of sub-goals, including default
behaviours, which can be overridden if desired.

JAM allows goals to be suspended due to a higher level goal
becoming applicable. Thus a goal g can be suspended in order
to allow a more important goal to be pursued. Once the higher
level goal is completed, the context of g is re-checked, and the goal
resumes from the point of suspension. If the context check fails,
then the goal is assumed to have failed and is hence dropped. In our
approach, we allow a greater variety of options upon resumption,
including continuing the suspension of the goal. This facilitates
more sophisticated strategies to deliberate over goals, for instance
to resolve conflicts or to exploit positive interactions.

Jason allows an agent designer to specify situations under which
a goal will be suspended and resumed. This is achieved by the
explicit .suspend() and .resume() constructs to provide the
programmer with the requisite primitive tools. We present a fuller
infrastructure, in that we provide mechanisms which manage the
entire suspension and resumption process for both goals and plans.

The NML1 system of Beaudoin [1] contains management pro-
cesses which can be used to suspend goals. However, the focus
is on methodologies for design of intelligent systems, and hence
Beaudoin deals at a design level. We are interested in programming
techniques, specifically for BDI-style systems, and in providing ap-
propriate mechanisms for incorporating suspension into a specific
deliberation architecture.

In this paper we investigate how to incorporate the ability to sus-
pend goals and plans into the agent execution cycle. Such an abil-
ity allows for more sophisticated reasoning over, and execution of,
tasks, such as exemplified in the above example. We identify situa-
tions in which a task may be suspended (Section 2) and outline the
process for suspending and resuming tasks (Section 3). We give an
operational semantics for suspension of goals in the abstract agent
language CAN [23, 15, 16] (Section 4); we thus provide a clear
mechanism which can then be implemented in any of a number of
practical systems such as JACK [22], Jason [6], or SPARK [8].

2. WHEN ARE TASKS SUSPENDED?
In this section we consider the circumstances under which an

agent may decide to suspend a goal or plan. We will use the term
task to refer to either a goal, a plan, or a primitive action. When a
task is suspended, the agent attaches a reconsideration condition,
as described in the next section, and possibly additional meta in-
formation, such as the anticipated estimated duration of suspen-
sion. When the reconsideration condition becomes true, the agent
includes the suspended task in the next iteration of its goal deliber-
ation. During that deliberation, it may decide to resume the task, to
continue to suspend it (possibly on a different condition), to abort
it, or to take other meta-action such as initiating another task.

It should be noted that throughout this paper, the goals we con-
sider are achievement goals, i.e., goals which can be dropped once
they have been achieved. This class of goals is in contrast with
maintenance goals [2], which are required to be true over an ex-
tended and possibly infinite period of time.

Goals progress through a set of states during their lifecycle. When
created, a candidate goal is in the state initialized. The agent may
adopt the goal, and in due course intend it by forming an intention
from it. An adopted or intended goal may be suspended (the focus
of this paper), and a suspended goal may be resumed to its adopted
or intended state. For achievement goals, the lifecycle concludes
with the goal being dropped, or reaching one of the states suc-

ceeded or failed. The transitions of a goals between such states may
be described as a finite state machine.1 Plans, similarly, progress
through different states.

As a running example, we will consider a user-assistive agent
such as CALO in a scenario where the user has assigned two tasks,
to be performed in collaboration between the human and the agent:
to purchase a laptop and to book conference travel to AAMAS.

2.1 Reasons for Suspension
In examining some possible reasons that can motivate an agent

to suspend a task, we do not impose that the agent will necessarily
decide to suspend. The following are situations in which the agent’s
rational decision could be to suspend a task or tasks; it might decide
to take other meta-actions, such as to abort a task.

Conflicts. First, resource conflicts: according to the approach of
[20], if two goals are schedulable but have reusable resource re-
quirements that conflict, then the agent suspends (by default) the
goal g with the lower priority. This requires identifying the con-
flicting steps in the two goals, and suspending the relevant steps of
g until the conflicting steps in the other goal are complete.

Example: The laptop purchase and conference travel tasks both
require funds from a single account. If the agent cannot success-
fully execute both due to insufficient funds, it may suspend the lap-
top purchase task, believing the other task to be of higher priority.

Second, effect conflicts: if the effect of one task will violate the
pre- or in-conditions of another task, then the agent may suspend
one until the conflicting steps of the other are complete [18].

Example: Company policy prohibits submitting a travel autho-
rization while another authorization is pending.

Positive interactions. If two goals have a common step (i.e.,
plan or sub-goal) then, when one goal reaches that step, the agent
may suspend it until the other goal reaches the same step, in order
to exploit the synergy of performing the step once for both goals
[19]. The suspended task resumes when the other goal reaches this
common step.

Example: The final step of both laptop purchase and conference
travel tasks is to submit an invoice to division office.

Invalid context. An applicable plan for selection is one where
the pre-conditions to the plan are true [22]. The context of a task
governs when a goal or plan continues to be applicable. Should a
task’s context become false, the agent may suspend the task, and
consider resuming it when the context becomes active again.

Example: The context of the conference travel goal include that
it be safe to travel; if the government advises that it is not safe,
CALO may suspend the goal until it is safe again.

No applicable plan. When there is no applicable plan in the
plan library to achieve a goal g, then suspending g is an alternative
to failing it, if the agent expects that a plan will become applica-
ble, or if it has the capability of generating a plan [15]. g can be
considered for resumption when a plan becomes applicable.

Example: The only plan for CALO to achieve the authorization
necessary for travel — the first step of the BCT task — is with
the Human Resources office. If the designated HR officer is not
available (e.g., on holiday), then rather than failing the task, it can
be suspended until the pre-condition of this plan becomes true.

Changing priorities. An agent’s commitment to a task and the
priority it gives to it may depend on dynamic properties, such as the

1Different agent frameworks exhibit variants in goal states and transitions
[21, 4, 12]. For our purposes, the precise state evolution is secondary to the
inclusion of a suspended state.

406

availability of resources or the actions of other agents. A change in
mental attitude may result in a goal being suspended.

Example: The user, unsure which new laptop to purchase, hears
that a new model will be released soon. Hence she suspends her
purchase until she has investigated the new model.

Request from another agent. Whether the agent acts on the
request to suspend a task depends on factors such as the relationship
and authority of the two agents. (In the context of CALO, the user
has complete authority.)

Example: User tells CALO to suspend travel arrangements.

2.2 Factors that Affect Commitment
In making rational decisions over task suspension and resump-

tion, an important factor that guides the deliberation process is the
commitment the agent has towards a particular goal. As stated,
the criteria that may be used to determine this commitment are dy-
namic, including: goal utility, priority, and deadline; estimated cost
of achievement, including estimated amount of resources required
[9]; dependencies by other goals: internal dependencies that con-
cern how many other goals depend on the successful completion of
the goal, and external dependencies that concern how many other
agents depend on it; interactions with other goals, both positive and
negative [20, 19, 18]; the level of effort to date; and the estimated
likelihood of success [11].

Elaborating the example, suppose the agent has a goal to book
a flight as part of a top-level goal of booking conference travel.
If cancelled, the penalty, apart from the local financial penalty, is
that the conference attendance goal fails, and so forth. Similarly,
suppose the goal is a delegated goal by another agent. If dropped,
then any obligation to fulfill the goal may be violated.

3. MECHANISMS FOR SUSPENDING AND
RESUMING TASKS

Having provided motivations for suspending tasks and illustra-
tive situations when an agent may suspend a task, we now develop
mechanisms for suspending and resuming tasks. These mecha-
nisms will be given precise semantics in the next section.

We present default mechanisms designed to cover the most com-
mon situations, with no additional work required by the agent de-
veloper. However, for plans, we allow for the developer to provide
a dedicated method to suspend a plan and a method to resume it.
These methods are analogous to the abort and failure methods of
[17]; formally, they are user-defined CAN programs that override
the default behaviour. We assume that these methods do not fail
and are not themselves suspended.

We allow tasks to be tagged with either inactive or suspended,
both of which indicate that work on the task should not proceed;
suspended also indicates that the task has been properly suspended.
We modify the agent’s execution cycle to respect these tags.

The mechanisms outlined below take precedence over the agent’s
normal steps in the execution cycle. That is, any meta-activity of
suspension must occur before regular agent deliberation and action,
including intention selection and plan execution.

To illustrate the mechanisms we use the example shown in Fig-
ure 1, where the top-level goal2 is to Book Conference Travel (BCT).
In the figure, goals, plans, actions, and waits are distinguished by
the shape; completed (successful) tasks are indicated, and tasks cur-
rently executing are shown with bold outline.

2The top-level goal is the goal that a plan is achieving; it may be a sub-goal
of another goal. Both top-level goals and sub-goals can be suspended.

BookConferenceTravel

GetAuthorization

EnterUserDetailsSubmit
Invoice

BookConferenceTravel

GetQuotes PrepareRegistration

EnterUserDetails

(do in parallel)

Make
Request

Activate
Session

Submit
Invoice

Await
Quotes

action wait action

plan

goal

goal

goal

goal

plan

plan

goal

plan

active

complete

uncommenced

Figure 1: Book Conference Travel example.

3.1 Suspending Tasks
When a task is to be suspended, we first pause the task and all

its currently active sub-tasks by tagging them inactive in a recursive
manner. This first operation is important in order to stop the current
steps in execution of the to-be-suspended task, until the agent de-
liberates and acts on the consequences of the suspension decision,
which may include suspending, aborting, terminating, or continu-
ing execution of different sub-tasks. Until this deliberation is com-
plete, the lower level tasks should not execute; hence the necessity
of pausing them.

The second operation is to suspend the task and its active chil-
dren, again in a top-down recursive manner, by means of the mech-
anism explained below. The reason for performing the suspension
top-down is because the suspend method of a parent task may, for
instance, abort all its lower level tasks.

For example, if the BCT goal is to be suspended, all the tasks
indicated as active in Figure 1 are first paused, and then the tasks
are suspended top-down beginning with the BCT plan.

Recall that a task is either a goal, a plan, or an action. We assume
that actions are atomic (although they may have some duration)
and are suspended locally by a plan if necessary. Hence, suspend-
ing actions are handled when plans are suspended. Every plan for
achieving an intention has a parent goal from which it arose.

Goals. First let us consider the case of suspending a goal. When
the agent has determined that a particular goal is to be suspended,
it takes the following steps:

• Mark the goal as suspended.

• Attach a reconsideration condition to the goal, specifying the
conditions under which the agent may again consider pursu-
ing the goal. (The default action on reconsideration is to re-
sume the goal.) For example, if the BCT goal is suspended
due to lack of funding, the goal may be reconsidered when
funding increases.

• If the goal has not already begun execution — that is, it is
in the current intention stack, but no plan instance to achieve
the goal has been selected yet — then no further steps are
required by default.

• Otherwise — that is, there is a plan instance in the agent’s
intention stack associated with the goal — then suspend that
plan instance.

407

Plans. When the agent has determined that a plan is to be sus-
pended (notably, as a consequence of suspending a goal, as just
described), it takes the following steps:

• If the plan instance is the highest level task to be suspended,
then attach a reconsideration condition as with goals above.

• If there is a dedicated suspend reasoning method attached to
the plan, then call it. The suspend method may include:

– The decision to abort the plan, continue execution of
the plan, or suspend the plan as per the default method.
For example, in suspending the PrepareRegistration plan,
the agent might abort the plan if the task is simple enough
to redo; run the plan to completion if the plan does not
consume any resources and is not time consuming; or
suspend the plan by following the steps described.

– Procedures to release resources and perform other clean-
up actions. For example, in suspending the GetQuotes
plan the agent may have to inform the company’s travel
office that the conference travel is on hold.

• If the plan instance is still marked inactive, mark it as sus-
pended and then suspend all current steps of the plan marked
as inactive. There may be more than one step since some
may be executing in parallel:

– If the step is a sub-goal, suspend as a goal above.

– If the step is an action (including any belief operations),
it is allowed to complete as it is considered as atomic.

– If the step is a wait, then make the wait inactive. For
example, in Figure 1, WaitForQuotes is suspended by
simply removing the wait, so that the agent is no longer
waiting to receive quotes.

There is a potential optimization to this mechanism. When sus-
pending a plan p, if p has not executed any of its steps as yet, then it
suffices to simply drop the plan. To drop a plan means to remove it
from the agent’s intention stack; we do not fail the plan (as in plan
failure), as this would potentially trigger the agent to retry alternate
plans for the parent goal of p. We do not include this optimiza-
tion in the coming operational semantics as it requires a significant
change to the CAN language that we use to formalize the above
mechanism. Note that, while increasing efficiency, this optimiza-
tion may potentially change the behaviour of the agent in terms of
plan selection; nonetheless, the top level behaviour of achieving the
goal does not change.

3.2 Resuming Tasks
When a reconsideration condition attached to a suspended task

becomes true, the default behaviour is to resume the task. That is,
the agent will attempt to resume execution of the task from the point
that is was suspended. However, as noted previously, upon recon-
sideration the agent may choose to abort the goal, drop the goal, se-
lect alternate plans to achieve the goal, or some other choice of be-
haviour. This decision will depend on the developer and the appli-
cation domain, and if required may be implemented as an optional
meta-procedure that overrides the default resumption behaviour.

Goals. When an agent wishes to resume a suspended goal, it
takes the following steps:
• Unmark the goal, thereby allowing the goal to progress once

any suspended plan instance for it is resumed.

• If there is a plan instance associated with the suspended goal,
then resume that plan. For example, if the BCT goal is re-
sumed then the BCT plan is resumed.
• Otherwise — when there is no plan currently selected — re-

enable the procedure invocation. That is, allow the normal
plan selection mechanisms for the goal to execute.

Plans. When an agent wishes to resume a suspended plan (no-
tably, as a consequence of resuming a goal, as just described), it
takes the following steps:
• Mark the plan as active.

• If there is a dedicated resume reasoning method attached to
the plan, then call this method.
• If the plan has no dedicated resume method attached, per-

form the following default procedure, beginning by checking
the in-conditions of the plan:

– If the in-conditions are true:
∗ Allow the next steps of the plan to proceed.
∗ Resume any suspended sub-goals using the proce-

dure for resuming goals above.
– If the in-conditions are false:
∗ Abort the plan.
∗ Retry alternative plans if they exist for the top-

level goal.3

• If the plan is not aborted, unmark the plan, thereby allowing
the plan to progress once any suspended sub-goals are re-
sumed, and then resume any suspended sub-goals using the
procedure for resuming goals above.

The optional resume method attached to a plan can be used for
special operations such as re-acquiring resources. As with suspend
methods, a dedicated resume method is the means to override the
default behaviour. For example, consider the suspended EUD plan
in Figure 1. Assume that an in-condition for this plan is that there
is an active web-session and that on resumption this condition is
no longer true. If the default resume mechanism is followed, the
agent will abort this plan and retry alternative plans for the goal
EnterUserDetails. This will cause the goal to fail as no alternatives
exist. Hence, it is desirable to have a resume method that re-starts
the same plan in this situation.

Note that when a plan is resumed, we check for in-conditions
but not for pre-conditions. Unlike in-conditions that are required
to be true during the execution of the plan, pre-conditions are re-
quired to be true only at the point of plan selection. Once the plan
is selected they are no longer relevant. Given that the plan choice
has already occurred before the plan is suspended, by default we
do not check for pre-conditions on resumption. Nevertheless, there
may be situations where the pre-conditions need to be checked and
re-established if necessary. If required, this reasoning must be en-
coded into the resume reasoning method of the plan.

4. OPERATIONAL SEMANTICS
In this section we provide a formal semantics for task suspension

and resumption. We do this using the CAN [23, 15, 16] language;
we provide an overview of CAN in Section 4.1.

Major changes to the CAN transition rules to accommodate new
features can lead to unexpected consequences. Instead, we intro-
duce a manageable, localised modification to CAN and implement
suspension and resumption via a source transformation, in the style
3According to the agent’s meta-decisions upon plan failure.

408

of [17]. This enables suspension and resumption to take place at ar-
bitrary points in the relevant tasks, managed by assertion of certain
predicates, which are then used to control the transformed plans in
an appropriate manner, as we will describe. We provide a detailed
description of the transformation process in Sect. 4.2, although for
simplicity we do not include a mechanism for aborting goals nor for
handling reconsideration conditions. In Sect. 4.3 we illustrate this
approach using the Book Conference Travel example of Figure 1.

4.1 The CAN Language
We give our formal semantics in terms of CAN [23, 15, 16]. CAN

is a high-level agent language, in a spirit similar to that of AgentS-
peak [13] and Kinny’s Ψ [7], both of which attempt to extract the
essence of a class of implemented BDI agent systems. CAN pro-
vides an explicit goal construct that captures both the declarative
and procedural aspects of a goal. Goals are persistent in CAN in
that, when a plan fails, another applicable plan is attempted. This
equates to the default failure handling mechanism typically found
in implemented BDI systems such as JACK [22].

An agent’s behaviour is specified by a plan library, denoted by
Π, that consists of a collection of plan clauses of the form e : c←
P , where e is an event, c is a context condition (a logical formula
over the agent’s beliefs that must be true in order for the plan to be
applicable) that can be omitted if true and P is the plan body. The
plan body is a program that is defined recursively as follows:

P ::= act | +b | −b | ?φ | !e | P1;P2 | P1‖P2 | Goal
`
φs, P1, φf

´
| P1 . P2 | L{ψ1 : P1, . . . , ψn : Pn}M | nil

where P1, . . . , Pn are themselves programs, act is a primitive ac-
tion that is not further specified, and +b and −b are operations
to add and delete beliefs. The belief base contains ground belief
atoms in the form of first-order relations but could be orthogonally
extended to other logics. It is assumed that well-defined opera-
tions are provided to check whether a condition follows from a be-
lief set (B |= c), to add a belief to a belief set (B ∪ {b}), and to
delete a belief from a belief set (B \ {b}). ?φ is a test for condi-
tion φ. !e is an event, typically an achievement goal, that is posted
from within the program. The compound constructs are sequencing
(P1;P2), parallel execution (P1‖P2), a (finite) set of guarded plans
L{ψ1 : P1, . . . , ψn : Pn}M, P1 . P2 which, executes P1 and then
P2 only if P1 has failed; and goals (Goal

`
φs, P, φf

´
).

A summary of the operational semantics for CAN in line with
[23] and following some of the simplifications of [15] is as follows.
A basic configuration S = 〈B, P 〉 consists of the current belief
base B of the agent and the current program P being executed (i.e.,
the current intention).

A transition S0 −→ S1 specifies that executing S0 for a single
step yields configuration S1. S0 −→∗ Sn is the usual reflexive
transitive closure of −→: Sn is the result of one or more single-

step transitions. A derivation rule
S′ −→ Sr

S −→ S′r consists of a (possibly
empty) set of premises, which are transitions together with some
auxiliary conditions (numerator), and a single transition conclusion
derivable from these premises (denominator).

Figures 2 and 3 contain a summary of the important rules of CAN
for our purposes. For further details about CAN and its features we
refer to [23, 15, 16].

4.2 Suspending and Resuming Goals
Part of the power of our approach to suspending and resuming

tasks is to allow for the existence of suspend and resume methods
on plans. We represent these methods within CAN using programs
that we associate with the plans during a syntactic transformation of

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B, !e〉 −→ 〈B, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψi

〈B, L∆M〉 −→ 〈B, Pi . L∆ \ {ψi : Pi}M〉
Select

〈B, P1〉 6−→
〈B, (P1 . P2)〉 −→ 〈B, P2〉

.fail

〈B, P1〉 −→ 〈B′, P ′
1〉

〈B, (P1;P2)〉 −→ 〈B′, (P ′;P2)〉
Sequence

〈B, P1〉 −→ 〈B′, P ′〉
〈B, (P1‖P2)〉 −→ 〈B′, (P ′‖P2)〉

Parallel1

〈B, P2〉 −→ 〈B′, P ′〉
〈B, (P1‖P2)〉 −→ 〈B′, (P ′‖P1)〉

Parallel2

Figure 2: Operational rules of CAN.

B |= φs

〈B,Goal
`
φs, P, φf

´
〉 −→ 〈B, true〉

Gs

B |= φf

〈B,Goal
`
φs, P, φf

´
〉 −→ 〈B, fail〉

Gf

P = Goal
`
φs, P

′, φf

´
P ′ 6= P1 � P2 B 6|= φs ∨ φf

〈B, P 〉 −→ 〈B,Goal
`
φs, P

′ � P ′, φf

´
〉

GI

P = P1 � P2 B 6|= φs ∨ φf 〈B, P1〉 −→ 〈B′, P ′〉
〈B,Goal

`
φs, P, φf

´
〉 −→ 〈B′,Goal

`
φs, P

′ � P2, φf

´
〉

GS

P = P1 � P2 B 6|= φs ∨ φf P1 ∈ {true, fail}
〈B,Goal

`
φs, P, φf

´
〉 −→ 〈B,Goal

`
φs, P2 � P2, φf

´
〉

GR

Figure 3: Rules for goals in CAN.

the plan library. The syntactic transformation also attaches “wait-
until” guards on components of the plans to allow pausing the plans
when necessary.

A wait-until guard construct φ :P , that does not execute P until
φ becomes true, was added to CAN in [17]. In this paper, we utilize
a slightly different version of this construct to ensure that the wait is
passed though on transitions for task expansion and plan selection.
We use these guards to prevent further execution of sub-tasks in a
plan when the plan is suspended; when a guarded task is expanded
to a collection of plans, we need to ensure that the guard is kept
on the plan selection as well. Similarly, when a plan is selected,
we want to make sure that on failure of that plan, the selection of a
replacement plan is also guarded.

Our transition rules for the guard operator ‘:’ are given in Fig-
ure 4. Intuitively, when φ is believed to be false, the guarded plan
φ :P should continue to wait (rule false). Not only do we wish ex-
pansion of a guarded achievement goal event φ:!e into a collection
of plan bodies to be delayed while φ is false, we also want the resul-
tant plan selection to be delayed should φ become false before plan
selection. Thus rule Event copies the guard on the event to a guard
on the plan body collection. Similarly, we want plan re-selection

409

B 6|= φ

〈B, (φ:P)〉 −→ 〈B, (φ:P)〉
:false

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)} B |= φ

〈B, φ:!e〉 −→ 〈B, φ:L∆M〉 :Event

ψi : Pi ∈ ∆ B |= ψi B |= φ

〈B, φ:L∆M〉 −→ 〈B, Pi . φ:L∆ \ {ψi : Pi}M〉
:Select

P 6=!e P 6= L∆M B |= φ

〈B, (φ:P 〉 −→ 〈B, P 〉 :true

Figure 4: Rules for the modified guard construct.

on failure to be delayed should φ become false, thus requiring rule
Select to preserve the guard on the plan body collection. In all other
cases, we drop the guard when it is satisfied (rule true).

The identification of which components to pause is achieved by
introducing context parameters to tasks. We translate each task !e
into a task !e(v) with an extra parameter v that specifies the con-
text (i.e., the identity) of the particular instance of that task. That is,
two distinct occurrences of the task !e that are being executed con-
currently would have two distinct values for the context parameter.
Each time a plan calls for the execution of a sub-task, we generate
a new context to pass in as the context parameter for that sub-task.

We use a very simple scheme for creating contexts. Each context
is a list of identifiers; creating a new context value for execution of a
sub-goal amounts to prepending a new identifier n onto the start of
the existing context v to obtain n.v. We refer to the parent context
v∗ of a context v. The parent (n.v)∗ of n.v is v, i.e., the tail of n.v.

For the purposes of examples in this paper, we will use asso-
ciate each occurrence of an event/sub-goal in the plan library with
a single digit and use strings of digits as contexts. For example,
executing sub-goal number 3 in context 27 gives subcontext 327.
The parent context of 327 is 27 (written as 327∗ = 27). We will
denote the root context (equivalent to the empty string of digits) by
⊥. Thus we have 27∗ = 7 and 7∗ = ⊥.

We keep track of information about the state of execution of a
task with context v using the following belief predicates:

• hv: asserted into the belief set to suspend the execution of
the task with context v. This has the effect of immediately
pausing execution on that task and all its sub-tasks and ini-
tiating the execution of the suspension methods. To resume
the execution, this predicate is removed from the belief set.

• cv: asserted into the belief set by a suspension method to
activate the sub-task with context v, allowing it to continue
executing to completion. This should only be set by the par-
ent task4.

• sv: asserted after the completion of the suspension method
for the task with context v to indicate that the suspension
method has been executed and the task is in a suspended (as
opposed to merely paused) state. This predicate is removed
from the belief set only once the resume method has been
executed.

With the ability to track task execution state, we can define the
following predicates:

• Hv = hv∨(Hv∗∧¬cv): execution of the task with context v
should be paused. Either this task has been explicitly marked
as paused, or the parent should be paused and this task has
not been marked as able to proceed regardless.

4In this presentation of a suspension/resumption mechanism, the
simplest non-default operation on sub-tasks is task resumption.
Other behaviors, such as aborting require introducing the complex-
ity of the semantics of abort into the presentation.

• av = ¬Hv ∧¬sv: the task v is active, that is it should not be
paused and it is not currently suspended. When we translate
the plans for a task with context v, we place wait guards that
wait on av on each of the basic components, to prevent them
from executing when we want to suspend v.

In parallel with executing a plan for a task with context v, we
must also execute a program that will invoke the suspend and re-
sume methods as necessary, as described informally in Section 3.

We need to run the suspend method represented by program P s

when we find that v is paused or when an ancestor is paused and
the suspend methods down to the the parent of v have been exe-
cuted. (We need to wait until the parent suspend method is exe-
cuted in case that method decides to allow v to execute to comple-
tion by asserting cv and thereby prevent the suspension of the task.)
This condition is expressed as hv ∨ (Hv ∧ sv∗). After the suspend
method is executed, we add sv to the belief set, allowing suspend
methods for children to execute as needed.

To initiate the resumption of a suspended task with context v,
the hv fact is removed from the belief set. This immediately causes
Hv′ to become false for v′ being v and its descendants. These tasks
do not start executing immediately, since sv′ is still true.

We run the resume method, P r , of a suspended task, v, when we
find that Hv is no longer true and its parent’s (v∗) resume method
has been executed. The completion of the parent’s resume method
is indicated by the removal of the fact sv∗ . Thus the condition
for executing P r is expressed as ¬Hv ∧ ¬sv∗ . After the resume
method is executed, we remove sv from the belief set, allowing the
resume methods for children to execute as needed. This also causes
av to become true, allowing execution of the task to continue to
the extent that it can until any sub-tasks it may be waiting on are
resumed.

Thus the program to suspend and resume v can be defined as
π(v, P s, P r) =

(hv ∨ (Hv ∧ sv∗)):P s; +sv; (¬Hv ∧ ¬sv∗):P r;−sv

Let P be a plan body transformed to include contexts and ap-
propriate wait guards (see below). Let us introduce the notation
while(P, qv, π(v, P s, P r)) as an abbreviation for
+qv; ((P ;−qv .−qv; ?false) ‖ Goal

`
¬qv, π(v, P s, P r), false

´
)

This will assert qv (a new proposition denoting that P is executing)
into the belief set and start executing P . Whether P succeeds or
fails, qv will be removed from the belief set after it terminates. Af-
ter qv is added to the belief set, the Goal construct will repeatedly
execute π(v, P s, P r) until qv is removed from the belief set, i.e.,
until P has completed.

We are now in a position to describe the syntactic transformation
of the plans in the plan library. Given a plan clause of the form
e : c ← P with a suspend method P s (default nil) and a resume
method P r (default nil) for e, we introduce a new context variable
v and create a replacement plan clause:

e(v) : c← while(µv(P), qv, π(v, P s, P r))

where the plan context condition c is unchanged and

410

µv(nil) = nil
µv(P1;P2) = µv(P1);µv(P2)
µv(P1 . P2) = µv(P1) . µv(P2)
µv(Lψ1 : P1, . . . , ψn : PnM) = Lψ1 : µv(P1), . . . , ψn : µv(Pn)M
µv(P1 ‖ P2) = µv(P1) ‖ µv(P2)
µv(φ:P) = (av ∧ φ):µv(P)
µv(Goal

`
φs, P, φf

´
) = Goal

`
av ∧ φs, µv(P), av ∧ φf

´
µv(!e) = an.v:!e(n.v)for the n-th sub-goal in the library
µv(act) = av:act
µv(+b) = av:+b
µv(−b) = av:−b

The first rule states that the mapping has no effect on the null
program nil. The next four rules simply apply the mapping to the
arguments of the operators. For the guard construct, note that it is
not simply a matter of waiting for the guard to become true — we
must have that the task is active. Hence we add the condition av to
the guard (sixth rule). Similar remarks apply to the Goal construct
(seventh rule), in the goal can only terminate if it is active. For sub-
tasks, we create a new context n.v for the sub-task. For this and the
last three rules we ensure that progress only occurs if the plan (or
the sub-task) is active.

4.3 Example

4.3.1 Transformation of Plan Library
Consider plan clauses corresponding to the example of Figure 1.
The first plan clause BCT :←!GA; (!GQ ‖ !PR) with neither

suspend nor resume methods becomes:
BCT (v) :← while(PBCT

v , qv, π(v, nil, nil)) where
PBCT

v = a0.v:!GA(0.v); (a1.v:!GQ(1.v) ‖ a2.v!PR(2.v))

Note that we have π(v, nil, nil) as there is neither a suspend
method nor a resume method for BCT . Note also that PBCT

v is
derived from the rule for BCT by adding a guard to each part.

The second plan clause GQ :← MR;AQ :nil; !SI with a sus-
pend method consisting of the goal InformRequestSuspended, !IRS ,
and a resume method consisting of the goal InformRequestResumed,
!IRR, becomes:
GQ(v) :← while(PGQ

v , qv, π(v, !IRS(v), !IRR(v))) where
PGQ

v = av:MR; (av ∧AQ):nil; a3.v:!SI (3.v)

Note the difference between the context used in the guard condi-
tions for the event !SI and the actions MR and nil.

Finally, the plan clause PR :← AS ; !EUD ; !SI with a resume
method consisting of the goal ReactivateSession, !RS becomes:
PR(v) :← while(PPR

v , qv, π(v, nil, !RS(v)) where
PPR

v = av:AS ; a4.v:!EUD(4.v); a5.v:!SI (5.v) Note that until
some hv′ or sv′ is in the belief set, av will be true for every v.
Thus the av:P guards do not prevent the execution of the guarded
programs P until one of these beliefs is added.

4.3.2 Goal Expansion Transitions
Now suppose we have expanded and partially executed the goal

!BCT (0) working towards the situation shown in Figure 1. At
some point we will have reached an intermediate state where we
are ready to execute

PBCT
0 = a00:!GA(00); (a10:!GQ(10) ‖ a20!PR(20)).

After successfully executing a00:!GA(00), we can transition
a10:!GQ(10) to a10:L{P}M where

P = while(PGQ
10 , q10, π(10, !IRS(10), !IRR(10))).

This in turn transitions into P . a10:L{}M. Within P we have

PGQ
10 = a10:MR; (a10 ∧AQ):nil; a310:!SI (310).

After successfully executing a10:MR, we will be left with

(a10 ∧AQ):nil; a310:!SI (310).

In the same way, we will have within the other parallel branch

a420:!EUD(420); a520:!SI (520)

4.3.3 Suspension
Suppose h0 is added to the beliefs, indicating that we want to

suspend the top-level goal !BCT (0). This causes H0 to become
true, and since 10∗ = 20∗ = 0, H10 and H20 also become true.
Similarly, H420 becomes true.

Looking at the AwaitQuotes wait, since H10 is true, a10 is false.
Thus the condition (a10 ∧ AQ) will not become true even if the
arrival of the quotes causes AQ to become true. Thus we have
made the wait inactive.

Similarly, even if execution of !EUD(420) has started, by a420

becoming false, its execution will be paused.
We now have all the sub-goals of !BCT (0) paused, but the sus-

pend methods have not been executed.
Consider the suspend and resume methods that are now running

in parallel branches thanks to the while construct. For the top-level
goal !BCT (0) we have

π(0, nil, nil) =
(h0 ∨ (H0 ∧ s⊥)):nil; +s0; (¬H0 ∧ ¬s⊥):nil;−s0

Since h0 is now true, the empty suspend method nil is executed
and the belief s0 is asserted. This program goes no further thanks
to the guard condition ¬H0 ∧ ¬s⊥. The assertion of s0 causes the
initial guard condition within

π(20, nil, !RS(20) =
(h20 ∨ (H20 ∧ s0)):nil; +s20; (¬H20 ∧ ¬s0):!RS(20);−s20

to become true. This leads to the execution of the empty suspend
method nil for the sub-goal !PR(20) and the assertion of s20. A
similar process happens for the sub-goal !GQ(10). By this mecha-
nism, the suspend methods are executed first for the top-level goal
and then progressively down the sub-goals, with appropriate sv be-
liefs being added.

4.3.4 Resumption
Now let us look at how resumption works. To resume !BCT (0)

we delete the belief h0. This immediately causes Hv to become
false for v = 0 and any descendant. However, after the suspend
methods for v = 0 and descendants were executed, sv was added to
the belief set. Thus av is still false for each of these v and ordinary
execution is still suspended.

For BCT (0), the guard condition (¬H0 ∧ ¬s⊥) now holds and
the (empty) resume method is executed. The condition s0 is then
deleted from the belief set. This leads to the guard condition (¬H20∧
¬s0) becoming true and the resume method !IRR(20) for !PR(20)
being executed and s20 being removed from the beliefs. In this way
the resume methods are executed top-down and the conditions a0,
a10, a20, etc., are made true again, enabling execution of the origi-
nal goal/sub-goals to proceed.

4.3.5 Selective Sub-Goal Reactivation
Suppose when suspending the PrepareRegistration sub-goal there

is some reason why we want not to suspend the EnterUserDetails
sub-goal but instead to continue it to completion. We can achieve
this by making the suspend method for !PR(v) be +c4.v . When we
execute this method for !PR(20) we will add the belief c420 before
adding s20. Since H420 = h420 ∨ (H20 ∧ ¬c420), this has the

411

effect of causing H420 to become false and a420 true, thereby reac-
tivating !EUD(420). To avoid leaving the c420 belief around when
!PR(20) resumes, the resume method should delete that belief.

5. DISCUSSION
Intelligent agents designed to work in complex, dynamic envi-

ronments must respond robustly and flexibly to environmental and
circumstantial changes. One response in reconsidering the current
course of action is suspension of one of its tasks until a more ap-
propriate time. This paper has investigated conditions under which
a goal or a plan may be suspended and the appropriate mechanisms
for suspending and resuming. We have provided an operational se-
mantics for suspending tasks in terms of the abstract agent language
CAN. Goals that are suspended are reconsidered when appropriate
and are possibly resumed, according to the general mechanism for
resuming tasks also described.

We have considered achievement goals, with the assumption that
the agent will not attempt to suspend a task that is being aborted,
nor already suspended (and likewise not attempt to resume a task
being aborted, nor one not suspended). Our operational semantics
does not specify the behaviour on resuming a goal that has pre-
or in-conditions attached. Upon resuming a task, these conditions
should be checked. If they are no longer true, the agent has two
courses of action: abort the goal5, or continue to suspend the goal
and adopt an intention to attempt to make the pre- and in-conditions
true once again. Hayashi et al. [3] describe a means of tracking the
conditions of a hierarchy of suspended goals, and the necessary
actions to re-establish their feasibility upon resumption.

The mechanisms for suspending tasks complements those that
handle failure and aborting of tasks [17]. The key aspects that dis-
tinguish failure, aborting, and suspending of tasks are as follows.
Failure occurs locally at the current lowest level of execution, and
the failure is propagated upwards in a bottom-up manner. Failure
is typically unintentional, whereas aborting and suspending are de-
liberate, the result of some high level deliberation of the agent. The
command to abort or suspend can be made at any arbitrary point in
the execution hierarchy. Before a task is aborted all its sub-tasks
need to be aborted; that is, a bottom-up approach is taken. When a
task is suspended, by contrast, the approach is top-down where the
suspend method of the task is first executed and then if appropriate6

the children are suspended.
The current semantics that we have provided does not allow for

aborting tasks. This is to avoid the complexity of both suspending
and aborting. The semantics also does not allow for attaching a
reconsideration condition when a task is suspended, and we have
made the assumption that suspend and resume methods do not fail.
Further investigation is required to determine an appropriate repre-
sentation of these conditions and extend the semantics accordingly.

A main thrust of our future work is to implement the suspension
mechanism in the SPARK [8] agent system. On the conceptual
side, we are interested in examining the interaction between sus-
pending and aborting tasks, and extending our operational seman-
tics to the case of maintenance goals.

Acknowledgements. We thank Lin Padgham and the anony-
mous reviewers for their comments. The first author acknowl-
edges the support of the Australian Research Council and Agent
Oriented Software under grant LP0453486. The work of the two

5Note it is more appropriate to abort the goal, not merely drop it as in Jadex
[12], because there may be clean up actions that need to be performed.
6For example, if the top level goal is dropped then the sub-tasks are also
dropped and not suspended.

authors at SRI International was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the view of DARPA or the Depart-
ment of Interior-National Business Center.

6. REFERENCES
[1] L. Beaudoin. Goal Processing in Autonomous Agents. PhD thesis,

School of Computer Science, University of Birmingham, 1994.
[2] S. Duff, J. Harland, and J. Thangarajah. On proactivity and

maintenance goals. In Proc. of AAMAS’06, pages 1033–1040, 2006.
[3] H. Hayashi, S. Tokura, F. Ozaki, and T. Hasegawa. On-line

interruption planning using Dynagent: Integrating deliberation and
emergency deliberation. In Proc. of ICAPS’07 Workshop on Moving
Planning and Scheduling Systems into the Real World, 2007.

[4] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer. Formal
semantics for an abstract agent programming language. In Proc. of
ATAL’98, pages 215–229, 1998.

[5] M. Huber. JAM: A BDI-theoretic mobile agent architecture. In Proc.
of AGENTS’99, pages 236–243, 1999.

[6] J. F. Hübner, R. H. Bordini, and M. Wooldridge. Programming
declarative goals using plan patterns. In Proc. of DALT’06, 2006.

[7] D. Kinny. The Psi calculus: an algebraic agent language. In Proc. of
ATAL’01, pages 32–50, 2001.

[8] D. Morley and K. Myers. The SPARK agent framework. In Proc. of
AAMAS’04, pages 714–721, 2004.

[9] D. Morley, K. L. Myers, and N. Yorke-Smith. Continuous refinement
of agent resource estimates. In Proc. of AAMAS’06, 2006.

[10] K. Myers, P. Berry, J. Blythe, K. Conley, M. Gervasio,
D. McGuinness, D. Morley, A. Pfeffer, M. Pollack, and M. Tambe.
An intelligent personal assistant for task and time management. AI
Magazine, 28(2):47–61, 2007.

[11] A. Pfeffer. Functional specification of probabilistic process models.
In Proc. of AAAI-05, pages 663–669, 2005.

[12] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. In Multi-Agent Programming. Springer, 2005.

[13] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. of Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, 1996.

[14] A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In Proc. of KR’92, pages 439–449, 1992.

[15] S. Sardiña, L. de Silva, and L. Padgham. Hierarchical planning in
BDI agent programming languages: a formal approach. In Proc. of
AAMAS’06, pages 1001–1008, 2006.

[16] S. Sardiña and L. Padgham. Goals in the context of BDI plan failure
and planning. In Proc. of AAMAS’07, pages 16–23, 2007.

[17] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith. Aborting
tasks in BDI agents. In Proc. of AAMAS’07, pages 8–15, 2007.

[18] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
avoiding interference between goals in intelligent agents. In Proc. of
IJCAI’03, pages 721–726, 2003.

[19] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
exploiting positive goal interaction in intelligent agents. In Proc. of
AAMAS’03, pages 401–408, 2003.

[20] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding
resource conflicts in intelligent agents. In Proc. of ECAI-02, 2002.

[21] B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in agent
systems: A unifying framework. In Proc. of AAMAS’08, 2008.

[22] M. Winikoff. JACK intelligent agents: An industrial strength
platform. In Multi-Agent Programming. Springer, 2005.

[23] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative and procedural goals in intelligent agent systems. In
Proc. of KR’02, pages 470–481, 2002.

412

