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ABSTRACT
Many multiagent problems comprise subtasks which can be con-
sidered as reinforcement learning (RL) problems. In addition to
classical temporal difference methods, evolutionary algorithms are
among the most promising approaches for such RL problems. The
relative performance of these approaches in certain subdomains
(e. g. multiagent learning) of the general RL problem remains an
open question at this time. In addition to theoretical analysis, bench-
marks are one of the most important tools for comparing different
RL methods in certain problem domains. A recently proposed mul-
tiagent RL benchmark problem is the RoboCup Keepaway bench-
mark. This benchmark is one of the most challenging multiagent
learning problems because its state-space is continuous and high
dimensional, and both the sensors and the actuators are noisy. In
this paper we analyze the performance of the neuroevolutionary ap-
proach called Evolutionary Acquisition of Neural Topologies (EANT)
in the Keepaway benchmark, and compare the results obtainedus-
ing EANT with the results of other algorithms tested on the same
benchmark.

Categories and Subject Descriptors
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ral nets
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Algorithms
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1. INTRODUCTION
Evolutionary algorithms can be considered as reinforcement learn-

ing algorithms, where the fitness value of an individual is an ac-
cumulated reward received by the individual after it has operated
in a given environment [26]. Unlike in traditional reinforcement
learning algorithms, where a reward signal is provided after each
action executed by the individual, in evolutionary algorithms a fit-
ness value (return) is assigned to the individual at the end of the
life time of the individual or after the individual has carried out a
sequence of actions (an episode). This property of evolutionary al-
gorithms make them directly applicable to episodic reinforcement
learning tasks such as game playing, where they search for optimal
value functions or optimal policies directly in the space of value
functions or policies, respectively.

It has been shown using standard benchmark problems that a
combination of neural networks and evolutionary methods (neu-
roevolution) can perform better than traditional reinforcement learn-
ing methods in many domains, especially in domains which are
non-deterministic and only partially observable [5, 22]. One advan-
tage of neuroevolutionary methods is that the policy is represented
using an artificial neural network (ANN), which is useful for learn-
ing tasks involving continuous (noisy) state variables. This is due
to the fact that ANNs provide a straightforward mapping between
states perceived by the sensors and actions executed by the actua-
tors. Additionally, ANNs are robust to noise: since their units are
typically based upon a sum of several weighted signals, oscillations
in the individual values of these signals do not drastically affect the
behavior of the network [12].

In this paper, we present a performance evaluation of the neu-
roevolutionary method Evolutionary Acquisition of Neural Topolo-
gies (EANT) on the Keepaway benchmark [19], which is a sub-
problem of the RoboCup Soccer Simulator. This benchmark prob-
lem is challenging since the states are continuous and only partially
observable and the sensors and actuators of the agents are noisy.
The paper is organized as follows: first, a review of work in the
area of neuroevolution is given. Then, an introduction to EANT
is provided along with a brief description of the Keepaway bench-
mark problem. After this, experimental results on the performance
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of EANT on the benchmark problem are presented, and the effects
of several components of EANT are analyzed. Finally, some con-
clusions and a future outlook are provided.

2. REVIEW OF WORK IN NEUROEVOLU-
TION

The field of Neuroevolution (NE) can be divided into two major
areas of research: in the first area, the structure of the ANN is kept
fixed and only the weights are optimized by the EA. In the second
area, both the structure and the weights are evolved in parallel. This
paper will focus on the second, more general area. For a review of
the work in the evolution of neural networks covering both areas
see Yao [27].

All methods which evolve the structure of the network assume
a certain type ofembryogeny. The term embryogeny refers to the
growth process which defines how a genotype maps onto a pheno-
type. According to Bentley and Kumar [3], three different types
of embryogenies have been used in evolutionary systems: external,
explicit and implicit. Externalmeans that the developmental pro-
cess (i. e. the embryogeny) itself is not subjected to evolution but is
hand-designed and defined globally and externally with respect to
the genotypes. Inexplicit (evolved) embryogeny the developmen-
tal process itself is explicitly specified in the genotypes,and thus it
is affected by the evolutionary process. Usually, the embryogeny
is represented in the genotype as a tree-like structure following the
paradigm of genetic programming. The third kind of embryogeny
is implicit embryogeny, which comprises neither an external nor an
explicit internal specification of the growth process. Instead, the
embryogeny "emerges" implicitly from the interaction and activa-
tion patterns of the different genes. This kind of embryogeny has
the strongest resemblance to the process of natural evolution.

The following encodings utilize an external embryogeny: Ange-
line et al. developed a system called GNARL (GeNeralized Acqui-
sition of Recurrent Links) which uses only structural mutation of
the topology, and parametric mutations of the weights as genetic
search operators [1]. The main shortcoming of this method isthat
genomes may end up having many extraneous disconnected struc-
tures that have no contribution to the solution. The Neuroevolution
of Augmenting Topologies (NEAT) [18] starts with networks of
minimal structures and increases their complexity along the evolu-
tion path. The algorithm keeps track of the historical origin of every
gene that is introduced through structural mutation. This history is
used by a specially designed crossover operator to match genomes
which encode different network topologies. Unlike GNARL, NEAT
does not use self-adaptation of mutation step-sizes. Instead, each
connection weight is perturbed with a fixed probability by adding
a floating point number chosen from a uniform distribution ofpos-
itive and negative values.

As opposed to these encodings with external embryogeny, the
following encodings adopt an explicit (internal) embryogeny: Ki-
tano’s grammar based encoding of neural networks uses Linden-
mayer systems (L-systems) [11] to describe the morphogenesis of
linear and branching structures in plants [10]. Sendhoff etal. ex-
tended Kitano’s grammar encoding with a recursive encodingof
modular neural networks [16]. Their system provides a means
of initializing the network weights, whereas in Kitano’s grammar
based encoding, there is no direct way of representing the connec-
tion weights of neural networks in the genome. Gruau’s Cellular
Encoding (CE) method is a language for local graph transforma-
tions that controls the division of cells which grow into an artificial
neural network [6]. The genetic representations in CE are compact
because genes can be reused several times during the development

of the network and this saves space in the genome since not every
connection and node needs to be explicitly specified in the genome.
Defining a crossover operator for CE is still difficult, and itis not
easy to analyze how crossover affects the subfunctions in CEbe-
cause they are not explicitly represented.

The last class of embryogeny (the implicit one) is utilized by the
following encodings: Vaario et al. have developed a biologically in-
spired neural growth based on diffusion field modelling combined
with genetic factors for controlling the growth of the network [23].
One weak point of this method is that it cannot generate networks
with recurrent connections or networks with connections between
neurons on different branches of the resulting tree structure. Nolfi
and Parisi have modelled biological development at the chemical
level using a reaction-diffusion model [13]. This method utilizes
growth to create connectivity without explicitly describing each
connection in the phenotype. The complexity of a structure that
the genome can represent is limited because every neuron is di-
rectly specified in the genome. Other work in implicit embryogeny
has borrowed ideas from systems biology, and simulated Genetic
Regulatory Networks (GRNs), in which genes produce signalsthat
either activate or inhibit other genes in the genome. Typical works
using GRNs include those of Bongard and Pfeifer [4] and Reisinger
[14].

3. EVOLUTIONARY ACQUISITION OF
NEURAL TOPOLOGIES

The Evolutionary Algorithm we use isEvolutionary Acquisition
of Neural Topologies(EANT, http://sourceforge.net/projects/mmlf/)
[7]. EANT uses a unique dual-timescale technique in which the
neural network’s connection weights are optimized on a small time-
scale, and the neural network’s structure evolves gradually (on a
larger timescale). EANT starts with networks of minimal complex-
ity, which are gradually complexified. Although EANT can be used
with any arbitrary genetic encoding which can represent neural net-
works, we have chosen to use theCommon Genetic Encoding[8],
an encoding with features that make it well suited for use in the
evolution of neural networks.

3.1 Common Genetic Encoding
The Common Genetic Encoding (CGE) is a general framework

for encoding and modifying neural networks (thephenotypes). It
can be applied as an encoding with external or explicit embryogeny
[9]. The encoding has important properties that make it suitable for
evolving neural networks [8]: It iscompletein that it is able to rep-
resent all types of valid phenotype networks, and it isclosed, i. e.
every valid genotype represents a valid phenotype. Furthermore,
the encoding isclosed under genetic operatorssuch as structural
mutation and crossover (defined below) that act upon the genotype.
Another important feature of CGE is that an encoded phenotype
can be directly evaluated without needing first to decode thephe-
notype from the genotype. Details on how this is done are discussed
by Kassahun [7]. While we use CGE here to encode networks that
are interpreted as neural networks, CGE is not limited to this pur-
pose [9].

CGE encodes a network using alinear genome. This genome
consists of a string of genes, where each gene is either avertex gene
(representing a vertex in the network, also called aneuron gene), an
input gene(representing an input in the network), or ajumper gene
(representing an explicit connection between vertices). Each gene
possesses one or more attributes which provide informationabout
the gene. For example, each gene can possess a weight (which
modifies its output), and each vertex gene possesses a uniqueid
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Figure 1: Different examples illustrating CGE: (a) a simple
three input network, (b) two subnetworks in parallel, (c) two
subnetworks in cascade, (d) two subnetworks connected to a
main network, including forward and recurrent jumper con-
nections. Each example includes a neural network representa-
tion, and the corresponding CGE genome representation. All
vertex genes in the genome representations possess a “number
of inputs” attribute din = 3.

and a “number of inputs” attributedin.
A genome can be subdivided into one or moresubgenomes, each

of which is a valid genome in itself. The simplest sort of subgenome
consists of a vertex gene followed by several input genes, one in-
put gene for each input of the vertex represented by the vertex gene
(see Figure 1a). Such a subgenome encodes a simple network with
oneoutput vertex(a vertex gene whose output is an output of the
network). To encode a network containing two of these networks
in parallel, two identical copies of the subgenome are simply con-
catenated together to form a new genome that encodes a two-output
network (see Figure 1b). On the other hand, to connect one of these
simple networks (network B) as an input to another simple network
(network A), one of the input vertices in network A’s genome is
replaced with the entire genome of network B (see Figure 1c).

In the last example, the vertex in network B (vB) is implicitly
connected to the vertex in network A (vA). The output ofvB can
have only one such implicit connection to another vertex. Inmore
complex networks, there is typically a need to define more than
one connection from a vertex’s output to other vertices. This is ac-
complished in CGE by the use of jumper genes. A jumper gene
possesses a “source ID” attribute which refers to the uniqueid pos-
sessed by a vertex gene. A jumper gene acts like a “virtual copy” of
the vertex gene to which it refers, providing the output of this ver-
tex as an input to another vertex. Therefore, if one wants to add an
additional connection fromvB ’s output to a vertex other thanvA

(for example, tovC in Figure 1d), a jumper gene referring tovB

can be put in the place of one ofvC ’s input genes. Jumper genes
are either forward or recurrent. The forward jumperFB provides
the output ofvB immediately tovC , while the recurrent jumperRA

providesvA’s output tovC in the next evaluation of the network.

3.2 Genetic Operators
Several genetic operators have been developed for CGE which

operate on one or two linear genomes to produce another linear
genome [7]. The three operators we used are theparametric muta-
tion, thestructural mutationand thestructural crossover.

3.2.1 Parametric Mutation
The Parametric Mutation operator performs a random perturba-

tion of the connection weights of each gene. Each genome stores
a learning rateσ, which acts as the standard deviation of each
weight’s modification:w′

i = wi + N(0, σ), whereN(0, σ) is a
real number drawn from a normal distribution with mean0 and
standard deviationσ. The learning rate itself is modified during the
parametric mutation according to the ruleσ′ = σ ∗ N(0, 1). This
kind of parametric mutation allows for the self adaptation of strat-
egy parameters, a paradigm proposed in the field of Evolutionary
Strategies [15].

3.2.2 Structural Mutation
The Structural Mutation operator inserts either a new randomly

generated subgenome, a forward jumper, or a recurrent jumper after
an arbitrarily chosen neuron gene. The inserted subgenomescon-
sist of a new neuron gene (with unused uniqueid) followed by an
arbitrary number of input and jumper genes. This kind of structural
mutation differs from the one proposed in NEAT [18] by the fact
that whole subnetworks can be introduced at once without theneed
to add all their nodes and edges separately. This might help the
method to find network topologies of sufficient complexity faster
(see Section 5.4), though at the cost of missing the simplesttopol-
ogy potentially. Initially, the weights of the newly added structures
are set to0, in order to avoid that these can affect the genome’s
overall performance. When a forward jumper gene is added to the
genome, care is taken to avoid closed cycles of forward jumper
genes, since this would cause infinite looping problems later on
during the evaluation of the network.

3.2.3 Structural Crossover
The third genetic operator defined is the Structural Crossover op-

erator. This operator exploits the fact that structures which origi-
nate from the same ancestor structure have some parts in common.
These parts are detected using the uniqueid of the genes, which
act as historical markers. By aligning the common parts of two
randomly selected structures, it is possible to generate a third struc-
ture that contains the common and disjoint parts of the two mother
structures. The resulting structure formed in this way mapsto a
valid phenotype network. This type of crossover was introduced
and is used by Stanley [18].

3.3 Elements of EANT
Our implementation of EANT follows the basic steps of an Evo-

lutionary Algorithm: initialization, selection, mutation, crossover,
and fitness evaluation. In this work, we use Stochastic Universal
Sampling [2] as selection mechanism. Mutation and crossover is
accomplished by the genetic operators presented in Section3.2.
Some parts of EANT are designed specifically for the needs of
neuroevolution; these are presented in this section. For a complete
overview over EANT we refer to [7].

3.3.1 Initialization
The first thing that must be done in an evolutionary algorithm

is to create an initial populationP0 of individuals that contains
a sufficient amount of diversity. Since we are following the ap-
proach of minimizing dimensionality through incremental growth
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from minimal structure [18], the members ofP0 should be as sim-
ple as possible. For a task withn state dimensions (inputs) andm
possible actions (outputs), we create the initial population as fol-
lows: first, we generate a “proto” individualgp consisting ofm
neuron nodes (encoding the outputs) andn ∗ m input genes (con-
necting all inputs with each output neuron).gp encodes a network
with no hidden layers. All individuals of the initial population Po

are descended from this proto individual by applying the structural
mutation operator up to five times onto a copy ofgp. This guaran-
tees that we have a sufficiently diverse initial population with fairly
simple structures. Furthermore, since any two randomly selected
individuals (and all members of later populations) have a common
ancestor, they can be aligned by the structural crossover operator.

3.3.2 Exploitation / Exploration
As in classical reinforcement learning methods [21], in neuroevo-

lutionary approaches there is a trade-off between exploitation of
existing structures (i. e. optimizing the weights of the encoded net-
works) and exploration of new structures (i. e. generating new net-
works). While in conventional neuroevolutionary approaches both
occur at the same time, we explicitly divide the evolutionary pro-
cess into two phases (as proposed by Kassahun [7]): in theex-
ploitation phase, the structural mutation and crossover are disabled
(hence no new structures are created) and thus, only the parameters
(i. e. the weights) of existing structures are modified. Furthermore,
population wide selection does not take place. After a certain num-
ber of generationsnexploit, the exploitation phase is finished and
an exploration phaseis started, where the structural operators are
activated fornexplore generations.

The purpose of this approach is to give newly created struc-
tures time to optimize their weights, before they have to compete
population-wide with all other structures in the exploration phase.
The quantitynexplore is usually set to1 while the choice ofnexploit

is a trade-off: larger values allow structures a better optimization of
their weights before competing, while smaller values increase the
frequency at which new, promising structures occur. We chose a
value ofnexploit = 5, which has proven to be a good compromise.

3.3.3 Speciation and Fitness Sharing
As mentioned above, in the exploitation phase there is no pop-

ulation wide competition, since this would penalize newly intro-
duced structures whose weights are unoptimized. Instead, at the
beginning of an exploitation phase, the population is divided into
so calledspecies(an idea introduced to the field of neuroevolution
by Stanley [18]). This division is done using a distance measure
defined on the level of genotypes:

d(g1, g2) = 1 − |N(g1)∩N(g2)|+|J(g1)∩J(g2)|
|N(g1)∪N(g2)|+|J(g1)∪J(g2)|

whereg1, g2 are arbitrary genotypes,N(g) is the set of neuron
genes, andJ(g) is the set of jumper genes contained ing. An
individual is part of a species if and only if its mean distance to
the members of this species is below a certain threshold. If there
is no such species, this individual forms a new species. During the
exploitation phase, competition (i. e. selection based on the fitness
values) only takes place within a species, i. e. between individuals
with similar structures.

Speciation gives new structures time to optimize their weights
during the exploitation phase. However, it does not preventone
successful structure/species from taking over the whole population.
To prevent this, the selection mechanism in the explorationphase
usesfitness sharing[18]. Fitness sharing means that an individual
with fitnessf , which is part of a speciesPs and a populationPc,
gets assigned a new fitness:f ′ = f ∗ (1 − |Ps|−1

|Pc|
), where|Ps|

Figure 2: The state variables provided by the benchmark: 11
distances, and two angles.

and |Pc| are the sizes ofPs andPc, respectively. Fitness sharing
decreases the fitness of individuals which are members of a large
species. This modification is motivated by the observation that in
nature, species share an ecological niche and thus, membersof the
same species must compete for the same resources. If a species gets
larger, the selection pressure on its individuals increases, which can
be seen as a decrease of their fitness.

4. THE KEEPAWAY BENCHMARK
Keepaway is part of the RoboCup Soccer Simulator and was in-

troduced as a benchmark by Peter Stone et al. [19]. In the 3 versus
2 (3vs2) Keepaway benchmark, a team of threekeepersattempts
to maintain possession of a ball in a two-dimensional playing-field
(usually20m × 20m) while a team of twotakerstries to intercept
the ball. The actions performed by the keeper that is currently in
possession of the ball are controlled by a learned policyπ whereas
the actions performed by the keepers not in possession of theball
are determined by a fixed policy given by the benchmark, as are
the actions performed by the takers. The benchmark is subdivided
into episodes, each starting in a similar (but not identical) start
state and ended when the ball is either intercepted by a takeror
goes out of the bounds of the field. The goal of the learning sys-
tem is to learn a policyπ that optimizes the behavior of the active
keeper (i. e. maximizes the episode duration). This episodedura-
tion is a machine-independent simulation time and can be used as
a fitness/quality measure of the policy implemented by the agent.
Since both sensors and actuators are exposed to noise, Keepaway is
a highly stochastic benchmark, and the duration of a single episode
is not a reliable estimate of a policy’s fitness; rather, the average
duration of multiple episodes played with the same policy isa bet-
ter estimate. One question that arises is whether Keepaway can be
considered to be a multiagent learning task, since the policy con-
trols only one agent at a time. However, Stone et al. [20] state
that the benchmark’s complexity comes not so much from the indi-
vidual learning task, but from the multiagent component. Inother
words, learning all three keepers in parallel is actually harder than
learning one keeper with two pre-trained teammates.

The state provided by the benchmark consists of 13 continuous
state variables: 6 of the distances between the players, 5 distances
from the players to the center of the field, and two angles associated
with the passing lanes of the ball-possessing keeper (i.e. keeper
#1). These state variables are depicted in Figure 2. The policy can
choose from one of three predefined, discrete macro-actions, which
are performed by keeper #1: hold the ball, pass the ball to keeper
#2, and pass the ball to keeper #3. Since the “pass” action might last
longer than one time step (0.1sec), the problem is a semi-Markov
decision process (SMDP). Furthermore, since the sensors are ex-

294



posed to noise, the problem is apartially observable SMDP. All
results reported below have been obtained using version 0.6of the
Keepaway benchmark.

Following the method described in Section 3.3.1, networks which
can act as policy for Keepaway in EANT have been encoded as fol-
lows: In 3vs2 Keepaway, the policy maps a state consisting of13
variables onto one of 3 actions. If one wants to encode such a policy
in an ANN, the ANN should have 3 outputs and 13 inputs. There-
fore, the proto individualgp consists of exactly 42 genes. Given a
certain state, the action corresponding to the output with maximal
activation is chosen. Thus, the network encodes directly the policy
and no explicit value function is involved.

5. RESULTS AND COMPARISON
In this section we present results obtained with EANT in the

Keepaway domain and relate them to results of other reinforcement
learning method published by other authors. Unfortunately, the re-
sults published by other authors are often not directly comparable
since they use different versions of Keepaway and differ in some
important parameters, e. g. the field size, the number of players per
team, and whether the sensors are noisy or not. In order to relate the
performance of EANT to these results, we applied EANT in differ-
ent settings, namely in Partially Observable and Fully Observable
Keepaway on a20m×20m field, and in Partially Observable Keep-
away on a25m × 25m field.

5.1 Partially Observable 3vs2 Keepaway
Partially observable (PO) 3vs2 Keepaway is the standard setting

for the Keepaway benchmark: three keepers play against two takers
on 20m × 20m field, and both sensors and actuators are exposed
to noise. We performed 8 independent runs of EANT in the stan-
dard Keepaway benchmark; the results are shown n Figure 3a. The
average performance of a generation’s champion (i. e. the best per-
forming individual of a population) over the 8 runs is plotted, as
well as the corresponding standard deviation. The average episode
duration after800h training time was14.9sec with a standard de-
viation of 1.25sec, indicating that the method always converges to
reasonable solutions. The mean episode duration after800h train-
ing time of the best run was16.6sec, while the mean episode dura-
tion of the worst run was12.9sec.

5.2 Fully Observable 3vs2 Keepaway
Fully observable (FO) 3vs2 Keepaway differs from the standard

setting in Section 5.1 in that the sensors are free of noise. The
actuators, however, are still subject to noise and the startstate is
stochastic. It is important to note that (even though this setting
is usually referred to as fully observable Keepaway) the state is
still not truly Markovian since it does not include player veloci-
ties. However, Taylor et al. [22] argue that the state is “effec-
tively Markovian” since players have low inertia and the field has a
high coefficient of friction which means that velocity does not help
agents learn in practice.

We performed9 independent runs of EANT in FO 3vs2 Keep-
away benchmark; the results are shown in Figure 3b. Plotted is the
performance of the champion of a generation (i. e. the best per-
forming individual of a population), averaged over the9 runs, as
well as the corresponding standard deviation. Unsurprisingly, re-
moving the sensor noise simplifies the task for the learning system.
The average episode duration after800h training time was19.2sec

with a standard deviation of1.16sec.

(a)

(b)

(c)

Figure 3: Average episode duration of EANT in: (a) partially
observable 3vs2 Keepaway on a20m×20m field (averaged over
8 independent runs), (b) fully observable 3vs2 Keepaway on
a 20m × 20m field (averaged over 9 independent runs), and
(c) partially observable 3vs2 Keepaway on a25m × 25m field
(averaged over 6 independent runs).

5.3 Partially Observable 3vs2 Keepaway on a
Larger Field

In order to assess if the policies learned by EANT would also
benefit from a larger field, we set the fieldsize to25m × 25m and
performed6 runs of partially observable Keepaway. As can be seen
in Figure 3c, the average episode duration increased significantly in
comparison with the average episode duration on a20m × 20m

field: on average, EANT evolves a policy with an approximate
fitness of19.4sec with a standard deviation of2.2sec after500h

training time. We suspect that the increase of the average episode
duration is due to the fact that the Keepers have more space onthe
field and that the evolved policies have learned to exploit this fact.

5.4 Comparison with other methods
Stone et al. [20] have used an application of episodic SMDP

Sarsa (λ) with linear tile-coding function approximation and vari-
ableλ to learn higher-level decisions in the keepaway benchmark.
They have reported that their agents learned policies that signifi-
cantly outperformed a range of benchmark policies as well aspoli-
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EANT NEAT Sarsa(λ)
MED TT SD MED TT SD MED TT SD

PO 3vs220m × 20m 14.9 ≈ 200 ±1.25 14.1 800 ≈ ±1.75 12.5 50 ≈ ±0.1
FO 3vs220m × 20m 19.2 ≈ 600 ±1.16 15.5 800 ≈ ±1.00 17.6 50 ≈ ±0.1

Figure 4: Summarized performance of three different reinforcement learning methods (EANT, NEAT, and Sarsa(λ)) in different
versions of Keepaway. Depicted are the maximal mean episodeduration (MED), the training time required for reaching thi s optimum
(TT), and the standard deviation over the different runs (SD). MED and SD are given in seconds, and TT in hours. Results forNEAT
and Sarsa(λ) are obtained from Taylor et al. [22] and Whiteson et al. [25](exact values based on personal communication).

cies learned with Q-learning1. Recently, Taylor et al. [22] and
Whiteson et al. [25] have given a detailed empirical comparison
between a variant of SMDP Sarsa (λ) [21] and the neuroevolution
method NEAT [18] in the Keepaway benchmark. The results they
obtained are summarized (along with the results of EANT) in Table
4.

They found that in general NEAT learns better policies than Sarsa
in PO Keepaway, though it requires many more evaluations to do
so. Moreover, they found that Sarsa learns better policies in FO
Keepaway and NEAT learns faster when the task is deterministic
(i. e. the start state is fixed and neither sensors nor actuators are
influenced by noise). As can be seen, EANT achieves better results
than NEAT and Sarsa in both PO Keepaway2 and FO Keepaway3.
Furthermore, it converges to good solutions with less training time
than NEAT. These results reinforce results of Siebel et al. on a Vi-
sual Servoing Task [17], where EANT also performed better than
NEAT. A possible explanation is that the structural mutation opera-
tions of NEAT are more fine-grained, and thus NEAT would require
more mutations to reach a topology with sufficient complexity. An
other explanation might be the explicit separation of the evolution
into exploitation and exploration phases.

6. DETAILED ANALYSIS
The previous section has shown that EANT is able to learn good

policies for the Keepaway problem. However, these results give no
indication of the components of EANT that are and are not nec-
essary to enable this kind of learning facility. In this section, we
analyze the contribution of different parts of EANT to the over-
all learning performance. All results presented were obtained in
the standard setting for Keepaway (i. e. partially observable 3vs2
Keepaway on a20m × 20m field).

6.1 Structural exploration
What distinguishes neuroevolutionary approaches such as EANT

from conventional artificial neural network learning systems is that
the topology of the network does not need to be fixed by the de-
signer, but is generated and optimized by the system itself.It is
worth considering the question of what performance a systemcan
achieve that uses a means of weight optimization similar to EANT,
but does not search the space of network structures (i. e. does not
explore). To answer this question, we deactivated the structural
mutation and crossover operators and applied this impairedsystem
to the Keepaway task. The results of three independent runs are
depicted in Figure 5a. The mean episode duration in partially ob-

1The absolute values of episode duration they reported are not di-
rectly comparable with the results reported below since Stone et al.
used an older version of the benchmark.
2This result is statistically significant for the comparisonto Sarsa
(p ≤ 0.0005).
3This result is statistically significant for the comparisonto both,
Sarsa (p < 0.002) and NEAT (p < 10−5).

(a)

(b)

Figure 5: Average episode duration of impaired versions of
EANT in partially observable 3vs2 Keepaway: (a) results of
EANT when structural exploration is disabled, (b) results of
EANT when the genotype is not allowed to contain recurrent
jumpers. The results are significantly worse than the results
obtained by the full system indicated by the dashed line.

servable 3vs2 Keepaway (11.1±0.83sec after700h, averaged over
3 independent runs) is significantly worse (p < 0.015) than those
of the full system discussed in Section 5.1, indicating thatstructural
exploration significantly improves the performance of EANT.

6.2 Recurrent jumpers
Since the policy is represented as an ANN with recurrent connec-

tions, which give a neuronni at time stept the output of a neuron
nj at time stept−1 (possiblyni = nj), the actionat chosen by the
policy at timet is not necessarily based only on the the statest but
can also be based onst−r for r > 0. This should not provide any
advantage to system when used with an MDP. However, as the au-
thors of the benchmark state, Keepaway is not truly Markovian but
only nearly since the velocities of the players are not included in the
state and the sensors are noisy. Thus, one might expect that asys-
tem which has some kind of a memory might perform better than
one without memory. In order to analyze whether EANT’s ability
to evolve ANN’s with recurrent connections actually improves its
performance in non-Markovian environments, we deactivated the
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Figure 6: Development of the species of a population during
one evolution. The width of a species (in y-direction) indicates
the relative size of this species while the color representsthe
fitness of the best individual of this species.

possibility of evolving recurrent connections and tested this system
in the Keepaway task. The results are depicted in Figure 5b. The
mean episode duration of the impaired system in partially observ-
able 3vs2 Keepaway (13.48 ± 0.35sec after700h, averaged over
5 independent runs) is significantly worse (p < 0.05) than those
of the full system discussed in Section 5.1, indicating thatrecur-
rent jumpers significantly improve the performance of EANT.By
contrast, in the early phase of the evolution, the impaired version
of EANT performs better. We suspect that this is due to the higher
complexity of finding good weights for networks with recurrent
jumpers.

6.3 Speciation
The main purpose of speciation is to protect individuals with

a novel topology from immediately extincting (compare Section
3.3.3). Figure 6 shows the development of species during theprogress
of one sample evolution. As can be seen, even species which have
initially only individuals with low fitness survive for manygenera-
tions. This is due to the usage of fitness sharing, which helpssmall
species to survive. Interestingly, the two species which obtained the
best performance at the end (after approximately100 generations),
were nearly extincted after30 generations.

6.4 Fitness sharing
The purpose of fitness sharing (see Section 3.3.3) is to ensure

that the population retains a sufficient amount of diversityduring
the progression of the evolution, i. e. to avoid that one species takes
over the whole population. We define the “amount of diversity” of a
populationPc as the average pairwise distance between all individ-
uals in a population:div(Pc) = 1

|Pc|2−|Pc|

P

gi,gj∈Pc,gi 6=gj

d(gi, gj),

whered() is the genotypic distance given in Section 3.3.3. If fitness
sharing is disabled, the diversity of a population decreases from an
initial value of approx.0.7 to a diversity of approx.0.2 after800h

training time (see Figure 7a). In contrast, when fitness sharing is
enabled, the diversity decreases slower and maintains a value of ap-
prox. 0.45 (averaged over 4 independent runs) after800h training
time. The increased diversity allows EANT to cover a larger part
of the search space simultaneously.

(a)

(b)
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Figure 7: (a) Effect of fitness sharing on the diversity of a popu-
lation. Without fitness sharing, the diversity decreases continu-
ously to a very small value. In contrast, with fitness sharing, the
diversity maintains a value above 0.45 on average. (b) Develop-
ment of the learning rate during the evolution. Plotted datais
an average of 8 independent runs.

6.5 Self-adaptation of learning rate
In EANT, each linear genome has a “strategy parameter” learn-

ing rate, which controls how strongly the weights are affected by
the parametric mutation operator. This parameter is set initially
to 1.0 for all individuals. During the course of the evolution, the
learning rate itself is modified randomly by the parametric muta-
tion operator (compare Section 3.2.1). Since this modification is
unbiased, one might expect that the average learning rate ofthe in-
dividuals remains nearly constant and close to1.0 during the course
of evolution. However, Figure 7b shows that this is not the case: de-
picted is the development of the learning rate of the champion (i. e.
the fittest individual), averaged over 8 independent runs inthe fully
observable 3vs2 Keepaway domain. As can be seen, the learning
rate increases initially up to a value of1.5. After 200h training
time, the learning rate starts to decrease to a value of less than0.5.

An interpretation of this behavior is as follows: initially, the val-
ues of the weights are far away from their optimal value. Thus,
these weights have to be modified significantly to achieve a good
overall performance of the network. Genomes with larger learning
rate can do bigger modifications of their weights in one application
of the parametric mutation and because of that, their offspring has
a better chance to approach a good set of weights. Hence, their
offspring has a better chance to survive. This leads to an increased
density of genomes with large learning rates. After200h of train-
ing time, the genomes have increased their performance signifi-
cantly (compare Figure 3b). This indicates that their weights are
now closer to an optimal setting. The initial advantage of genomes
with large learning rate starts now to turn into a disadvantage: since
the modifications of the parametric mutation operator affect their
weights more drastically, the probability that their offspring leaves
the local optimum weight region is greater than for genomes with
lower learning rates. Hence, the average learning rate decreases as
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the system’s performance nears the optimum. This behavior ex-
hibits the same self-adaptation of learning rates that is found in
Evolutionary Strategies [15].

7. CONCLUSION AND OUTLOOK
In this paper, we have shown that the neuroevolutionary method

EANT can perform better than the methods which have been tested
previously in the Keepaway benchmark. We have shown that fit-
ness sharing guarantees that a sufficient amount of diversity is re-
tained in the population. Furthermore, we have shown that the abil-
ity of EANT to explore the space of network topologies is crucial
for its overall performance and that networks with recurrent con-
nections can achieve a better performance in non-MDP environ-
ments. In the future, it would be interesting to analyze EANT’s
performance on more complex Keepaway tasks such as 4vs3, or
5vs4 Keepaway. Furthermore, a combination of a neuroevolution-
ary method like EANT with a TD method like Q-Learning (as pro-
posed by Whiteson [24]), or a genetic encoding utilizing an ex-
plicit or implicit embryogeny could be tested and analyzed in the
Keepaway domain. With regard to EANT, experiments could be
conducted that analyze how crucial separate exploitation and ex-
ploration phases are, and if a specific choice of structural mutation
operator improves the rate at which the system learns.
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