
Cost-Based BDI Plan Selection for Change Propagation∗

Khanh Hoa Dam
RMIT University

Melbourne, Australia
kdam@cs.rmit.edu.au

Michael Winikoff
RMIT University

Melbourne, Australia
michael.winikoff@rmit.edu.au

ABSTRACT
Software maintenance is responsible for as much as two thirds of
the cost of any software, and is consequently an important research
area. In this paper we focus on thechange propagationprob-
lem: given a primary change that is made in order to meet a new
or changed requirement, what additional, secondary, changes are
needed? We build on previous work that has proposed to use a BDI
(belief-desire-intention) agent framework to propagate changes by
fixing violations of consistency constraints. One questionthat needs
to be answered as part of this framework is how to select between
different applicable (repair) plan instances to fix a given constraint
violation? We address this issue by defining a suitable notion of
repair plan costthat incorporates both conflict between plans, and
synergies between plans. We then develop an algorithm, based on
the notion of cost, that finds cheapest options and proposes them to
the user.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Algorithms, Design

Keywords
Software Maintenance and Evolution, Change Propagation, Plan
Selection, Belief Desire Intention, Plan Cost

1. INTRODUCTION
A large percentage — as much as two-thirds — of the cost of

any software can be attributed to itsmaintenance: modifications
to the software due to a range of causes1, after the software has
been written [21, page 449]. Consequently, software maintenance
is a highly important area for research. In particular therehas been

∗The primary author of the paper is a student.
1These are usually classified as beingcorrective maintenance, fix-
ing bugs; perfective maintenance, adding new functionality; or
adaptive maintenance, changing the system so it continues to work
in a changed environment.
Cite as: Cost-Based BDI Plan Selection for Change Propagation, Khanh
Hoa Dam and Michael Winikoff,Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. 217-224.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

very little work that we are aware of on software maintenance in
agent-oriented software engineering, and this work aims to fill that
gap, as well as apply agent technology to the problem of software
maintenance in a broader context.

When software is modified, typically some primary changes are
made, and then additional, secondary, changes are made as a result.
For example, an agent type is added, and then consequently other
agents need to be modified to communicate with the new agent
type. Determining and making these secondary changes is termed
change propagation[16, 17].

This paper builds on our previous work [4], which proposed an
agent-based approach to change propagation. Given a model (i.e.
a design) which has been subjected to primary changes, the sys-
tem finds inconsistencies in the model (with respect to given con-
straints), and then invokes repair plans to fix these consistency vi-
olations. The change propagation engine proposed uses a Belief-
Desire-Intention (BDI) platform to perform change propagation.
The use of BDI-style, event-triggered, plans matches well with the
cascading nature of change propagation where a change can cause
other changes to be made. Further, there are usually many ways
of fixing a given inconsistency, and this is naturally captured us-
ing multiple plans that respond to a given event. Although we do
not use the full capabilities of BDI agents, these two properties of
change propagation make the use of BDI plans natural and, we be-
lieve, well motivated.

Typically a given inconsistency will have a number of repair
plans that could be used to restore consistency. In this paper we
focus on the problem ofhow to select amongst these repair plans.

This problem is made harder because we need to handle infinite
trees, due to the nature of cascading. On the other hand, plan ex-
ecution for change propagation does not take place in a dynamic
environment and thus given a number of relevant repair plans, the
choice between them can be controlled by the system.

The remainder of this paper proposes a mechanism for automati-
cally selecting between alternative repair plans based on a notion of
cost. We define the cost of plans (section 3) in a way that takes into
account cascades (where fixing the violation of a constraint breaks
another constraint), and synergies between constraints (where fix-
ing the violation of a constraint also fixes another violated con-
straint). An algorithm for calculating costs, and hence selecting
between repair plans, is given (section 4), and its scalability is ex-
plored. Finally, we discuss related work (section 5) before conclud-
ing and outlining future work (section 6).

2. CHANGE PROPAGATION FRAMEWORK
This section briefly describes the agent-based change propaga-

tion framework of [4], and its components, including plan repre-
sentation and generation. The framework provides a “change prop-

217

Action

Agent

Plan

Capability

0..*

0..*

1..* 0..*

0.
.*

0..*

0..*

0..*0..*

1..*

0..*

1..*

0..*

0..*

Figure 1: Prometheus Meta-Model (Excerpt)

agation assistant” that helps a designer by suggesting additional
(secondary) changes once primary changes have been made. This
framework is generic in that it can be applied to various software
engineering methodologies, and we have applied it to both UML
[12] and Prometheus [15].

The key data items we deal with are ameta-model, a collection
of well-formednessconstraints, an application designmodel, and a
collection ofrepair plans. The overall process is:

1. At design time the repair plans are automatically generated
from the constraints and meta-model [3].

2. At runtime we check whether the constraints hold in the de-
sign model.

3. We use the repair plans to generate plan instances (i.e. repair
options) for the violated constraints.

4. We calculate the cost of the different repair plan instances.

5. We select a repair plan instance (possibly by picking the sin-
gle cheapest, if it exists, or by asking the user).

6. The selected repair plan instance is executed, and it updates
the application design model.

Note that although it is possible for loops to exist, the costcalcu-
lation avoids them (if possible, i.e. if the constraints canbe fixed)
since they have infinite cost.

We now briefly describe each of the four key data items.
The meta-model specifies, in the usual manner, what entities

exist in a design model, and their relationships. Figure 1 shows
a small excerpt of the Prometheus meta-model, which depictsre-
lationships between agents, plans, capabilities and actions. The
meta-model is captured in UML, and is exported to XMI format
for use by our implementation.

The constraints specify conditions that a well-formed design
should satisfy. We use the Object Constraint Language [13] to spec-
ify constraints. OCL is part of the UML standards which is used to
specify invariants, pre-conditions, post-conditions andother kinds
of constraints imposed on elements in UML models. Below is
an example of an OCL constraint that defines the semantics of
relationships between agents, plans, capabilities and actions. In
the OCL notation “self” denotes the context node (in this case
an Agent) to which the constraints have been attached and an ac-
cess pattern such as “self.action” indicates the result of follow-
ing the association between an agent and an action (in the meta-
model), which is, in this case, a collection of actions whichare
performed by the agent. OCL also denotes operations on collec-
tions such as “SE → includes(x)” stating that a collectionSE

must contain an entityx , or “SE → exists(c)” specifying that a
certain conditionc must hold for at least one element ofSE , or

“SE → forAll (c)” specifying thatc must hold for all elements of
SE . For detailed information on OCL see [13]. For example, the
following constraint, which could be expressed in more traditional
form as∀ ac ∈ self .action∃ pl ∈ self .plan : ac ∈ pl .action∨
∃ cap ∈ self .capability : ac ∈ cap.action, states that: consider-
ing the set of actions that are performed by the agent (self.action),
for each of the actions (ac) if we consider the plans of that agent
(self.plan) then one of these plans (pl) must include the current ac-
tion (ac) in its list of actions (pl.action) or if we consider the ca-
pabilities of that agent (self.capability) then one of these capabil-
ity (cap) must contain the current action (ac) in its list of actions
(cap.action).

Constraint 1 Any agent that performs an action should contain at
least one plan or capability that performs that action.
Context Agent inv:
self.action→forAll(ac : Action|

self.plan→exists(pl : Plan| pl.action→includes(ac)) or
self.capability→exists(cap : Capability|

cap.action→includes(ac)))

The meta-model and constraints can be developed by extracting
relationships and dependencies from the methodology that we want
to apply the framework to. For instance, a Prometheus meta-model
and a set of related constraints have been developed in [4].

The application designmodel is a design, in this case a Prometheus
design. Abstractly, we can view a design as consisting of a set of
entitiesE (with their types), a set of relationshipsR (e.g. theaction
attribute ofagent1includesact1), and a value functionV (e.g. the
nameattribute of the entityagent1has the value “Monitor Agent”).
Formally, letE be a set of entity-id and entity-type pairs;R be a
set of triples: entity ID (source), attribute ID, and entityID (desti-
nation); andV be a function from entity ID and attribute ID to a
value (e.g. integer, string).

The four types of primitive actions that are used to update the
model are creation of entities, adding and removing relationships
between entities, and updating the values of attributes of entities.
Formallycreate(x, t) has no precondition, and has the postcon-
dition E ′ = E ∪ {〈x , t〉} (whereE ′ denotes the value ofE after
the operation);add(e2, e1,a) has the precondition{e1, e2} ⊆
domE (where domX is the domain ofX) and postconditionR′ =
R ∪ {〈e1, a, e2〉}; remove(e2, e1, a) has true precondition and
postconditionR′ = R \ {〈e1, a, e2〉}; andchange(e,a,v) has
true precondition and the postconditionV ′ = V ⊕ {〈e, a〉 7→ v}
whereA⊕ B = {〈x , y〉 | 〈x , y〉 ∈ A ∧ x 6∈ domB} ∪ B .

An important observation is that the preconditions of theseprim-
itive actions are quite weak. This allows us to arbitrarily reorder a
sequence of actions subject to the following constraints: (1) cre-
ation of entities must remain before addition of relationships be-
tween the entities; (2) if the sequence of actions has redundant
pairs — an action that undoes the effects of an earlier action—
then the pair cannot be swapped, but it can be simplified by delet-
ing the earlier action. For example, adding a relationship followed
by deleting it can be replaced by simply deleting the relationship.
Condition (2) is not needed if we assume that the sequence of ac-
tions being reordered isnon-redundant, i.e. does not contain any
redundant pairs.

Lemma 1 (Action sequence reordering)A non-redundant sequence
of actionsS can be arbitrarily reordered, so long as creation of en-
tities precedes relating these entities, without affecting the overall
effect ofS .

218

P ::= E [: C]← B

C ::= C ∨ C | C ∧ C | ¬ C | ∀ x • C | ∃ x • C | Prop

B ::= Add Entity To SE |!E | B1; B2 |
Create Entity : Type | if C then B |
Change Property to Property |
Remove Entity From SE | for each x in SE B

Figure 2: Repair plan abstract syntax

The syntax forrepair plans2 (see figure 2) is based on AgentS-
peak(L) [18], but with some differences (most notably in specify-
ing the actions, and in allowing for richer plan bodies). Each repair
plan,P , is of the formE : C ← B whereE is the triggering event
(conceptually, the name of the constraintP is fixing, subscripted
with eithert or f to indicate whether the constraint is being made
true or false);C is an optional “context condition” (Boolean for-
mula) that specifies when the plan should be applicable3; andB is
the plan body. The plan body can contain primitive actions such as
adding and deleting entities and relationships, and changing prop-
erties. The plan body can also contain sequences (B1; B2), condi-
tionals and loops, and events which will trigger further plans (!E).

The repair plans are generated automatically from the constraints
using a repair plan generator that takes the OCL constraintsand
the UML meta-model as inputs, and returns a parameterized set of
event-triggered repair plan types.Each OCL constraint (or sub-
constraint) has a corresponding goal (or sub-goal) and we repair
the constraint by posting the goal and using the plans to achieve the
goal. Thus in the remainder of this paper we will talk about repair-
ing constraints and achieving sub-goals as being the same thing.

For example, the constraint given earlier is translated (bytheR
operator of [3]) to the following repair plans4, where we define
c ≡ ∀ ac ∈ self .action : c1, andc1 ≡ c2 ∨ c4, andc2 ≡
∃ pl ∈ self .plan : c3, andc3 ≡ ac ∈ pl .action, andc4 ≡
∃ cap ∈ self .capability : ac ∈ cap.action.

P1 ct (self)← for eachac ∈ self .action

if ¬ c1(ac) then!c′
t (self , ac)

P2 c′
t (self , ac)← removeac from self .action

P3 c′
t (self , ac)←!c1t (self , ac)

P4 c1t (self , ac)←!c2t (self , ac)
P5 c1t (self , ac)←!c4t (self , ac)
P6 c2t (self , ac) : pl ∈ self .plan ←!c3t (self , ac, pl)
P7 c2t (self , ac) : pl ∈ Plans ∧ pl 6∈ self .plan ←

addpl to self .plan ; !c3t (self , ac, pl)
P8 c2t (self , ac)← createpl : Plan ; addpl to self .plan ;

!c3t (self , ac, pl)
P9 c3t (self , ac, pl)← addac to pl .action

Given a design model which has an actionac1 assigned to agent
a1, wherea1 has planp1; these plans can produce a range of actions
to repair the constraint including removingac1 from a1 (P2), or
assigningac1 to p1 (P3, P4, andP6).

2“Prop” denotes a primitive condition such as checking whether
x > y or whetherx ∈ SE , andSE denotes a set-valued expres-
sion.
3In fact when there are multiple solutions to the context condition,
each solution generates a new plan instance. For example, ifthe
context condition isx ∈ {1, 2} then there will be two plan in-
stances.
4For space reasons we have omitted the plans forc4, which are
similar to those forc2.

One key consequence of generating plans from constraints, rather
than writing them manually, is that by careful definition of the plan
generation scheme (i.e. theR operator of [3]) it is possible to guar-
antee certain properties of the generated plans.

Theorem 1 (R complete and minimal) The generated repair plans
are complete, that is, given a model (i.e. design)M in which con-
straintC is violated, any minimal sequence of actions (that is, one
that does not contain unnecessary actions) that leads to a model
M ′ whereC is not violated can be obtained by instantiating the
plans inR(C). Proof: See theorem 1 of [3]

At runtime, the application model is checked against the OCL
constraints and any violations of these constraints are fixed using
the repair plans. A given violation can be potentially fixed by a
number of possible repair plan instances. In order to help select
which repair plan instances to use we calculate the cost of each
repair plan instance.

3. COST DEFINITION
In this section, we give equations that define the cost of fixing

a given constraint and then explore some properties of the defini-
tions. The notion of cost that we use is abstract: it can be viewed
as counting the number of primitive actions (addition, removal, up-
date, creation) involved in a given plan. For example, if repair plan
P1 involves 5 additions and repair planP2 involves 3 additions then
we viewP2 as being cheaper. In order to compare “apples and or-
anges”, e.g. ifP3 involves two additions and a creation, we assume
that each primitive action type is assigned a numerical cost(its “ba-
sic cost”), for instance creation may have an assigned cost of 5 and
addition a cost of 3. These numbers do not correspond to any real
cost, and are simply used to compare different action types.

We begin with some preliminary concepts and terminology. A
constraint that does not hold with regard to a model is said tobe
violated, and can be fixed by executing a repair plan. A repairplan
instance contains repair actions (the set of which is denotedA(P))
and subgoals (representing sub-constraints) the set of which is de-
notedG(P). Repairing a constraint is done in the context of are-
pair scope: a set of constraints that need to be considered. The
constraints in the repair scope are checked when the repair plan
finishes executing, and any violated constraints are then repaired.
We denote the repair scope of a planP asS(P). A global repair
scope involves all constraints whilst a local one contains constraints
related to certain entities in the model. Normally the repair scope
is set initially (typically to be global) and then is not changed. We
define the repair scope explicitly, rather than automatically consid-
ering all constraints, in order to allow a user to limit the propagation
to certain constraints or model entities.

We now define the cost of a repair plan in terms of the costs
of its basic actions (basicCost), the cost of its subgoals (subGoal-
Cost), and the cost of fixing violated constraints in its repair scope
(scopeCost). Note thatcost is defined for actions (cost(A)), plans
(cost(P)), constraints (cost(C)), and (sub)goals (cost(G)).

Definition 1 (Action cost) The cost of an actionA, denotedcost(A),
is the user-defined basic cost associated with the action type (i.e.
addition, removal, update, or creation).

Definition 2 (Plan cost) The cost of a planP (denoted cost(P)) is
equal to the sum of its main cost and its repair scope cost. The
main cost of a plan is the sum of the plan’s basic cost and its sub-
goal cost. The scope cost is the cost of repairing all (violated)

219

constraints in the plan’s repair scope5.

cost(P) = mainCost(P) + scopeCost(P)

mainCost(P) = basicCost(P) + subGoalCost(P)

=
∑

A∈A(P)

cost(A) +
∑

G∈G(P)

cost(G)

scopeCost(P) =
∑

C∈S(P)

cost(C)

There are usually several applicable plan instances to repair a
constraint violation. The best plan, which is selected for execu-
tion, is the one with minimum cost. Hence the cost of repairing a
constraint is the cost of the cheapest repair plan instance.

Definition 3 (Constraint cost) The cost of fixing constraintC is
equal to the cost of the best applicable repair plan instancewith
regard toC . If there are no applicable repair plans, the cost ofC

is undetermined. The cost of fixing an unviolated constraintis 0.
We formalise this as follows, whereP(C) is the set of all repair
plan instances that can be used to fix constraintC .

cost(C) =

{

0 if C unviolated
min {cost(P) | P ∈ P(C)} otherwise

Definition 4 (Goal cost) The cost of achieving a goal is the cost
of the cheapest available repair plan. Similarly to constraints, we
useP(G) to denote the set of all repair plans that can be used to
achieve the goalG.

cost(G) = min {cost(P) | P ∈ P(G)}

We now briefly note some properties of these definitions. We say
that a sequence of actionsS repairs constraintC in modelM iff (a)
C is violated inM ; and (b) performingS onM yields a new model
M ′; and (c)C holds inM ′. We say that the sequenceS is minimal
if removing actions from it always results in a sequence thatno
longer repairsC in M . This generalises to a set of constraints in
the obvious way.

Lemma 2 Let M0 be a model in which the constraintsCi are vi-
olated. LetS be a minimal sequence of actions for repairing all
the constraintsCi in M0. Then for a given constraint, say (without
loss of generality)C1, there exists at least one sequence of actions
S ′ which is obtained by removing some number (possibly zero) of
actions fromS such thatS ′ repairsC1 in M0 and is minimal.
Proof: S repairsC1 in M0, but may contain actions that are un-
necessary for repairingC1. We constructS ′ by simply removing
these unnecessary actions, resulting in a minimalS ′. �

Theorem 2 LetM0 be a model where some number of constraints
Ci are violated and letS be a minimal (and hence non-redundant)
sequence of actions that repairs theCi in M0, yielding modelMF :

M
0

M
F

S

M
1

S
1

S’

5Since we will definecost(C) = 0 if the constraintC is not vio-
lated we simply sum over the cost of all constraints inS(P).

Then for any of the given constraints, say (without loss of gener-
ality) C1, there exists a minimal action sequenceS1 that repairs
C1 in M0 yielding M1. Furthermore, there then exists a (non-
redundant) action sequenceS ′ that takes us fromM1 to MF where
cost(S) = cost(S1) + cost(S ′).
Proof: We constructS ′ andS1 from S as follows. We formS1 by
removing actions fromS to yield a minimalS1 for repairing C1 in
M0 (using lemma 2). The actions that are not removed fromS are
the remainder,S ′. We can view the sequenceS1 followed byS ′ as
being a reordering ofS , and by lemma 1 it has the same effect as
S , i.e. results inMF . SinceS1 followed byS ′ has the same actions
asS it must have the same cost. �

By applying this theorem repeatedly, onC1, thenC2, etc. we
can show that in order to repair a set of violated constraintswe
can consider a single constraint at a time, in an arbitrary order,
with no loss of generality. Furthermore, since the repair plans are
complete (theorem 1), the action sequenceS1 can be generated by
instantiating the repair plan set.

This strong result is only possible because the actions we con-
sider have limited preconditions, allowing them to be reordered
fairly freely. A specific corollary is that, considered as a planning
domain, our actions do not allow for a Sussman anomaly situation
to exist.

4. A COST CALCULATION ALGORITHM
In the previous section, we have defined how a repair plan’s cost

is calculated. We now give algorithms that calculate this cost. The
algorithms operate with plan-goal trees, where a goal has aschil-
dren the plans that can be used to achieve it (P(G) in definition 4)
and a plan has as children its sub-goals (G(P)). Each plan node
stores the plan’s basic cost (basicCost, initially the basic cost of
the plan), other costs (dynamicCost, initially 0), a boolean value
indicating whether the node is a leaf (isLeaf, initially false), and a
queue of its sub-goals (subGoalQueue, initially empty). Each goal
node stores a list of best (i.e. least cost) plan(s) (bestPlans, initially
empty) that achieve the goal.

Before we present the algorithm, we discuss a tree transforma-
tion that the algorithm uses. When considering the alternative ways
of dealing with a given (sub)goal the algorithm considers the avail-
able plans and selects the cheapest. In doing so, it needs to consider
the future: what will happen after the goal is handled. We do this
by transforming the tree so that the “future” is pushed down into
the tree beneath the current goal. Specifically, when we consider a
goal that has a future (i.e. a parent plan with non-empty sub-goals)
we copy the sub-goals of the parent plan to the sub-goals of the
children plans (see figure 3).

G

P

P
1

G’

G
1

P
2

G
2

G

P

P
1

G
1

P
2

G
2

G’ G’

P
3

P
3

G

P

P
1

G
1

P
2

G
2

G’ G’

P
3

P
4

P
4

P
4

Figure 3: Tree Transformation

The algorithm presented in figure 4 computes the cost of a plan
according to the equations in the previous section. Since weassume
thatbasicCostis already computed (by simply summing the costs

220

of primitive actions in a plan), the algorithm only needs to work
out the plan’s subgoal costs and repair scope costs (see definition
2). These costs are stored indynamicCostwhich is initially set to
0, and is progressively incremented with the costs of sub-goals and
of violated constraints in the repair scope.

The algorithm selects each sub-goal in turn (lines 2 and 3) and
adds the cost of any violated constraints onto the dynamic cost (line
6). If the plan node has children (i.e. violated constraints6) then we
are done, since the scope cost will be calculated in those children.
On the other hand, if this plan node has no children (isLeaf =
true, line 9) then we check for violated constraints in the repair
scope (lines 10 and 11), and if there are any, we select one of the
violated constraints (line 12), add it to the queue (line 13), and
recursively callcost(P) to compute its cost (line 14).

The algorithm in figure 5 calculates the cost of a goal node (see
definition 4) by considering the possible plans and looking for the
cheapest one. We first retrieve a list of applicable plans forthe
goal (line 2). We then iterate through the list of plans (line4) and
calculate the cost for each of them (line 9). When a plan that is
cheaper than the previous best is found, the previous best plan(s)
are replaced with the new plan (lines 10-13). When a plan is found
that is as good as the current best, it is added to the list of best
plan(s) (lines 14-15).

The algorithm uses look-ahead and simulates the application of
the plans. Line 5 executes the plan currently being considered by
(a) updating the model with the effects of the plan’s actions, and
(b) adding the plan’s sub-goals to the tree. In order to be able to
consider alternative plans we need to undo the effects of theplan’s
execution on the model, and this is done by line 17. This is imple-
mented by logging changes to the model, allowing these changes
to be rolled back.

Lines 6-8 and 19-21 implement the tree transformation discussed
earlier: the sub-goals of the parent plan (excluding the current sub-
goal) are added to the end of the sub-goals of each planP (lines
6-8). Once this has been done for all plans, we remove the sub-
goals from the parent (lines 19-21).

function cost(P)
1 P .isLeaf ← true
2 while P .subGoalQueue is NOT emptydo
3 dequeuesubGoal from P .subGoalQueue
4 if the constraint associated withsubGoal is violatedthen
5 P .isLeaf ← false

6 P .dynamicCost ←P .dynamicCost + cost(subGoal , P)
7 end if
8 end while
9 if P .isLeaf = true then
10 local violatedSubGoals← get-scope-violated-constraints()
11 if violatedSubGoals is NOT emptythen
12 get a randomviolatedSubGoal from violatedSubGoals

13 enqueueviolatedSubGoal into P .subGoalQueue
14 return cost(P)
15 end if
16 end if
17 return P .dynamicCost + P .basicCost

Figure 4: Calculating Plan Node Cost (No Pruning)

The algorithms given in figures 4 and 5 implement the definitions
given in section 3, but they search the whole goal-plan tree.This is
inefficient, and may lead to non-termination, since the treemay be
infinite. We therefore modify the algorithms by adding loop check-
ing, and a form of pruning. We add to each goal/plan node two

6Note that when we encounter a violated constraint we note that
the plan node is not a leaf (line 5).

function cost(G, ParentPlan)
1 local bestCost←+∞

2 local planList ← get-repair-plans(G)
3 G.bestPlans← empty
4 for each planP in planList do
5 execute planP
6 if ParentPlan is notnull then
7 copy allParentPlan.subgoals to the end ofP .subgoals
8 end if
9 local c← cost(P)
10 if c < bestCost then
11 bestCost ← c
12 clearG.bestPlans
13 addP to G.bestPlans

14 else ifc = bestCost then
15 addP to G.bestPlans
16 end if
17 unexecute planP
18 end for
19 if ParentPlan is notnull then
20 ParentPlan.subgoals← empty

21 and if
22 return bestCost

Figure 5: Calculating Goal Node Cost (No Pruning)

values7: β (initially +∞) - the least cost of fixing all constraints
in the repair scope, andσ (initially 0) - the (accumulative) cost of
everythingabovethe current node. In figures 6 and 7 lines that are
new (relative to figures 4 and 5) are marked with “*”.

Computing the cost of a plan is done by the algorithm in fig-
ure 6. We use a pruning mechanism, where we establish a thresh-
old in order to avoid exploring alternatives that are more expen-
sive than known solutions. The threshold is calculated (line 10 of
figure 6) based on the current accumulative costσ, the plan cost
(P .basicCost and P .dynamicCost) and the lower bound cost,
which is an estimate of the minimum cost of achieving a (sub-)goal
(lines 1-8 in the bottom of figure 6).

The algorithm in figure 6 also includes loop detection (lines4-7).
It keeps track of goals seen along a branch in a list namedhistory
(line 6-8 in figure 7). If the same goal is seen again, corresponding
to the fact that a constraint has become violated and is beingfixed
again, then we have a loop and we terminate with infinite cost.This
checking only needs to be done whenβ is at its initial value (+∞):
if β has a finite value, then an infinite branch will be pruned because
its cost will (eventually) exceedβ (because all plans do something,
and hence have non-zero cost).

The two valuesβ andσ are passed from each parent goal/plan
node down to its child plan/goal nodes (lines 14-15 in figure 6and
lines 10-11 in 7). Line 14 in figure 6 shows thatσ is in fact an
accumulative cost: we accumulate the cost of the current node in
σ. When a plan cost is resolved, the total cost so far (i.e. the cost
of the plan as well asσ, the cost of the path from the root of the
tree to the current node) is compared against the currentβ to see if
it needs to be updated (line 27 in figure 6). If at any point the total
cost for a plan (threshold) exceedsβ then we prune (lines 11-13
of figure 6). We also prune in the (admittedly unlikely) case that a
plan’s basic cost by itself exceedsβ (line 4 of figure 7). Once a best
plan for a goal is found, the goal’sβ is also updated with the plan’s
β (line 21 of figure 7). Line 5 of figure 7 implements a heuristic
that considers plans with cheaper basic cost first.

The computational complexity of the algorithm depends on the
cost of checking a single constraint (which, based on empirical evi-
dence [6], we assume to be constant); and the degree to which prun-
7We use “β” since we do theβ part of a classicalα − β pruning.
We do not do theα part because we have a min-sum tree, rather
than a min-max tree.

221

function cost(P)
1 P .isLeaf ← true

2 while P .subGoalQueue is NOT emptydo
3 dequeuesubGoal from P .subGoalQueue
*4 if P .β = +∞ andsubGoal is in history then
*5 clearhistory
*6 return +∞
*7 end if
8 if the constraint associated withsubGoal is violatedthen
9 P .isLeaf ← false
*10 local threshold = P .σ + lowerBoundCost(subGoal) +

P .basicCost + P .dynamicCost

*11 if threshold > P .β then
*12 return threshold

*13 end if
*14 subGoal .σ←P .σ + P .dynamicCost + P .basicCost
*15 subGoal .β← P .β

16 P .dynamicCost ←P .dynamicCost + cost(subGoal , P)
17 end if
18 end while
19 if P .isLeaf = true then
20 violatedSubGoals← get-scope-violated-constraints()
21 if violatedSubGoals is NOT emptythen
22 get a randomviolatedSubGoal from violatedSubGoals

23 enqueueviolatedSubGoal into P .subGoalQueue
24 return cost(P)
25 end if
26 end if
*27 P .β←min(P .β, P .σ + P .dynamicCost + P .basicCost)
28 return P .dynamicCost + P .basicCost

function lower-bound-cost(G)
*1 local planList ← get-repair-plans(G)
*2 local lowerBound ←+∞

*3 for each planP in planList do
*4 if P .basicCost < lowerBound then
*5 lowerBound ← P .basicCost
*6 end if
*7 end for
*8 return lowerBound

Figure 6: Calculating Plan Node Cost (Pruning)

ing reduces the search space (see below); as well as the number of
child nodes each (non leaf) node has (N), the depth of the plan-goal
tree (D), and the size of the application design model (M). Space
limitations preclude a detailed derivation, so we merely note that
the work to be done for each plan node isO(N + M), and that the
work to be done for each goal node is roughlyO(N log N + D).
Since the number of nodes is roughlyO(ND) this gives an overall
computational complexity ofO(ND × (N log N + D + M)).

Without pruning, the algorithms in figures 4 and 5 are not guar-
anteed to terminate since looping may occur when the repair plan
of a constraint breaks another constraint and vice versa. Incon-
trast, the algorithms equipped with pruning capabilities in figures
6 and 7 are guaranteed to terminate due to two reasons. Firstly,
when a solution has been found and the best costβ has been de-
termined, branches that contains cycles (and potentially lead to an
infinite tree) are eventually pruned because of having a higher cost.
Secondly, in case when looping occurs beforeβ is determined, we
also have loop detection to prune the search tree.

4.1 Evaluation
One key question is how practical the algorithm is, specifically,

how well does it scale to larger problems?
In order to investigate this question we perform a number of ex-

periments where we “stress test” the algorithm in an artificial set-
ting. Two key parameters that we vary are the number of repair
plan instances (for one constraint), which corresponds to thewidth
of the plan-goal tree; and the overall size of the tree, whichwe do
by varying the number of constraints, and hence thedepthof the

function cost(G, ParentPlan)
1 local bestCost←+∞

2 local planList ← get-repair-plans(G)
3 G.bestPlans← empty
*4 remove plans inplanList that have basic cost greater thanG.β

*5 sort plans inplanList based on their basic action costs
*6 if G.β = +∞ then
*7 addG into history
*8 end if
9 for each planP in planList do
*10 P .β←G.β

*11 P .σ←G.σ

12 execute planP
13 if ParentPlan is notnull then
14 copy allParentPlan.subgoals to the end ofP .subgoals
15 end if
16 c← cost(P)
17 if c < bestCost then
18 bestCost ← c
19 clearG.bestPlans
20 addP to G.bestPlans

*21 G.β←P .β

22 else ifc = bestCost then
23 addP to G.bestPlans

24 end if
25 unexecute planP
26 end for
27 if ParentPlan is notnull then
28 ParentPlan.subgoals← empty
29 end if
30 return bestCost

Figure 7: Calculating Goal Node Cost (Pruning)

tree. We measure the running time, and how many nodes the al-
gorithm avoided having to explore through pruning. In addition to
considering an artificial setting, we also perform some experiments
with a non-artificial application.

Our simple artificial setting involves a design that has somenum-
ber of roles, and some number of agents. All of Prometheus’ 46
well-formedness constraints are used, with the exception of the
constraint that states that roles need to be associated withat least
one goal. However, the only constraint that will be violatedin this
artificial setting is the one that states that all roles should be asso-
ciated with an agent:Context Role inv c : self.agent→size()≥ 1.
This constraint is translated to the following repair plans8, where
sa is short forself .agent

P1 ct (self)← for eachi ∈ {1 . . . (1− size(sa))} !c′
t (self)

P2 c′
t (self) : x ∈ Type(sa) ∧ x 6∈ sa ← Add x to sa

P3 c′
t (self)← Createx : Type(sa) ; Add x to sa

In order to explore how the algorithm performs as the number
of repair plan instances is increased we have a design with a single
role andN agents. This gives a single violated constraint to fix, and
by increasingN we increase the number of repair options (since
there is always a single instance ofP3, but there areN instances of
P2, one for each agent).

The graph below shows the runtime (in milliseconds) for the first
experiment9. In this experiment pruning made no significant differ-
ence, since there is nothing to distinguish between the agents (the
8The translation is not optimal because it also caters for constraints
of the formsize() ≥ n.
9All experiments reported in this paper were performed on a laptop
running Windows XP and Java v1.5.006, with an Intel Centrino
1.73Ghz CPU and 1GB RAM. Times (reported in milliseconds) are
an average of 30 runs (we ignored the first run, since it was incon-
sistent due to JVM startup). For each run we collected the number
of goal and plan nodes explored, the total time (broken down into
the constraint evaluation time, time taken to update models, and
other time), and the number of constraint instances.

222

results in the graph are from the no-pruning run). Most of thetime
was taken up with checking for violated constraints in the repair
scope (line 20 of figure 6); for instance, for 160 agents, the total
execution time was 1,964ms, of which 1,915ms was taken in con-
straint evaluation.

One technique (proposed by [6]) which we have not applied, but
which we expect to make a big difference to execution time, isto
track which entities are used to evaluate each constraint, and then
use this information to work out which constraints might be af-
fected by a change to the design, and only re-evaluate these con-
straints. However, even without this, the algorithm is ableto deal
with a reasonable number of repair plan instances quite rapidly (just
under two seconds for 161 design entities and 1,606 constraints).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 20 40 80 160

Number of agents

T
im

e
(m

il
li

se
co

n
d

s)

total time eval time

We now consider the algorithm’s performance as the number of
constraints, and consequently the depth of the tree, is increased. We
create an artificial situation withN constraints by havingN roles
and one agent. Since each role has a single violated constraint, this
givesN constraints, and consequently a tree of depthN .

In this case pruning made a significant difference: forN = 8
without pruning the algorithm considered 10,590 goal nodesand
31,736 plan nodes taking a total of 21,594 milliseconds, whereas
with pruning the algorithm considered 1,673 goal nodes and 3,753
plan nodes taking 1,360 milliseconds. On the other hand, theheuris-
tic of sorting plans by their basic cost made no difference. As the
graph below shows10, the algorithm (with pruning) performs well
for N = 8. In this experiment the evaluation time was a smaller
component of the total time.

0

5000

10000

15000

20000

25000

1 2 4 8 10

number of roles

ti
m

e
 (

m
il

li
se

c
o
n

d
s)

pruning eval time (pruning) no pruning

Finally, in order to assess the performance of the algorithmin
a non-artificial situation, we conducted experiments on thedesign
of a weather alerting system [9]. The initial system helps the air-
port weather personnel in identifying discrepancies between cur-
rent weather readings and previously issued forecasts for pressure
and temperature. We introduced several new requirements, and for
each requirement made primary changes, and then ran the algo-
rithm to recommend secondary changes. We report here one typi-
cal case where a new requirement is that the system shall alsoshow
Volcanic Ash alerts. The existing design model contains 93 ele-

10ForN = 10 the no pruning case ran out of memory.

ments, and 46 constraints are considered. With regard to theno-
pruning case, the tool does not terminate as the algorithm fell into
a cycle. Without the plan sorting heuristic the algorithm took 7,671
milliseconds (of which 5,887 was constraint evaluation). With the
plan sorting heuristic total time was 7,921ms (with 6,090msbeing
constraint evaluation). This shows that, despite a worse case expo-
nential complexity, the algorithm is practical for small tomedium
designs. Note that there are still a number of techniques forimprov-
ing the algorithm’s efficiency which we have not yet implemented.

5. RELATED WORK
A range of approaches have been proposed to deal with change

propagation and inconsistency management in mainstream soft-
ware engineering. A large amount of this work such as [1, 11, 16,
19] uses rule-based engines to detect and resolve inconsistencies
and propagate changes. Our work uses the BDI architecture which
allows for more flexibility than the rule based approach since the hi-
erarchical relationship between plans allows for a naturalrepresen-
tation of rules that can cascade, i.e. where fixing an inconsistency
can cause further inconsistencies. Also, an event can have multiple
plans that it can trigger, with plan selection being made at run-time.
This allows us to represent multiple ways of resolving a given in-
consistency as separate plans, with the choice between themcor-
responding to available traceability information, designheuristics
and (possibly) human intervention.

Recently, Egyed [7] proposed an approach based on fixing incon-
sistencies in UML models, using model profiling to locate choices
of starting points for fixing an inconsistency in a UML model.By
means of model profiling, he also tried to predict the side-effects
of fixing an inconsistency. However, there are several significant
differences between his work and ours. Firstly, his work treats a
constraint as a black box whilst we analyse the constraints to gen-
erate repair plans. Secondly, his approach does not provideoptions
to repair inconsistencies, but only suggests starting points (entities
in the model) for fixing the inconsistency.

The cost calculation algorithm can be seen as a form of reasoning
about an agent’s plans, albeit in a special setting. There has been
previous work on investigating the interaction between plans either
within a single agent or between different agents in a multi-agent
system (e.g. [2, 20]). There are some similarities between this
work and ours, for example, a plan’s cost can be viewed as its re-
source consumption and the fact that fixing one constraint can par-
tially/totally repair other constraints can be seen as positive inter-
action between plans. However, there are several major differences
between their work and ours. First of all, the selection between ap-
plicable plans is not controllable. Secondly, the algorithms of [20]
rely on a finite plan-goal tree, whereas our algorithm does not re-
quire a complete tree, rather, the search tree is pruned as soon as
cheaper plans are identified.

The issue of calculating the cost of a plan or a goal in the context
of existing plans has been previously addressed in [8]. The aim
of their work is to determine whether an agent should adopt a new
goal. They estimate the cost (with a range) rather than calculate the
exact cost like our work. In addition, the plans which they consider
contains only primitive actions, and they require completeplans.
We also found that it is not easy to adopt their approach to deal
with selecting between alternative plans, as opposed to deciding
whether to adopt a goal.

Surprisingly, the specific problem of selecting between applica-
ble plans in BDI agents has not received much attention. One par-
ticular work that tackles this issue is presented in [5]. They extend
AgentSpeak(L) to deal with intention selection in BDI agents. They
also use a lookahead technique to work out the potential costof a

223

plan and choose the best plan to execute, and their plan represen-
tation is also hierarchical. However, there are several differences
between their work and ours. Firstly, they impose a limit on the
plan-goal tree by giving the depth of the tree as an input to their
algorithm. Secondly, they assume that the environment changes
rapidly and expect the worst case scenarios when looking ahead. In
the domain that we are interested in, the environment is static so
we always choose the least cost plans. Finally, they do not consider
costs in the context of existing plans.

Our process for computing cost — performing lookahead over
an and-or tree — clearly resembles a planning problem, and itcan
be viewed as such, with a few rather specific requirements. Firstly,
because we have repair plans we want to use an HTN (Hierarchical
Task Network) planner. Secondly, we want to collect the set of all
best (cheapest) plans, so we need a planner that supports a notion
of plan cost, and is able to collect all cheapest plans. Finally, be-
cause we have a large, potentially infinite, search space, wewant a
planner that does pruning and loop detection. Unfortunately, we do
not know of any planner that meets all three requirements. Perhaps
the closest is SHOP2 [10] which is an HTN planner that supports
collecting all best plans and that does branch and bound pruning.
However, SHOP2 does not do loop detection, and although it pro-
vides iterative deepening, which can be used to avoid looping, this
does not return the cheapest solution(s), as required. We encoded
a UML design11 and associated constraints and repair plans using
SHOP2. Our experiments have shown that SHOP2 gives the same
results as our cost calculation if it terminates, but that itis suscep-
tible to looping, and that SHOP2 is slightly slower than our Java
implementation (0.172 seconds vs. 0.157 seconds12).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have briefly described a change propagation

framework that has been implemented based on the BDI agent ar-
chitecture. We then raised the issue of having multiple applica-
ble repair plans and how to select amongst these repair plans. In
order to deal with this problem, we have proposed a cost calcula-
tion mechanism for repair plans. This mechanism has been imple-
mented, and we presented results of an empirical exploration of the
scalability of the algorithm. The evaluation showed that checking
for violated constraints takes up most of the execution time, that
pruning does make a significant difference, and that the algorithms
are practical for small to medium realistic examples.

A key area that we are currently working on is performing a case
study in order to better ascertain theeffectivenessof the approach
as a “change propagation assistant”. In order to ascertain this, we
have integrated our implementation with the Prometheus Design
Tool (http://www.cs.rmit.edu.au/agents/pdt) [14]. Another area for
future work is investigating the interaction between constraints in
order to limit the number of plans to be explored and to allow for
pruning more quickly.

Acknowledgements
This work has been funded by the Australian Research Council
(grant LP0453486) in collaboration with Agent Oriented Software.
We would like to thank Lin Padgham, Sebastian Sardina and other
members of the RMIT agent group for discussions.

11The video-on-demand system [6], and see http://peace.snu.ac.kr/
dhkim/java/MPEG/

12On a Windows XP PC with a 1.73Ghz CPU and 1GB RAM, using
Java v.1.5.006 and SHOP2 v1.3 running with GNU CLISP v2.3
for Windows.

7. REFERENCES
[1] L. Briand, Y. Labiche, and L. O’Sullivan. Impact analysis and change

management of UML models. InInternational Conference on
Software Maintenance (ICSM), pages 256–265, 2003.

[2] B. J. Clement and E. H. Durfee. Top-down search for coordinating
the hierarchical plans of multiple agents. InAGENTS ’99:
Proceedings of the third annual conference on Autonomous Agents,
pages 252–259. ACM Press, 1999.

[3] K. H. Dam and M. Winikoff. Generation of repair plans for change
propagation. In M. Luck and L. Padgham, editors,Agent Oriented
Software Engineering (AOSE), pages 30–44, Honolulu, Hawaii, May
2007.

[4] K. H. Dam, M. Winikoff, and L. Padgham. An agent-oriented
approach to change propagation in software evolution. In
Proceedings of the Australian Software Engineering Conference
(ASWEC), pages 309–318. IEEE Computer Society, 2006.

[5] A. Dasgupta and A. K. Ghose. CASO: a framework for dealingwith
objectives in a constraint-based extension to AgentSpeak(L). In
Twenty-Ninth Australasian Computer Science Conference (ACSC
2006), pages 121–126. Australian Computer Society, Inc., 2006.

[6] A. Egyed. Instant consistency checking for the UML. InProceedings
of the 28th International Conference on Software Engineering
(ICSE), Shanghai, China, May 2006.

[7] A. Egyed. Fixing inconsistencies in UML models. InProceedings of
the 29th International Conference on Software Engineering(ICSE),
Minneapolis, USA, May 2007.

[8] J. F. Horty and M. E. Pollack. Evaluating new options in the context
of existing plans.Artificial Intelligence, 127(2):199–220, 2001.

[9] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff.
An open meteorological alerting system: Issues and solutions. In
V. Estivill-Castro, editor,Proceedings of the 27th Australasian
Computer Science Conference, pages 351–358, Dunedin, New
Zealand, 2004.

[10] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman. SHOP2: An HTN planning system.Journal of
Artificial Intelligence Research (JAIR), 20:379–404, 2003.

[11] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency
management with repair actions. InICSE ’03: Proceedings of the
25th International Conference on Software Engineering, pages
455–464. IEEE Computer Society, 2003.

[12] Object Management Group. UML 2.0 Superstructure and
Infrastructure Specifications, 2004.

[13] Object Management Group. Object Constraint Language (OCL) 2.0
Specification, 2006.

[14] L. Padgham, J. Thangarajah, and M. Winikoff. Tool support for agent
development using the Prometheus methodology. InFirst
international workshop on Integration of Software Engineering and
Agent Technology (ISEAT 2005), Melbourne, Australia, September
2005.

[15] L. Padgham and M. Winikoff.Developing intelligent agent systems :
a practical guide. John Wiley & Sons, Chichester, 2004. ISBN
0-470-86120-7.

[16] V. Rajlich. A model for change propagation based on graph rewriting.
In Proceedings of the International Conference on Software
Maintenance (ICSM), pages 84–91. IEEE Computer Society, 1997.

[17] V. Rajlich. Changing the paradigm of software engineering.
Commun. ACM, 49(8):67–70, 2006.

[18] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. InMAAMAW ’96: Proceedings of the 7th
European workshop on Modelling autonomous agents in a
multi-agent world : agents breaking away, pages 42–55.
Springer-Verlag, 1996.

[19] J. L. Sourrouille and G. Caplat. Checking UML model consistency.
In Workshop on Consistency Problems in UML-based Software
Development at UML 2002, Dresden, Germany, 2002.

[20] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding
resource conflicts in intelligent agents. InProceedings of the 15th
European Conference on Artificial Intelligence, ECAI’2002, pages
18–22. IOS Press, 2002.

[21] H. V. Vliet. Software engineering: principles and practice. John
Wiley & Sons, Inc., 2nd edition, 2001. ISBN 0471975087.

224

