Cost-Based BDI Plan Selection for Change Propagation”

Khanh Hoa Dam Michael Winikoff
RMIT University RMIT University
Melbourne, Australia ) Melbourne, Australia
kdam@cs.rmit.edu.au michael.winikoff@rmit.edu.au
ABSTRACT very little work that we are aware of on software maintenance in

agent-oriented software engineering, and this work aims to fill that
gap, as well as apply agent technology to the problem of software
maintenance in a broader context.

Software maintenance is responsible for as much as twostbird
the cost of any software, and is consequently an importaegareh

area. In this paper we focus on tlkhange propagatiorprob- h e - dified iall ) h
lem: given a primary change that is made in order to meet a new _ V/hen software is modified, typically some primary changes are

or changed requirement, what additional, secondary, @saage made, and then additional, secondary, changes are made as a result.
needed? We build on previous work that has proposed to use a BD FOT €xample, an agent type is added, and then consequently other

(belief-desire-intention) agent framework to propagédtenges by agents need o be modifieq to communicate with the new agent
fixing violations of consistency constraints. One questhmineeds ~ YPe- Determining and making these secondary changes is termed

to be answered as part of this framework is how to select lmtwe chaﬂge propa%aF:gﬁl& 171. . K hich d
different applicable (repair) plan instances to fix a givenstraint This paper builds on our previous wor [‘.1]' which proposed an
violation? We address this issue by defining a suitable naio agent_-based _approach to chan_ge propagation. Given a model (i.e.
repair plan costthat incorporates both conflict between plans, and deglgn) .Wh'Ch .has b.eenI subjected to primary changeg, the sys-
synergies between plans. We then develop an algorithmdmase tem finds inconsistencies in the model (with respect to given con-

the notion of cost, that finds cheapest options and propbses to straints), and then invokes repair plans to fix these consistency vi-
' olations. The change propagation engine proposed uses a Belief-

the user. Desire-Intention (BDI) platform to perform change propagation.

. . . The use of BDI-style, event-triggered, plans matches well with the
Categories and Subject Descriptors cascading nature of change propagation where a change can cause
D.2.7 [Software Engineering: Distribution, Maintenance, and  other changes to be made. Further, there are usually many ways
Enhancement of fixing a given inconsistency, and this is naturally captured us-

ing multiple plans that respond to a given event. Although we do
not use the full capabilities of BDI agents, these two properties of

General Terms change propagation make the use of BDI plans natural and, we be-

Algorithms, Design lieve, well motivated.
Typically a given inconsistency will have a number of repair
Keywords plans that could be used to restore consistency. In this paper we

focus on the problem diow to select amongst these repair plans
This problem is made harder because we need to handle infinite

trees, due to the nature of cascading. On the other hand, plan ex-

ecution for change propagation does not take place in a dynamic

Software Maintenance and Evolution, Change Propagatitam P
Selection, Belief Desire Intention, Plan Cost

1. INTRODUCTION environment and thus given a number of relevant repair plans, the
A large percentage — as much as two-thirds — of the cost of choice between them can be controlled by the system. _
any software can be attributed to itsaintenance modifications The remainder of this paper proposes a mechanism for automati-
to the software due to a range of cadsesfter the software has  cally selecting between alternative repair plans based on a notion of
been written [21, page 449]. Consequently, software mairtee cost We define the cost of plans (section 3) in a way that takes into

is a highly important area for research. In particular there been account cascades (where fixing the violation of a constraint breaks
another constraint), and synergies between constraints (where fix-

*The primary author of the paper is a student. ing the violation of a constraint also fixes another violated con-
1These are usually classified as betrgrective maintenancdix- straint). An algorithm for calculating costs, and hence selecting
ing bugs; perfective maintenangeadding new functionality; or  between repair plans, is given (section 4), and its scalability is ex-
adaptive maintenangehanging the system so it continues towork  pjored. Finally, we discuss related work (section 5) before conclud-
in a changed environment. ing and outlining future work (section 6).

Cite as: Cost-Based BDI Plan Selection for Change Propagation, Khan
Hoa Dam and Michael WinikoffProc. of 7th Int. Conf. on Autonomous

Agents and Multiagent Systems (AAMAS 20@8&Jigham, Parkes, 2. CHANGE PROPAGATION FRAMEWORK

Muller and Parsons (eds.), May, 12-16., 2008, Estoril, iz This section briefly describes the agent-based change propaga-

pp. 217-224. : : tion framework of [4], and its components, including plan repre-
Copyright (©) 2008, International Foundation for Autonomous Agents and - v p v g“ p p
Multiagent Systems (www.ifaamas.org). All rights reserved. sentation and generation. The framework provides a “change prop-

217



“SE — forAll (¢)” specifying thatc must hold for all elements of
SE. For detailed information on OCL see [13]. For example, the
following constraint, which could be expressed in moreitiawdal
form asV ac € self.actiondpl € self.plan: ac € pl.actionV
Jcap € self.capability : ac € cap.action, states that: consider-
ing the set of actions that are performed by the ageeit.actior),

for each of the actionsa€) if we consider the plans of that agent
(self.plan) then one of these planplf must include the current ac-
tion (ac) in its list of actions pl.action) or if we consider the ca-
pabilities of that agentsglf.capability then one of these capabil-

Figure 1: Prometheus Meta-Model (Excerpt) i(ty (cap)t_mr)ust contain the current actioad) in its list of actions
cap.action).

*
0- Action

[
%

0.%

0.*

[ Plan ]

agation assistant” that helps a designer by suggestindiaoli
(secondary) changes once primary changes have been made. Th
framework is generic in that it can be applied to variousvgafe
engineering methodologies, and we have applied it to both.UM
[12] and Prometheus [15].

The key data items we deal with arereeta-modela collection
of well-formednesgonstraints an application desigmode| and a
collection ofrepair plans The overall process is:

Constraint 1 Any agent that performs an action should contain at
least one plan or capability that performs that action.
Context Agent inv:
self.action—forAll(ac : Action|
self.plan—exists(pl : Plan| pl.action—includes(ac)) or
self.capability—exists(cap : Capability
cap.action—~includes(ac)))

1. At design time the repair plans are automatically gererat The meta-model and constraints can be developed by exigacti
from the constraints and meta-model [3]. relationships and dependencies from the methodology thatamt
to apply the framework to. For instance, a Prometheus metdem
2. Atruntime we check whether the constraints hold in the de- and a set of related constraints have been developed in [4].
sign model. The application desigmodelis a design, in this case a Prometheus
design. Abstractly, we can view a design as consisting ot afse
entitiesE (with their types), a set of relationships(e.g. theaction
attribute ofagentlincludesactl), and a value functiorV' (e.g. the
nameattribute of the entityagentlhas the valueMonitor Agent).
Formally, letE be a set of entity-id and entity-type pairB;be a
5. We select a repair p|an instance (poss|b|y by p|ck|ng e s set of triples: entity 1D (SOUrCG), attribute D, and eniliD/(deSti-
gle cheapest, if it exists, or by asking the user). nation); andV be a function from entity ID and attribute ID to a
value (e.g. integer, string).
6. The selected repair plan instance is executed, and itegpda The four types of primitive actions that are used to updage th

3. We use the repair plans to generate plan instances (a&r re
options) for the violated constraints.

4. We calculate the cost of the different repair plan instanc

the application design model. model are creation of entities, adding and removing rebatigps
o _ . between entities, and updating the values of attributetifies.

Note that although it is possible for loops to exist, the aastu- Formally create(x, t) has no precondition, and has the postcon-
lation avoids them (if possible, i.e. if the constraints tenfixed) dition £’ = E U {(z, t)} (whereE’ denotes the value of after
since they have infinite cost. ) the operation);add(ez, e1,a) has the preconditiofes, e2} C
We now briefly describe each of the four key data items. dom E (where domX is the domain ofY) and postconditiorR’ =

_Thg meta-m_odel specifies, in tr_]e usu_al manner, _vvhat entities  p | {{e1, a, e2)}; remove(ez, e1, a) has true precondition and
exist in a desigh model, and their relationships. Flgurem postcondition?’ = R \ {(e1, a, e2)}; andchange(e, a, v) has
a s_,mall _excerpt of the Prometheus meta-m_c_x_jel, which d_emets true precondition and the postconditiofl = V @ {{e, a) — v}
lationships b_etween age_nts, plans, ca_pabllltles andrectid he whered @ B = {(z,y) | (z,y) € A Az ¢ domB} U B.
meta-model is captured in UML, and is exported to XMI format An important observation is that the preconditions of theé®-

for use by our implementation. _ itive actions are quite weak. This allows us to arbitrarépmder a
The constraints specify conditions that a well-formed design  sequence of actions subject to the following constraint3:cte-
should satisfy. We use the Object Constraint Language fisjjec- ation of entities must remain before addition of relatiapstbe-
ify constraints. OCL is part of the UML standards which isdise tween the entities; (2) if the sequence of actions has reahind
specify invariants, pre-conditions, post-conditions attter kinds pairs — an action that undoes the effects of an earlier action

of constraints imposed on elements in UML models. Below is hen the pair cannot be swapped, but it can be simplified tstdel
an example of an OCL constraint that defines the semantics of g the earlier action. For example, adding a relationsbiloded
relationships between agents, plans, capabilities arnidnact In by deleting it can be replaced by simply deleting the refetiop.

the OCL notation “self” denotes the context node (in thisecas  congition (2) is not needed if we assume that the sequence-of a
an Agent) to which the constraints have been attached and-an a tjgng being reordered ison-redundanti.e. does not contain any

cess pattern such as “self.action” indicates the resultobdvi- redundant pairs.

ing the association between an agent and an action (in the-met

model), which is, in this case, a collection of actions wharke

performed by the agent. OCL also denotes operations onceolle Lemma 1 (Action sequence reordering)A non-redundant sequence

tions such as SE — includegz)” stating that a collectionSE of actionsS can be arbitrarily reordered, so long as creation of en-
must contain an entity, or “SE — existg¢)” specifying that a tities precedes relating these entities, without affegtime overall
certain conditionc must hold for at least one element 6f, or effect ofS.

218



E[: C]+— B
CVC|CANC|-C|Vze(C|IzeC|Prop
Add Entity To SE |!E | Bi; Bz |

Crreate Entity : Type | if C then B |

Change Property to Property |

Remove Entity From SE | for each x in SE B

Qs

Figure 2: Repair plan abstract syntax

The syntax forepair plans? (see figure 2) is based on AgentS-
peak(L) [18], but with some differences (most notably inGfye
ing the actions, and in allowing for richer plan bodies). Eegpair
plan, P, is of the formE : C' < B whereF is the triggering event
(conceptually, the name of the constraiftis fixing, subscripted
with eithert or f to indicate whether the constraint is being made
true or false);C is an optional “context condition” (Boolean for-
mula) that specifies when the plan should be appli¢alled B is
the plan body. The plan body can contain primitive actiorchsas
adding and deleting entities and relationships, and changiiop-
erties. The plan body can also contain sequenBes (-), condi-
tionals and loops, and events which will trigger furthemald £).

The repair plans are generated automatically from the caings
using a repair plan generator that takes the OCL constraimds
the UML meta-model as inputs, and returns a parameterizeaf se
event-triggered repair plan typeg€ach OCL constraint (or sub-
constraint) has a corresponding goal (or sub-goal) and weaie
the constraint by posting the goal and using the plans toeaehthe
goal. Thus in the remainder of this paper we will talk about repair-
ing constraints and achieving sub-goals as being the sante th

For example, the constraint given earlier is translatedlfeyR
operator of [3]) to the following repair plafiswhere we define
¢ = Vac € self.action : cl, andcl = ¢2 V c4, and 2
dpl € self.plan : ¢3, andc3 = ac € pl.action, and c4
dcap € self.capability : ac € cap.action.

P1 c(self) < for eachac € self.action
if = c1(ac) then!c(self, ac)

ci(self, ac) «— removeac from self .action

c;(self , ac) «!cl(self, ac)

cli(self, ac) —!c2¢(self, ac)

cl(self, ac) «!cds(self, ac)

c2¢(self , ac) : pl € self .plan —!c3¢(self, ac, pl)

c2¢(self, ac) : pl € Plans N\ pl & self .plan —
addpl to self .plan ; ¢3¢ (self, ac, pl)

c2¢(self , ac) < createpl : Plan ; addpl to self .plan ;
le3¢(self, ac, pl)

c3¢(self, ac, pl) «— addac to pl.action

P2
P3
P4
P5
P6
P7

P8
P9
Given a design model which has an action assigned to agent
a1, wherea; has plarp; ; these plans can produce a range of actions

to repair the constraint including removing, from a1 (P2), or
assigningac; to p1 (P3, P4, andP6).

2“Prop” denotes a primitive condition such as checking wheth
x > y or whetherz € SE, andSE denotes a set-valued expres-
sion.

%In fact when there are multiple solutions to the context bl
each solution generates a new plan instance. For exampites if
context condition isz € {1, 2} then there will be two plan in-
stances.

4For space reasons we have omitted the plans:dorwhich are
similar to those fore2.

219

One key consequence of generating plans from constraatte
than writing them manually, is that by careful definition bétplan
generation scheme (i.e. tieoperator of [3]) it is possible to guar-
antee certain properties of the generated plans.

Theorem 1 (R complete and minimal) The generated repair plans
are complete that is, given a model (i.e. desigh) in which con-
straint C' is violated, any minimal sequence of actions (that is, one
that does not contain unnecessary actions) that leads to @&emo
M’ where (' is not violated can be obtained by instantiating the
plans inR(C'). Proof: See theorem 1 of [3]

At runtime, the application model is checked against the OCL
constraints and any violations of these constraints arel fisséng
the repair plans. A given violation can be potentially fixede
number of possible repair plan instances. In order to hdkcse
which repair plan instances to use we calculate the cost i ea
repair plan instance.

3. COST DEFINITION

In this section, we give equations that define the cost of dixin
a given constraint and then explore some properties of tfiri-de
tions. The notion of cost that we use is abstract: it can beede
as counting the number of primitive actions (addition, reatoup-
date, creation) involved in a given plan. For example, ikieplan
Py involves 5 additions and repair pld® involves 3 additions then
we view P> as being cheaper. In order to compare “apples and or-
anges”, e.g. ifPs involves two additions and a creation, we assume
that each primitive action type is assigned a numerical (@ssta-
sic cost”), for instance creation may have an assigned ¢&sand
addition a cost of 3. These numbers do not correspond to ahy re
cost, and are simply used to compare different action types.

We begin with some preliminary concepts and terminology. A
constraint that does not hold with regard to a model is saioeto
violated, and can be fixed by executing a repair plan. A rggain
instance contains repair actions (the set of which is dendi(g”))
and subgoals (representing sub-constraints) the set achvidide-
notedG(P). Repairing a constraint is done in the context oéa
pair scope a set of constraints that need to be considered. The
constraints in the repair scope are checked when the refaair p
finishes executing, and any violated constraints are theained.
We denote the repair scope of a plBrasS(P). A global repair
scope involves all constraints whilst a local one contaorstraints
related to certain entities in the model. Normally the repaope
is set initially (typically to be global) and then is not clgaal. We
define the repair scope explicitly, rather than automdjicainsid-
ering all constraints, in order to allow a user to limit thepagation
to certain constraints or model entities.

We now define the cost of a repair plan in terms of the costs
of its basic actions (basicCost), the cost of its subgoalbG®al-
Cost), and the cost of fixing violated constraints in its iepeope
(scopeCost). Note thabst is defined for actionsdpst(A)), plans
(cost(P)), constraints fost(C')), and (sub)goalscpst( G)).

Definition 1 (Action cost) The cost of an actiord, denotectost(A),
is the user-defined basic cost associated with the actioa (ye.
addition, removal, update, or creation).

Definition 2 (Plan cost) The cost of a plarP (denoted cost®)) is
equal to the sum of its main cost and its repair scope cost. The
main cost of a plan is the sum of the plan’s basic cost and its su
goal cost. The scope cost is the cost of repairing all (viedat



constraints in the plan’s repair scope

cos{P) = mainCostP) + scopeCogtP)
mainCostP) = basicCostP) + subGoalCostP)
= > cos(d) + > cos(G)
A€A(P) Geg(pP)
scopeCostP) = Y cost(C)
ces(p)

There are usually several applicable plan instances tdrrapa
constraint violation. The best plan, which is selected foa-
tion, is the one with minimum cost. Hence the cost of repgian
constraint is the cost of the cheapest repair plan instance.

Definition 3 (Constraint cost) The cost of fixing constrain€' is

equal to the cost of the best applicable repair plan instawith

regard to C'. If there are no applicable repair plans, the cost©f
is undetermined. The cost of fixing an unviolated constrigirt

We formalise this as follows, whef@( (') is the set of all repair
plan instances that can be used to fix constraiht

0 if C' unviolated

cos(C) = { min {cost(P) | P € P(C)} otherwise

Definition 4 (Goal cost) The cost of achieving a goal is the cost
of the cheapest available repair plan. Similarly to consits, we
useP((G) to denote the set of all repair plans that can be used to
achieve the goals.

cost(G) = min {cost(P) | P € P(G)}

We now briefly note some properties of these definitions. We sa
that a sequence of actiodsrepairs constrain€ in model M iff (a)
Cis violated inM; and (b) performings on M yields a new model
M’; and (c)C holds inM’. We say that the sequenSés minimal
if removing actions from it always results in a sequence titat
longer repairsC' in M. This generalises to a set of constraints in
the obvious way.

Lemma 2 Let My be a model in which the constraints; are vi-
olated. LetS be a minimal sequence of actions for repairing all
the constraintsC; in My. Then for a given constraint, say (without
loss of generality)C, there exists at least one sequence of actions

S” which is obtained by removing some number (possibly zero) of

actions fromsS such thatS’ repairs C; in My and is minimal.
Proof: S repairs C; in My, but may contain actions that are un-
necessary for repairing”;. We constructs’ by simply removing
these unnecessary actions, resulting in a minisfal |

Theorem 2 Let M, be a model where some number of constraints
C; are violated and lefS be a minimal (and hence non-redundant)
sequence of actions that repairs thgin Moy, yielding modelM:

®Since we will definecost(C) = 0 if the constraintC' is not vio-
lated we simply sum over the cost of all constraintsSiP).

220

Then for any of the given constraints, say (without loss ofege
ality) C1, there exists a minimal action sequenggthat repairs
Ci in My yielding M,. Furthermore, there then exists a (non-
redundant) action sequend® that takes us fron/; to My where
cost(S) = cost(S1) + cost(S’).

Proof: We constructs’” and S; from S as follows. We forn$; by
removing actions fron$' to yield a minimalS; for repairing C; in
Moy (using lemma 2). The actions that are not removed ffare
the remainderS’. We can view the sequens$e followed byS’ as
being a reordering of5, and by lemma 1 it has the same effect as
S, i.e. results inMr. SinceS; followed byS’ has the same actions
as S it must have the same cost. |

By applying this theorem repeatedly, @i, then C-, etc. we
can show that in order to repair a set of violated constrairgs
can consider a single constraint at a time, in an arbitrademr
with no loss of generality. Furthermore, since the repainglare
complete (theorem 1), the action seque¢ean be generated by
instantiating the repair plan set.

This strong result is only possible because the actions we co
sider have limited preconditions, allowing them to be reoed
fairly freely. A specific corollary is that, considered aslanming
domain, our actions do not allow for a Sussman anomaly situat
to exist.

4. A COST CALCULATION ALGORITHM

In the previous section, we have defined how a repair plass co
is calculated. We now give algorithms that calculate thist.cdhe
algorithms operate with plan-goal trees, where a goal hahigs
dren the plans that can be used to achiev®(t) in definition 4)
and a plan has as children its sub-go&$K)). Each plan node
stores the plan’s basic codtgsicCost initially the basic cost of
the plan), other costsdynamicCostinitially 0), a boolean value
indicating whether the node is a ledsl(eaf initially false), and a
queue of its sub-goalsbGoalQueugnitially empty). Each goal
node stores a list of best (i.e. least cost) plarigss{Plansinitially
empty) that achieve the goal.

Before we present the algorithm, we discuss a tree transform
tion that the algorithm uses. When considering the altermatays
of dealing with a given (sub)goal the algorithm consideesatail-
able plans and selects the cheapest. In doing so, it needsgiler
the future: what will happen after the goal is handled. Wetds t
by transforming the tree so that the “future” is pushed domto i
the tree beneath the current goal. Specifically, when weidena
goal that has a future (i.e. a parent plan with non-emptygasis)
we copy the sub-goals of the parent plan to the sub-goalseof th
children plans (see figure 3).

p P P
PN { i
G @ G G

P1 PZ P1 PZ P1 PZ

[ A

) ) 1 2

G, G, 6,G6; G i it

o Vi P, P,

P, P, Py Py v v

G

Figure 3: Tree Transformation

The algorithm presented in figure 4 computes the cost of a plan
according to the equations in the previous section. Sincasseme
thatbasicCosts already computed (by simply summing the costs



of primitive actions in a plan), the algorithm only needs torkv
out the plan’s subgoal costs and repair scope costs (sedtidafin
2). These costs are storeddgnamicCostvhich is initially set to
0, and is progressively incremented with the costs of suddsgand
of violated constraints in the repair scope.

The algorithm selects each sub-goal in turn (lines 2 and 8) an
adds the cost of any violated constraints onto the dynansit(tine
6). If the plan node has children (i.e. violated constrdjrisen we
are done, since the scope cost will be calculated in thosérehi
On the other hand, if this plan node has no childr&idaf =
true, line 9) then we check for violated constraints in the repair
scope (lines 10 and 11), and if there are any, we select orfeeof t
violated constraints (line 12), add it to the queue (line, 18)d
recursively callcost(P) to compute its cost (line 14).

The algorithm in figure 5 calculates the cost of a goal node (se
definition 4) by considering the possible plans and lookimgtlie
cheapest one. We first retrieve a list of applicable planstfer
goal (line 2). We then iterate through the list of plans (i)eand
calculate the cost for each of them (line 9). When a plan that i
cheaper than the previous best is found, the previous bas{I
are replaced with the new plan (lines 10-13). When a planuedo
that is as good as the current best, it is added to the list sif be
plan(s) (lines 14-15).

The algorithm uses look-ahead and simulates the applicafio
the plans. Line 5 executes the plan currently being consitby
(a) updating the model with the effects of the plan’s actiar
(b) adding the plan’s sub-goals to the tree. In order to be &bl
consider alternative plans we need to undo the effects gfldres
execution on the model, and this is done by line 17. This idemp
mented by logging changes to the model, allowing these @sang
to be rolled back.

Lines 6-8 and 19-21 implement the tree transformation dised
earlier: the sub-goals of the parent plan (excluding thestuisub-
goal) are added to the end of the sub-goals of each Blélines

6-8). Once this has been done for all plans, we remove the sub-

goals from the parent (lines 19-21).

function cost(P)

1  P.isLeaf < true

2 while P.subGoalQueue is NOT emptydo

3 dequeussubGoal from P.subGoalQueue

4 if the constraint associated witub G oal is violatedthen

5 P.isLeaf «— false

6 P.dynamicCost «— P.dynamicCost + costsubGoal, P)
7 end if

8  end while

9 if P.isLeaf = true then

10 local violatedSubGoals < get-scope-violated-constraints()
11 if violatedSubGoals is NOT emptythen

12 get a randomiolatedSubGoal from violatedSubGoals
13 enqueu@iolatedSubGoal into P.subGoalQueue

14 return cost(P)

15 end if

16 endif

17 return P.dynamicCost + P.basicCost

Figure 4: Calculating Plan Node Cost (No Pruning)

The algorithms given in figures 4 and 5 implement the defingio
given in section 3, but they search the whole goal-plan ffeés is
inefficient, and may lead to non-termination, since the tnes be
infinite. We therefore modify the algorithms by adding lod@ck-
ing, and a form of pruning. We add to each goal/plan node two

5Note that when we encounter a violated constraint we note tha
the plan node is not a leaf (line 5).

221

function cost(G, ParentPlan)

1 local bestCost < +o0

2 local planList < get-repair-plans()
3 G.bestPlans «— empty

4 for each planP in planList do

5 execute plarP

6 if ParentPlan is notnull then

7 copy all ParentPlan.subgoals to the end ofP.subgoals
8 end if

9 local ¢ < cost(P)

10 if c < bestCost then

11 bestCost < C

12 clearG.bestPlans

13 addP to G.bestPlans

14 else ifc = bestCost then

15 addP to G.bestPlans

16 end if

17 unexecute pla®

18 end for

19 if ParentPlan is notnull then

20 ParentPlan.subgoals «— empty
21 andif

22 return bestCost

Figure 5: Calculating Goal Node Cost (No Pruning)

valueg: g (initially +oc) - the least cost of fixing all constraints
in the repair scope, and (initially 0) - the (accumulative) cost of
everythingabovethe current node. In figures 6 and 7 lines that are
new (relative to figures 4 and 5) are marked with “*”.

Computing the cost of a plan is done by the algorithm in fig-
ure 6. We use a pruning mechanism, where we establish a thresh
old in order to avoid exploring alternatives that are morpesx
sive than known solutions. The threshold is calculatece (i of
figure 6) based on the current accumulative egsthe plan cost
(P.basicCost and P.dynamicCost) and the lower bound cost,
which is an estimate of the minimum cost of achieving a (gd®)
(lines 1-8 in the bottom of figure 6).

The algorithm in figure 6 also includes loop detection (liA€g).

It keeps track of goals seen along a branch in a list nahnisdry
(line 6-8 in figure 7). If the same goal is seen again, cornediny

to the fact that a constraint has become violated and is libied
again, then we have a loop and we terminate with infinite cidsis
checking only needs to be done wheis at its initial value {oo):

if 8 has afinite value, then an infinite branch will be pruned bseau
its cost will (eventually) exceed (because all plans do something,
and hence have non-zero cost).

The two values3 ando are passed from each parent goal/plan
node down to its child plan/goal nodes (lines 14-15 in figuem@
lines 10-11 in 7). Line 14 in figure 6 shows thatis in fact an
accumulative cost: we accumulate the cost of the curreng imod
o. When a plan cost is resolved, the total cost so far (i.e. tisé ¢
of the plan as well as, the cost of the path from the root of the
tree to the current node) is compared against the cui¢émisee if
it needs to be updated (line 27 in figure 6). If at any point tialt
cost for a plan {hreshold) exceeds3 then we prune (lines 11-13
of figure 6). We also prune in the (admittedly unlikely) casatta
plan’s basic cost by itself exceedgline 4 of figure 7). Once a best
plan for a goal is found, the goalis also updated with the plan’s
5 (line 21 of figure 7). Line 5 of figure 7 implements a heuristic
that considers plans with cheaper basic cost first.

The computational complexity of the algorithm depends @n th
cost of checking a single constraint (which, based on engligvi-
dence [6], we assume to be constant); and the degree to wiich p

"We use ‘3" since we do the3 part of a classicalk — 3 pruning.
We do not do thex part because we have a min-sum tree, rather
than a min-max tree.



function cost(P)

1 P.isLeaf «— true

2 while P.subGoalQueue is NOT emptydo

3 dequeussubGoal from P.subGoalQueue

*4 if P.3=+o0 andsubGoalisin history then

*5 clear history

*6 return +oo

*7 end if

8 if the constraint associated withub Goal is violatedthen

9 P.isLeaf < false

*10 local threshold = P.o + lowerBoundCost(subGoal) +
P.basicCost + P.dynamicCost

*11 if threshold > P.[3 then

*12 return threshold

*13 end if

*14 subGoal.c — P.o + P.dynamicCost + P.basicCost

*15 subGoal. — P.3

16 P.dynamicCost «— P.dynamicCost + costsubGoal, P)

17 end if

18 end while

19 if P.isLeaf = true then

20 violatedSubGoals «+ get-scope-violated-constraints()

21 if violatedSubGoals is NOT emptythen

22 get a randomviolatedSubGoal from violatedSubGoals

23 enqueuiolatedSubGoal into P.subGoalQueue

24 return cost(P)

25 end if

26 endif

*27 P.B < min(P.3, P.c + P.dynamicCost + P.basicCost)
28 return P.dynamicCost + P.basicCost

function lower-bound-cost(G)

local planList < get-repair-plans(G)

local lowerBound «— +oo

for each planP in planList do
if P.basicCost < lowerBound then

lowerBound <« P.basicCost

end if

end for

return lowerBound

Figure 6: Calculating Plan Node Cost (Pruning)

ing reduces the search space (see below); as well as the nombe
child nodes each (non leaf) node hag)(the depth of the plan-goal
tree (D), and the size of the application design mod#l)( Space
limitations preclude a detailed derivation, so we mereltertbat
the work to be done for each plan node$N + M), and that the
work to be done for each goal node is rouglily N log N + D).
Since the number of nodes is roughty N ?) this gives an overall
computational complexity of)(N? x (N log N + D + M)).
Without pruning, the algorithms in figures 4 and 5 are not guar
anteed to terminate since looping may occur when the rejeir p
of a constraint breaks another constraint and vice versaoir
trast, the algorithms equipped with pruning capabilitiedigures
6 and 7 are guaranteed to terminate due to two reasons. yFirstl
when a solution has been found and the best Gdsas been de-
termined, branches that contains cycles (and potentiadigt to an
infinite tree) are eventually pruned because of having adnigbst.
Secondly, in case when looping occurs bef@ris determined, we
also have loop detection to prune the search tree.

4.1 Evaluation

One key question is how practical the algorithm is, spedifica
how well does it scale to larger problems?

In order to investigate this question we perform a numbexef e
periments where we “stress test” the algorithm in an aréfiset-
ting. Two key parameters that we vary are the number of repair
plan instances (for one constraint), which correspondseavidth
of the plan-goal tree; and the overall size of the tree, whietdo
by varying the number of constraints, and hencedépthof the

222

function cost(G, ParentPlan)
local bestCost < +oo
local planList < get-repair-plans@)
G.bestPlans «— empty
remove plans irplanList that have basic cost greater théh 3
sort plans inplanList based on their basic action costs
if G.3=+o00then
add G into history
end if
for each planP in planList do
P.B— G.B
P.oc— G.o
execute plaP?
if ParentPlan is notnull then
copy allParentPlan.subgoals to the end ofP.subgoals
end if
¢« cost(P)
if ¢ < bestCost then
bestCost «— ¢
clearG.bestPlans
addP to G.bestPlans
G.B— P
else ifc = bestCost then
addP to G.bestPlans
end if
unexecute plai
end for
if ParentPlan is notnull then

ParentPlan.subgoals «— empty
end if

1

2

3
*4
*5
*6
*7
*8
9
*10
*11
12
13
14
15
16
17
18
19
20
*21
22
23
24
25
26
27
28
29
30 return bestCost

Figure 7: Calculating Goal Node Cost (Pruning)

tree. We measure the running time, and how many nodes the al-
gorithm avoided having to explore through pruning. In addito
considering an artificial setting, we also perform some Brpents
with a non-artificial application.

Our simple artificial setting involves a design that has saome-
ber of roles, and some number of agents. All of Prometheus’ 46
well-formedness constraints are used, with the exceptiothe
constraint that states that roles need to be associatedaniéast
one goal. However, the only constraint that will be violatedhis
artificial setting is the one that states that all roles sthdn@ asso-
ciated with an agentContext Role inv c: self.agent>size(> 1.
This constraint is translated to the following repair pfanshere
sa is short forself .agent

Pl c (self) < foreachi € {1...(1 — size(sa))} !ci(self)
P2 ci(self): z € Type@a) A = & sa — Add z to sa
P3 c;(self) < Creater : Type(sa) ; Add z to sa

In order to explore how the algorithm performs as the number
of repair plan instances is increased we have a design witigkes
role andN agents. This gives a single violated constraint to fix, and
by increasingN we increase the number of repair options (since
there is always a single instanceR$, but there aréV instances of
P2, one for each agent).

The graph below shows the runtime (in milliseconds) for ths fi
experiment. In this experiment pruning made no significant differ-
ence, since there is nothing to distinguish between thetadtre

8The translation is not optimal because it also caters fosiramts

of the formsize() > n.

9All experiments reported in this paper were performed omptofa
running Windows XP and Java v1.50B, with an Intel Centrino
1.73Ghz CPU and 1GB RAM. Times (reported in milliseconds) ar
an average of 30 runs (we ignored the first run, since it wasninc
sistent due to JVM startup). For each run we collected thelreum
of goal and plan nodes explored, the total time (broken dovm i
the constraint evaluation time, time taken to update modeis
other time), and the number of constraint instances.



results in the graph are from the no-pruning run). Most oftiime
was taken up with checking for violated constraints in theare
scope (line 20 of figure 6); for instance, for 160 agents, thal t
execution time was 1,964ms, of which 1,915ms was taken in con
straint evaluation.

One technique (proposed by [6]) which we have not appliet, bu
which we expect to make a big difference to execution timeéo is
track which entities are used to evaluate each constraidtttzen
use this information to work out which constraints might lie a
fected by a change to the design, and only re-evaluate tloese c
straints. However, even without this, the algorithm is ableleal
with a reasonable number of repair plan instances quitelsafjiist

under two seconds for 161 design entities and 1,606 contyai
2000

—— total time - « -eval time i

1800

1600 /
.’g 1400 /
§ 1200 /
£ 1000 /
% 800 /
E o0 /

A
400
200 //
0 S T

1 10 20 40

Number of agents

80 160

We now consider the algorithm’s performance as the number of

constraints, and consequently the depth of the tree, isaised. We
create an artificial situation withV constraints by havingv roles
and one agent. Since each role has a single violated contstras
gives N constraints, and consequently a tree of dejgth

In this case pruning made a significant difference: for= 8
without pruning the algorithm considered 10,590 goal noates
31,736 plan nodes taking a total of 21,594 milliseconds, rede
with pruning the algorithm considered 1,673 goal nodes a3
plan nodes taking 1,360 milliseconds. On the other handebés-
tic of sorting plans by their basic cost made no difference.ttfe
graph below show§, the algorithm (with pruning) performs well
for N = 8. In this experiment the evaluation time was a smaller

component of the total time.
25000

— pruning — eval time (pruning) = = no pruning

20000 +

15000 +

‘
10000 . /

.
‘.
5000 -+ -
‘
'J
0 . . L " !

1 2 4 8 10
number of roles
Finally, in order to assess the performance of the algoritihm
a non-artificial situation, we conducted experiments ondisgign
of a weather alerting system [9]. The initial system helps dfr-
port weather personnel in identifying discrepancies betweur-
rent weather readings and previously issued forecastsésspre
and temperature. We introduced several new requiremerdspa

time (milliseconds)

ments, and 46 constraints are considered. With regard tadhe
pruning case, the tool does not terminate as the algoritfirmfe

a cycle. Without the plan sorting heuristic the algorithrok@,671
milliseconds (of which 5,887 was constraint evaluation)jthvthe
plan sorting heuristic total time was 7,921ms (with 6,090raig
constraint evaluation). This shows that, despite a worse e&po-
nential complexity, the algorithm is practical for smallredium
designs. Note that there are still a number of techniquesiorov-
ing the algorithm’s efficiency which we have not yet implerteeh

5. RELATED WORK

A range of approaches have been proposed to deal with change
propagation and inconsistency management in mainstredim so
ware engineering. A large amount of this work such as [1, 61, 1
19] uses rule-based engines to detect and resolve incemnsiss
and propagate changes. Our work uses the BDI architectumwh
allows for more flexibility than the rule based approach sithe hi-
erarchical relationship between plans allows for a natalesen-
tation of rules that can cascade, i.e. where fixing an instesty
can cause further inconsistencies. Also, an event can haitpla
plans that it can trigger, with plan selection being madeiattime.
This allows us to represent multiple ways of resolving a giwe
consistency as separate plans, with the choice betweendbem
responding to available traceability information, desigauristics
and (possibly) human intervention.

Recently, Egyed [7] proposed an approach based on fixingiinco
sistencies in UML models, using model profiling to locateiche
of starting points for fixing an inconsistency in a UML modBly
means of model profiling, he also tried to predict the sideet$
of fixing an inconsistency. However, there are several St
differences between his work and ours. Firstly, his worlatsea
constraint as a black box whilst we analyse the constraingeh-
erate repair plans. Secondly, his approach does not propitens
to repair inconsistencies, but only suggests startingtpgamtities
in the model) for fixing the inconsistency.

The cost calculation algorithm can be seen as a form of réagon
about an agent’s plans, albeit in a special setting. Thesebkan
previous work on investigating the interaction betweemgleither
within a single agent or between different agents in a nagent
system (e.g. [2, 20]). There are some similarities betwée t
work and ours, for example, a plan’s cost can be viewed agts r
source consumption and the fact that fixing one constrampea-
tially/totally repair other constraints can be seen astjpesinter-
action between plans. However, there are several majardiftes
between their work and ours. First of all, the selection leetwap-
plicable plans is not controllable. Secondly, the algonisiof [20]
rely on a finite plan-goal tree, whereas our algorithm dods&o
quire a complete tree, rather, the search tree is prunedoasaso
cheaper plans are identified.

The issue of calculating the cost of a plan or a goal in theecdnt
of existing plans has been previously addressed in [8]. Time a
of their work is to determine whether an agent should adogva n
goal. They estimate the cost (with a range) rather than lzacthe
exact cost like our work. In addition, the plans which thegpsider
contains only primitive actions, and they require complaemns.
We also found that it is not easy to adopt their approach tb dea
with selecting between alternative plans, as opposed twlidgc

each requirement made primary changes, and then ran the algowhether to adopt a goal.

rithm to recommend secondary changes. We report here oire typ
cal case where a new requirement is that the system shallatso
Volcanic Ash alerts. The existing design model contains 83 e

For N = 10 the no pruning case ran out of memory.

223

Surprisingly, the specific problem of selecting betweenrliagp
ble plans in BDI agents has not received much attention. @ne p
ticular work that tackles this issue is presented in [5]. yretend
AgentSpeak(L) to deal with intention selection in BDI agerfthey
also use a lookahead technique to work out the potentialafast



plan and choose the best plan to execute, and their plansepre
tation is also hierarchical. However, there are sever&mifces
between their work and ours. Firstly, they impose a limit ba t
plan-goal tree by giving the depth of the tree as an input éir th
algorithm. Secondly, they assume that the environmentggsan
rapidly and expect the worst case scenarios when lookingcahe
the domain that we are interested in, the environment i stat
we always choose the least cost plans. Finally, they do nutider
costs in the context of existing plans.

Our process for computing cost — performing lookahead over
an and-or tree — clearly resembles a planning problem, acahit
be viewed as such, with a few rather specific requirementstly;i
because we have repair plans we want to use an HTN (Hieratchic
Task Network) planner. Secondly, we want to collect the $etlo
best (cheapest) plans, so we need a planner that support®a no
of plan cost, and is able to collect all cheapest plans. Finaé-
cause we have a large, potentially infinite, search spacejamea
planner that does pruning and loop detection. Unfortupated do
not know of any planner that meets all three requirementhdps
the closest is SHOP2 [10] which is an HTN planner that sugport
collecting all best plans and that does branch and boundrgun
However, SHOP2 does not do loop detection, and althougloit pr
vides iterative deepening, which can be used to avoid lapiis
does not return the cheapest solution(s), as required. \Wéaed
a UML desigrt! and associated constraints and repair plans using

7.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

SHOP2. Our experiments have shown that SHOP2 gives the same [9]

results as our cost calculation if it terminates, but thé guscep-
tible to looping, and that SHOP2 is slightly slower than ocaval
implementation (0.172 seconds vs. 0.157 sectids

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have briefly described a change propagation
framework that has been implemented based on the BDI agent ar
chitecture. We then raised the issue of having multiple iappl
ble repair plans and how to select amongst these repair.plans
order to deal with this problem, we have proposed a cost lzalcu
tion mechanism for repair plans. This mechanism has beeleimp
mented, and we presented results of an empirical explorafithe
scalability of the algorithm. The evaluation showed thataking
for violated constraints takes up most of the execution tithat
pruning does make a significant difference, and that theriéfgas
are practical for small to medium realistic examples.

A key area that we are currently working on is performing a&cas
study in order to better ascertain thffectivenessf the approach
as a “change propagation assistant”. In order to asceha&nwe
have integrated our implementation with the Prometheusgbes
Tool (http://www.cs.rmit.edu.au/agents/pdt) [14]. Anet area for
future work is investigating the interaction between caaists in
order to limit the number of plans to be explored and to allow f
pruning more quickly.

Acknowledgements

This work has been funded by the Australian Research Council
(grant LP0453486) in collaboration with Agent Oriented t@@aifre.

We would like to thank Lin Padgham, Sebastian Sardina anefoth
members of the RMIT agent group for discussions.

1The video-on-demand system [6], and see http://peacacshl.
dhkim/java/MPEG/

120n a Windows XP PC with a 1.73Ghz CPU and 1GB RAM, using
Java v.1.5.006 and SHOP2 v1.3 running with GNU CLISP v2.3
for Windows.

224

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

L. Briand, Y. Labiche, and L. O’Sullivan. Impact analgsaind change
management of UML models. Imternational Conference on
Software Maintenance (ICSM)ages 256-265, 2003.

B. J. Clement and E. H. Durfee. Top-down search for cowtiing
the hierarchical plans of multiple agents AGENTS '99:
Proceedings of the third annual conference on Autonomoesi&g
pages 252-259. ACM Press, 1999.

K. H. Dam and M. Winikoff. Generation of repair plans fdrange
propagation. In M. Luck and L. Padgham, editokgent Oriented
Software Engineering (AOSH)ages 30—44, Honolulu, Hawaii, May
2007.

K. H. Dam, M. Winikoff, and L. Padgham. An agent-oriented
approach to change propagation in software evolution. In
Proceedings of the Australian Software Engineering Canfee
(ASWEC) pages 309-318. IEEE Computer Society, 2006.

A. Dasgupta and A. K. Ghose. CASO: a framework for dealinitp
objectives in a constraint-based extension to AgentShgak(
Twenty-Ninth Australasian Computer Science ConferenGS@&
2006) pages 121-126. Australian Computer Society, Inc., 2006.
A. Egyed. Instant consistency checking for the UML Rroceedings
of the 28th International Conference on Software Engimagri
(ICSE) Shanghai, China, May 2006.

A. Egyed. Fixing inconsistencies in UML models. Proceedings of
the 29th International Conference on Software Enginee(i@$E)
Minneapolis, USA, May 2007.

J. F. Horty and M. E. Pollack. Evaluating new options ie ttontext
of existing plansAtrtificial Intelligence 127(2):199-220, 2001.

I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Wdiffi
An open meteorological alerting system: Issues and solsttim

V. Estivill-Castro, editorProceedings of the 27th Australasian
Computer Science Conferengages 351-358, Dunedin, New
Zealand, 2004.

D. S. Nau, T.-C. Au, O. lighami, U. Kuter, J. W. Murdock, /u,
and F. Yaman. SHOP2: An HTN planning systelournal of
Artificial Intelligence Research (JAIR20:379-404, 2003.

C. Nentwich, W. Emmerich, and A. Finkelstein. Congiste
management with repair actions. IlBSE '03: Proceedings of the
25th International Conference on Software Engineerjpages
455-464. IEEE Computer Society, 2003.

Object Management Group. UML 2.0 Superstructure and
Infrastructure Specifications, 2004.

Object Management Group. Object Constraint Langu&el() 2.0
Specification, 2006.

L. Padgham, J. Thangarajah, and M. Winikoff. Tool supgar agent
development using the Prometheus methodologffirst
international workshop on Integration of Software Engireg and
Agent Technology (ISEAT 2008)jelbourne, Australia, September
2005.

L. Padgham and M. WinikoffDeveloping intelligent agent systems :
a practical guide John Wiley & Sons, Chichester, 2004. ISBN
0-470-86120-7.

V. Rajlich. A model for change propagation based on Qnagvriting.
In Proceedings of the International Conference on Software
Maintenance (ICSM)pages 84-91. IEEE Computer Society, 1997.
V. Rajlich. Changing the paradigm of software engiiregr
Commun. ACM49(8):67—-70, 2006.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a laigic
computable language. MAAMAW '96: Proceedings of the 7th
European workshop on Modelling autonomous agents in a
multi-agent world : agents breaking awgyages 42-55.
Springer-Verlag, 1996.

J. L. Sourrouille and G. Caplat. Checking UML model dstency.
In Workshop on Consistency Problems in UML-based Software
Development at UML 200Dresden, Germany, 2002.

J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischwniding
resource conflicts in intelligent agents.Pmceedings of the 15th
European Conference on Artificial Intelligence, ECAI'20@ages
18-22. 10S Press, 2002.

H. V. Vliet. Software engineering: principles and practid®hn
Wiley & Sons, Inc., 2nd edition, 2001. ISBN 0471975087.



