
Agent-Based Simulation of the Spatial Dynamics of Crime: 
On the Interplay between Criminal Hot Spots and Reputation 

Tibor Bosse and Charlotte Gerritsen 
Vrije Universiteit Amsterdam, Department of Artificial Intelligence 

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands 

{tbosse, cg}@few.vu.nl, http://www.few.vu.nl/~{tbosse, cg} 
 
 

ABSTRACT 
An important challenge within the field of Criminology is to 
investigate the spatio-temporal dynamics of crime. Typical 
questions in this area are how the behaviour of offenders, targets, 
and guardians, and the emergence and displacement of criminal 
hot spots can be predicted. This paper presents an agent-based 
simulation model that can be used as an experimental tool to 
address such questions. The simulation model particularly focuses 
on the interplay between hot spots and reputation. Using the 
model, a number of simulation experiments have been performed, 
of which results have been analysed using formal techniques. The 
results indicate that the presented approach is able to adequately 
reproduce displacement patterns as described in the literature. 

Categories and Subject Descriptors 
I.6.3 [Simulation and Modeling]: Applications. 
J.4 [Social and Behavioral Science]: Sociology. 

General Terms 
Experimentation, Human Factors, Verification. 

Keywords 
Criminal Hot Spots, Reputation, Social Simulation, Analysis. 

1. INTRODUCTION 
The field of Criminology, which addresses the analysis of criminal 
behaviour, is a multidisciplinary area with a high societal 
relevance; e.g., [12, 14, 16]. Although criminal behaviour is 
shown by a minority of the overall population, it typically comes 
in many types and variations. One of the main challenges within 
Criminology is to predict and explain in which situations which 
types of criminal behaviour will occur. 

To address this challenge, several theories have been proposed 
within the criminological literature. Perhaps the most influential 
of these is the Routine Activity Theory by [12]. This (informal) 
theory identifies three parties that are relevant in the analysis of 
crime, i.e., offenders, targets, and guardians. More precisely, it 
states that a crime will occur when a motivated offender meets a 
suitable target and there is no guardian present.  

Another important theory, which focuses on targets and guardians 

only, is the theory of Situational Crime Prevention [11]. This 
theory states that certain crimes can be prevented by placing 
guardians at appropriate locations. Such guardians may vary from 
police officers to alarm systems or surveillance cameras. 

Theories like the Routine Activity Theory and the theory of 
Situational Crime Prevention have triggered a widespread 
attention for the interplay between the behaviour of offenders, 
targets, and guardians, and in particular for their spatio-temporal 
dynamics. For example, a relevant question is which factors 
influence the emergence of so-called hot spots - areas in which 
many crimes occur [24]. Based on the idea of hot spots, several 
related questions may be asked, among which: 

• does the location of hot spots change over time? 
• how can the emergence of hot spots be predicted? 
• how can the emergence of hot spots be prevented? 
• what is the relation between the emergence of hot spots 

and the geography of a city? 
• what is the relation between the emergence of hot spots 

and the demographics of the population? 

In the last decades, there has been a growing interest in the area of 
Agent Based Social Simulation (ABSS). In this field, which 
integrates approaches from agent-based computing, computer 
simulation, and the social sciences, researchers try to exploit 
agent-based simulation to gain a deeper understanding of social 
phenomena [15]. Since ABSS combines the advantages of the 
agent paradigm (e.g., autonomy of the individual agents) with 
those of social simulation (e.g., the possibility to perform scalable 
social “experiments”  without much effort), it turns out to be 
particularly appropriate to analyse phenomena within the 
criminological domain. Indeed, in recent years, a number of 
papers have successfully tackled criminological questions using 
ABSS, e.g., [2, 8, 9, 17, 20, 21]. 

Despite the encouraging results by papers such as the ones 
mentioned above, agent based simulation models of crime can still 
be improved in several ways. A specific aspect that has only 
marginally been addressed by current approaches is the role of 
reputation [10]. Therefore, the current paper introduces an ABSS 
approach that specifically incorporates a notion of reputation of 
the locations involved. 

The proposed approach makes use of the high-level declarative 
modelling language TTL [5] and its executable sublanguage 
LEADSTO [6]. This modelling language is well suited for the 
current purposes, since it allows the modeller to combine 
qualitative, logical aspects (such as high-level agent concepts like 
beliefs, actions, and observations) with quantitative, numerical 

 
Agent-Based Simulation of the Spatial Dynamics of Crime: On the Interplay between 
Criminal Hot Spots and Reputation, T. Bosse and C. Gerritsen, Proc. of  the 7th Int. 
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), Padgham, 
Parkes, Müller and Parsons (eds.), May, 12-16, 2008, Estoril, Portugal, pp. 1129-
1136.
Copyright © 2008, International Foundation for Autonomous Agents and 
Multiagent Systems (www.ifaamas.org). All rights reserved. 

1129



aspects (such as real numbers and mathematical operations). 
Moreover, since the language has a formal logical semantics, 
simulation models created in TTL and LEADSTO can be formally 
analysed by means of logical analysis techniques (see, e.g., [4]). 

Below, in Section 2, some background on the concepts of 
reputation and displacement is provided. Next, in Section 3, the 
modelling languages TTL and LEADSTO are introduced. Based 
on this modelling approach, Section 4 describes the simulation 
model for the behaviour of offenders, targets, and guardians in 
detail. In Section 5, the simulation results are presented and in 
Section 6 these results are analysed using formal techniques. 
Section 7 discusses related work, and Section 8 concludes the 
paper with a discussion. 

2. REPUTATION AND DISPLACEMENT 
According to the literature in criminology, the reputation of 
specific locations in a city is an important factor in the spatio-
temporal dynamics of crime [18]. For example, it may be expected 
that the amount of assaults and the amount of arrests that take 
place at a certain location influence the reputation of this location. 
Similarly, the reputation of a location influences the attractiveness 
of that location for certain types of individuals. For instance, a 
location that is known for its high crime rates will attract police 
officers, whereas most citizens will be more likely to avoid it. As 
a result, the amount of criminal activity at such a location will 
decrease, which will affect its reputation again. As can be seen 
from this example, the change of the reputation of locations is a 
highly dynamic process. Moreover, this change of reputations 
goes hand in hand with the change of hot spots, which is typically 
known as the displacement problem [3, 13, 23]. 

Inspired by this displacement problem, the current paper proposes 
to include the notion of reputation within simulation models of 
crime. Whereas the notion of reputation is a well-known concept 
in the area of Artificial Intelligence e.g., [10], it is not addressed 
in much detail within the existing ABSS approaches to crime, 
such as [2, 8, 9, 17, 20, 21]. 

For this reason, the main objective of the current paper is to 
introduce an ABSS approach that incorporates the notion of 
reputation. In particular, the proposed approach aims at answering 
a specific question: how to better understand the interplay 
between criminal hot spots and reputation? The model can be 
used as an experimental tool to address this question (and related 
questions), by offering the possibility to predict displacement 
patterns under various environmental circumstances (often called 
“what if” -scenarios). 

Typically, the input parameters of such a model are certain 
characteristics of the environment and the population. Examples 
of environmental characteristics are geographical aspects like the 
amount of locations, their connections, and the distances between 
them. Examples of characteristics of the population are the 
amount of agents and the ratio between offenders, targets, and 
guardians. Such information may or may not correspond to the 
characteristics of existing cities. A number of empirical 
criminological studies exist that try to capture such data in real 
cities, e.g., [7]. In such cases, the resulting empirical data (or an 
abstraction of them) may directly be used as input parameters for 
the simulation model. Based on this input, the output of the model 
shows the spatial behaviour of the different types of agents over 

time. Such simulation results enable the analyst to make certain 
predictions about the displacement of crime in a certain city, 
given certain circumstances. 

3. MODELLING APPROACH 
To model the different aspects of criminal displacement from an 
agent perspective, an expressive modelling language is needed. 
On the one hand, qualitative aspects have to be addressed, such as 
observations, beliefs, decisions to perform an assault or an arrest, 
and some aspects of the environment such as the presence of 
certain agents. On the other hand, quantitative aspects have to be 
addressed. For example, the reputation of locations can best be 
described by a real number, and the update of this reputation can 
best be described by a mathematical formula. Another 
requirement of the chosen modelling language is its suitability to 
express on the one hand the basic mechanisms of criminal 
displacement (for the purpose of simulation), and on the other 
hand more global properties of criminal displacement (for the 
purpose of logical analysis and verification). For example, basic 
mechanisms of displacement of crime involve decision functions 
for individual agents, whereas examples of global properties are 
the types of statements as put forward in the introduction, like 
“ the location of hot spots changes over time”. 

The predicate-logical Temporal Trace Language (TTL) [5] fulfils 
all of these desiderata. It integrates qualitative, logical aspects and 
quantitative, numerical aspects. This integration allows the 
modeller to exploit both logical and numerical methods for 
analysis and simulation. Moreover it can be used to express 
dynamic properties at different levels of aggregation, which makes 
it well suited both for simulation and logical analysis. 

The TTL language is based on the assumption that dynamics can 
be described as an evolution of states over time. The notion of 
state as used here is characterised on the basis of an ontology 
defining a set of physical and/or mental (state) properties that do 
or do not hold at a certain point in time. These properties are often 
called state properties to distinguish them from dynamic 
properties that relate different states over time. A specific state is 
characterised by dividing the set of state properties into those that 
hold, and those that do not hold in the state. Examples of state 
properties are ‘agent 1 performs an assault on agent 2’ , or ‘ there 
are 5 criminal agents at location A’ . Real value assignments to 
variables are also considered as possible state property 
descriptions. 

To formalise state properties, ontologies are specified in a (many-
sorted) first order logical format: an ontology is specified as a 
finite set of sorts, constants within these sorts, and relations and 
functions over these sorts (sometimes also called signatures). The 
examples mentioned above then can be formalised by n-ary 
predicates (or proposition symbols), such as, for example, 
performed(assault_at(a1,a2)) or number_of_criminals(locA, 5). 
Such predicates are called state ground atoms (or atomic state 
properties). For a given ontology Ont, the propositional language 
signature consisting of all ground atoms based on Ont is denoted 
by APROP(Ont). One step further, the state properties based on a 
certain ontology Ont are formalised by the propositions that can 
be made (using conjunction, negation, disjunction, implication) 
from the ground atoms. Thus, an example of a formalised state 
property is number_of_criminals(locA, 5) & number_of_cri-
minals(locB, 3). Moreover, a state S is an indication of which 
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atomic state properties are true and which are false, i.e., a 
mapping S: APROP(Ont) → {true, false}. The set of all possible 
states for ontology Ont is denoted by STATES(Ont). 

To describe dynamic properties of complex processes such as the 
displacement of crime, explicit reference is made to time and to 
traces. A fixed time frame T is assumed which is linearly ordered. 
Depending on the application, it may be dense (e.g., the real 
numbers) or discrete (e.g., the set of integers or natural numbers 
or a finite initial segment of the natural numbers). Dynamic 
properties can be formulated that relate a state at one point in time 
to a state at another point in time. A simple example is the 
following (informally stated) dynamic property about the number 
of criminals at a certain location:  

 

For all traces γ, 
there is a time point t such that 
at location A, there are at least x criminal agents.   
 

A trace γ over an ontology Ont and time frame T is a mapping γ : 
T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in 
STATES(Ont). The temporal trace language TTL is built on atoms 
referring to, e.g., traces, time and state properties. For example, 
‘in trace γ at time t property p holds’ is formalised by state(γ, t) |= 
p. Here |= is a predicate symbol in the language, usually used in 
infix notation, which is comparable to the Holds-predicate in 
situation calculus. Dynamic properties are expressed by temporal 
statements built using the usual first-order logical connectives 
(such as ¬, ∧, ∨, �) and quantification (∀ and ∃; for example, 
over traces, time and state properties). For example, the 
informally stated dynamic property introduced above is formally 
expressed as follows: 

∀γ:TRACES ∃t:TIME ∃i:INTEGER 
state(γ, t) |= number_of_criminals(locA, i) & i�x 

In addition, language abstractions by introducing new predicates 
as abbreviations for complex expressions are supported.  

To be able to perform (pseudo-)experiments, only part of the 
expressivity of TTL is needed. To this end, the executable 
LEADSTO language [6] has been defined as a sublanguage of 
TTL, with the specific purpose to develop simulation models in a 
declarative manner. In LEADSTO, direct temporal dependencies 
between two state properties in successive states are modelled by 
executable dynamic properties. The LEADSTO format is defined 
as follows. Let α and β be state properties as defined above. Then, 
the notation α →→e, f, g, h β means: 

If state property α holds for a certain time interval with duration g, 
then after some delay between e and f 
state property β will hold for a certain time interval with duration h. 

As an example, the following executable dynamic property states 
that “if an agent a goes to a location l during 1 time unit, then 
(after a delay between 0 and 0.5 time units) this agent will be at 
that location for 5 time units”: 

∀a:AGENT ∀l:LOCATION 
performed(a, go_to_location(l))  →→0, 0.5, 1, 5  is_at_location(a, l) 

Based on TTL and LEADSTO, two dedicated pieces of software 
have recently been developed. First, the LEADSTO Simulation 
Environment [6] takes a specification of executable dynamic 
properties as input, and uses this to generate simulation traces. 
Second, to automatically analyse the resulting simulation traces, 

the TTL Checker tool [5] has been developed. This tool takes as 
input a formula expressed in TTL and a set of traces, and verifies 
automatically whether the formula holds for the traces. In case the 
formula does not hold, the checker provides a counter example, 
i.e., a combination of variable instances for which the check fails.  

For more details of the LEADSTO language and simulation 
environment, see [6]. For more details on TTL and the TTL 
Checker tool, see [5]. 

4. THE SIMULATION MODEL 
This section describes the simulation model in detail, based on the 
LEADSTO language. The geographical aspects of the 
environment are modelled by a graph that consists of a number of 
locations, some of which are connected by edges. Within this 
environment, several agents move around and meet at the 
different locations. There are three types of agents: criminals (i.e., 
possible offenders), passers-by (i.e., possible targets), and 
guardians. The passers-by are assumed to be suitable targets, for 
example, because they appear rich and/or weak. However, as also 
the guardians are moving around, such targets may be protected, 
whenever at the same location a guardian is observed by the 
criminal (i.e., social control). Thus, a criminal agent will only 
perform a crime when it is at a location where it observes a 
passer-by and no guardians. An example of a simple geographical 
environment is shown in Figure 1. This picture represents a small 
city that only consists of three important locations (called A, B, 
and C), and is populated by 30 agents. The black circles denote 
passers-by, the grey circles denote guardians, and the white circles 
denote criminals. As can be seen in the figure, in this situation 
crimes may be performed at location B, since this location 
contains 1 criminal, 4 passers-by, and no guardians. 

The interaction between a specific agent and the environment is 
modelled by (1) observation, which takes information on the 
environment as input for the agent (e.g., at which location it is, 
where suitable targets are, and whether social control is present), 
and (2) performing actions, which is an output of the agent 
affecting the state of the world (e.g., going to a different location, 
or committing a crime). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example geographical environment 
 
In order to decide to which location they will go, all agents 
continuously update the attractiveness they assign to each 
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location, which is represented by a real number in the domain 
[0,1]. This attractiveness is calculated as the weighted sum of 
three values (also represented by real numbers), namely: 

1) The individual basic attractiveness v the agent assigns to 
that location. This represents the extent to which the agent 
likes to go to that location, independent of its reputation. 
For example, some agents are more likely to go to a 
shopping centre, whereas others are more likely to go to a 
railway station. 

2) The assault reputation n1 of the location. The higher this 
number, the more famous the corresponding location is for 
assaults taking place there. 

3) The arrest reputation n2 of the location. The higher this 
number, the more famous the corresponding location is for 
arrests taking place there. 

This calculation is represented by the following executable 
dynamic property (in LEADSTO format): 

Decide Current Location Attractiveness 
∀a:AGENT ∀l:LOCATION ∀n1,n2,v,w1:REAL ∀w2,w3:INTEGER 
basic_attractiveness_of_agent_for_location(v, l, a) ∧ 
belief(a, assault_reputation_at_location(n1, l)) ∧ 
belief(a, arrest_reputation_at_location(n2, l)) ∧ 
has_weight_factor(a, w1, w2, w3) →→  
belief(a, current_attractiveness_of_location(l, w1*v+w2*n1+w3*n2)) 

As can be seen from this rule, each agent possesses three 
individual weight factors w1, w2, and w3, which indicate the 
relative importance they attach to each of the three components 
introduced above. Note that these weight factors may be positive 
or negative. For instance, criminals will usually have a positive 
weight factor for assault reputation (they will tend to go to 
locations where many assaults have been performed in the past, 
since they expect that their chances to perform a next assault are 
higher at those locations), and a negative weight factor for arrest 
reputation (they will tend to avoid locations where many arrests 
have been performed in the past). Similarly, passers-by will 
usually have a very negative weight factor for assault reputation 
and a negative weight factor for arrest reputation. Finally, 
guardians will usually have a very positive weight factor for 
assault reputation and a positive weight factor for arrest 
reputation. 

Based on the calculated attractiveness of the locations, each agent 
determines where to go, by selecting the location with the highest 
attractiveness. 

Moreover, as mentioned above, the criminal agents decide to 
perform an assault when they are at a location where they observe 
a passer-by and no guardians, cf. the Routine Activity Theory 
[12]. This is modelled by the following dynamic property: 

Perform Assault 
∀a1,a2:AGENT ∀l:LOCATION 
observes(a1, agent_of_type_at_location(a1, criminal, l)) ∧ 
observes(a1, agent_of_type_at_location(a2, passer_by, l)) ∧ 
not guardian_at_location(l) →→  
performed(a1, assault_at(a2, l)) 

After having performed an assault, a criminal becomes a known 
criminal for a number of time steps. This is done to ensure that 
the guardians are able to recognise (and possibly arrest) a criminal 
that performed a crime. In the simulation experiments described in 

the next section, criminals stay “known” for 4 iterations, which 
represents a period during which they are actually being wanted 
by the police. After such a period, these criminals become 
anonymous again. However, when a guardian meets a criminal 
that is still wanted, (s)he will arrest that criminal. This is modelled 
by the following dynamic property: 

Perform Arrest  
∀a1,a2:AGENT ∀l:LOCATION 
observes(a1, agent_of_type_at_location(a1, guardian, l)) ∧ 
observes(a1, agent_of_type_at_location(a2, criminal, l)) ∧ 
known_criminal(a2) →→ 
performed(a1, arrest_at(a2, l)) 

Furthermore, the assault reputation of the different locations 
involved is increased each time that an assault is performed, cf. 
the following dynamic property: 

Assault Reputation Increment 
∀l:LOCATION ∀n:REAL 
assault_at(l) ∧  
belief(all_agents, assault_reputation_at_location(n, l)) →→  
belief(all_agents, assault_reputation_at_location(n+inc, l)) 

Here, inc is a constant that specifies the increment of reputation 
based on one assault. In the simulation experiments described in 
the next section, inc = 1. Note that this dynamic property assumes 
that all agents have the same knowledge about reputations. By 
replacing all_agents by a variable for a specific agent, variants of 
this rule can be created for different agents. 

When no assault is performed at a location, the reputation of this 
location for being a hot spot slightly decreases: 

Assault Reputation Decay 
∀l:LOCATION ∀n:REAL 
belief(all_agents, assault_reputation_at_location(n, l)) ∧ 

not assault_at(l) →→  
belief(all_agents, assault_reputation_at_location(n*dec, l)) 

Here, dec is a constant that specifies the decay of reputation when 
there is no assault. In the simulation experiments described in the 
next section, dec = 0.99. 

To update the arrest reputation of locations, the same rules are 
used as shown above, where the word assault is replaced by 
arrest.  

Finally, it is assumed that the (assault and arrest) reputation of all 
locations is known to all agents in the population (e.g., because 
events like assaults and arrests are publicly discussed in the 
media, or because they are communicated between agents). 
However, the approach could be made more realistic by replacing 
the reputation mechanism by specific trust update mechanisms for 
individual agents, cf. [10, 19]. 

The complete set of LEADSTO rules used for the simulation 
model (including the time parameters) is shown in Section 1 of 
the appendix in [25]. 

5. SIMULATION RESULTS 
The simulation model as described in the previous section has 
been used to generate various simulation traces under different 
parameter settings. This section describes an example of a 
simulation trace in detail. In the next section, the global results of 
all simulation experiments are summarised and discussed.  
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The parameter settings used for the simulation described in this 
section are identical to the ones shown in Figure 1: the population 
consists of 24 passers-by, 2 guardians and 4 criminals. Initially, 
these agents are distributed over the locations by means of their 
personal preferences (i.e., the basic_attractiveness predicates). 
Moreover, weight factors are assigned to each agent. The details 
of these parameter settings can be found in Section 2 of the 
appendix in [25]. 
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Figure 2: Displacement of the three types of criminals 
 

Part of the simulation trace that was generated using these settings 
is shown in Figure 2 (A-C). Within these graphs, time is on the 
horizontal axis, and the number of agents at a certain location is at 
the vertical axis. As shown in Figure 2B (and also in Figure 1), 
initially there are no guardians at location B. As a result, some 
assaults take place at that location. This leads to a change in the 
assault reputation of that location, which eventually results in 
displacement. This can be seen at iteration 3: most of the passers-
by move away from location B (although one of them still remains 
at that location), whereas all criminals and all guardians move 
towards location B. As a result of this, some arrests take place, 
which leads to a change in arrest reputation of location B. As a 
consequence, again, the criminals move (at iteration 5), this time 
to location A and C. Since location A and C are now populated by 
criminals and passers-by, but not by guardians, some assaults take 
place at that location, which again leads to a change in assault 
reputation, and in displacement of the passers-by and the 
guardians. This cycle repeats itself until the end of the simulation: 
first the passers-by move away from the criminals (and if possible, 
towards the guardians), then the criminals follow the passers-by 
(as long as they do not encounter too many guardians), and then 
the guardians follow the criminals. 

To understand the influence of assaults on the assault reputation, 
see Figure 3, which depicts the dynamics of the assault reputation 
of location A. Note that, as opposed to Figure 2, this picture is a 
screenshot of the LEADSTO simulation environment1. As shown 
in Figure 3, whenever an assault is performed, the assault 
reputation of this location immediately increases. However, when 
no assaults are performed, the assault reputation gradually 
decreases. 

 

 
 

Figure 3: Assault reputation of location A 
 

A similar trend can be observed in Figure 4, which depicts the 
dynamics of the arrest reputation of location A. Due to space 
limitations, the dynamics of the reputations of the other locations 
are not shown. However, these show similar behaviour as 
depicted in Figure 3 and 4. 

 
 

Figure 4: Arrest reputation of location A 

                                                                 
1 Here, time point 40 corresponds to iteration 1 in Figure 2. Time point 70 

corresponds to iteration 2, time point 100 corresponds to iteration 3, 
and so on. 
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6. FORMAL ANALYSIS 
All in all, a large series of simulation experiments has been 
performed. The detailed settings and results of three of these 
experiments (including the one described in Section 5.1) are 
shown in [25]. Among the different experiments, various 
parameter settings were varied, in particular the number of agents, 
the ratio between different types of agents, the number of 
locations, the basic attractiveness of locations for the agents, and 
the weight factors of the agents. 

To analyse the resulting simulation traces in more detail, the TTL 
Checker tool [5] has been used. As mentioned earlier, this tool 
takes as input a TTL formula and a set of traces, and verifies 
automatically whether the formula holds for the traces. For the 
current domain, a number of hypotheses have been expressed as 
dynamic properties in TTL, which were inspired by the questions 
mentioned in the Introduction. For example, consider the 
following dynamic property (P1), which expresses that the 
location of hot spots keeps on changing over time: 

P1  Continuation of Displacement 
For each time point t (except the end of the trace2), if at t the largest hot 
spot is at location x, then there is a later time point at which the largest 
hot spot is at some other location y.  

∀γ:TRACES ∀t:TIME ∀x:LOCATION 
[ is_largest_hot_spot_at(x, t, γ) & t < last_time-δ ] 
� [ ∃t2:TIME ∃y:LOCATION is_largest_hot_spot_at(y, t2, γ) & 
      t<t2 & x≠y] 
 

In this formula, is_largest_hot_spot_at is an abbreviation, which 
can be determined in multiple ways. For example, by taking the 
location: 1) with the highest assault reputation, 2) with the highest 
number of criminals, or 3) with the highest number of crimes. 
These different possibilities are formalised as follows: 

is_largest_hot_spot_at(x,t,γ) ≡ 
∃r:REAL state(γ, t) |= assault_reputation(x, r) & 
∀y:LOCATION ∀r2:REAL 
   [state(γ, t) |= assault_reputation(y, r2) � r2≤r ] 
 
is_largest_hot_spot_at(x,t,γ) ≡ 
∃i:INTEGER state(γ, t) |= number_of_criminals(x, i) & 
∀y:LOCATION ∀i2:INTEGER 
   [state(γ, t) |= number_of_criminals(y, i2) � i2≤i ] 
 
is_largest_hot_spot_at(x,t,γ) ≡ 
∃i:INTEGER state(γ, t) |= number_of_crimes(x, i) & 
∀y:LOCATION ∀i2:INTEGER 
   [state(γ, t) |= number_of_crimes(y, i2) � i2≤i ] 
 

In addition, a combination of the different options can be 
considered, for example, by calculating the weighted sum of the 
different numbers. Yet another variant of the dynamic property 
can be created, for example, by counting the number of criminals 
or crimes over a longer time period, instead of considering the 
current time point only. 

Besides checking whether the location of hot spots is 
continuously changing, also other properties can be verified. A 
relevant property from the viewpoint of crime prevention is to 

                                                                 
2 the condition t < last_time-δ (where δ is the maximum duration of 

displacement, for example 6 iterations) was added to make sure that the 
property does not fail for the end of the trace. 

check whether specific reoccurring patterns can be identified. For 
example, is it always the case that the criminals follow the 
movement of the passers-by, and that the guardians follow the 
criminals? And if not, are there specific circumstances in which 
this pattern does not occur? To analyse these kinds of patterns, 
properties like the following have been established: 

P2  Criminals follow Passers-by 
For each time point t (except the end of the trace), if at t most passers-by 
are at location x, then within ε time points most criminals will be at 
location x.  

∀γ:TRACES ∀t:TIME ∀x:LOCATION 
[most_passers_by_at(x, t, γ) & t < last_time-δ ] 
� [ ∃t2:TIME most_criminals_at(x, t2, γ) & t<t2 & t2<t+ε] 
 

Here, most_passers_by_at is defined as follows: 

most_passers_by_at(x,t,γ) ≡ 
∃i:INTEGER state(γ, t) |= number_of_passers_by(x, i) & 
∀y:LOCATION ∀i2:INTEGER 
   [state(γ, t) |= number_of_passers_by(y, i2) � i2≤i ] 
 

Similarly, most_criminals_at is defined by taking the location with 
the highest number of criminals (see the second formalisation of 
is_largest_hot_spot_at above). In addition to P2, a similar 
property has been created to check whether the guardians follow 
the criminals. 

Finally, a number of properties have been specified to investigate 
the relation between the emergence of hot spots and the number of 
locations, and the relation between the emergence of hot spots and 
the ratio between the types of agents. Due to space limitations, 
these properties are not shown here. 

To summarise, the TTL checks pointed out that in almost all of 
the simulations, the same repeating pattern was found: the 
passers-by move away from the criminals, the criminals follow the 
passers-by, and the guardians follow the criminals. This pattern is 
consistent with the trends described in criminological literature 
such as [3, 13, 23].  

Only in some exceptional cases, this pattern was not found. For 
example, when there are more guardians then locations (e.g., in 
Section 3 of the appendix in [25]), the guardians may distribute 
themselves over the locations, so that no crime will ever be 
performed, and thus no displacement will occur. This case may be 
compared with the ideal situation that a city has sufficient police 
force to prevent all crime. Another exception was a situation in 
which many agents have extreme preferences. For instance, if a 
certain location has an extremely high attractiveness to passers-by, 
then these passers-by will stay at that location, even though they 
run the risk of being assaulted. 

7. RELATED WORK 
In the literature, a number of modelling approaches exist that have 
similarities to the approach discussed in this paper. 

For example, the work in [17] systematically investigates the 
geography of crime trajectories using a variety of spatial analysis 
techniques. However, a difference with the current approach is 
that these models do not contain an adaptive element (such as an 
update of reputation), which causes the results to converge 
quickly to an equilibrium. 
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Another approach to analyse the spatio-temporal dynamics of 
crime is presented in [9]. This approach is based on a Distributed 
Abstract State Machine (DASM) formalism, combined with a 
multi-agent based modelling paradigm. Although the agents 
involved are capable of learning (using a form of behavioural 
reinforcement learning, where based on past experiences certain 
preferences are developed that may influence future choices), the 
notion of reputation is not explicitly incorporated.  

A third interesting approach is introduced in [20], which also 
explores the possibility of simulating individual crime events in 
order to generate plausible crime patterns. This approach is based 
on a Cellular Automaton (CA), in which the main elements are 
offenders, targets, and crime places. Different attributes of the 
model can be manipulated, among which motivation of offenders, 
capability of guardians, and accessibility of places. Like the 
approach mentioned above, the main difference with the current 
approach is that it does not contain an explicit notion of 
reputation. 

Furthermore, a more specialised approach is presented in [21]. 
That paper describes a tool to investigate the influence that 
different police control routes have on the reduction of crime 
rates. The approach comprises an artificial society consisting of 
various agents, in particular criminals and policemen. As a 
follow-up of that work, in [22] the first results are presented that 
were achieved with GAPatrol, an evolutionary multi agent-based 
simulation tool devised to assist police managers in the design of 
effective police patrol route strategies.  

Another more specialised approach is put forward in [2]. This 
approach specifically aims at simulating the process of deterrence. 
A simulation model is presented where each potential offender is 
part of a social network that consists of several agents. All agents 
repeatedly face a choice between rule compliance and rule 
transgression. If agents transgress, they have a probability of 
being audited and punished. The main aim of the work is to 
investigate how the probability of being punished influences the 
amount of crime. 

Although all of the papers mentioned above have some 
similarities with the work presented here, an important difference 
is that they all focus on simulation only. In contrast, the current 
paper proposes an approach that combines simulation with logical 
analysis. Since the simulation traces that result from the 
LEADSTO environment can directly be used as input for the TTL 
checker, it is relatively easy for the modeller to verify certain 
global properties of the model. As such, the paper has many 
similarities with the work presented in [4], which also combines 
simulation with logical analysis. However, the domain addressed 
by the latter paper is completely different (namely the 
psychological and biological characteristics underlying the 
behaviour of criminals that are diagnosed with “Intermittent 
Explosive Disorder”). In addition, that paper does not consider 
the notion of reputation, nor does it address any notion of 
adaptivity. 

8. DISCUSSION 
Investigation of the spatio-temporal dynamics of crime is an 
important challenge within the field of Criminology. To this end, 
the current paper presents an agent-based simulation model that 
can be used as an experimental tool to analyse these dynamics. 

The simulation model particularly focuses on the interplay 
between hot spots and reputation, which has not been addressed 
in earlier work. Using the model, a series of simulation 
experiments has been performed, under different parameter 
settings. The results of the simulations have been automatically 
verified (by means of the TTL Checker [5]) against a number of 
hypotheses, expressed as logical formulae. In almost all of the 
simulations, the same repeating pattern was found: the passers-by 
move away from the criminals, the criminals follow the passers-
by, and the guardians follow the criminals. This pattern is 
consistent with the displacement trends described in 
criminological literature such as [3, 13, 23]. 

In fact, one could argue that this is a rather unsatisfactory finding, 
since it may lead to the conclusion that “the police always arrive 
too late” (or, more concretely, that decisions to establish new 
patrol teams, surveillance cameras, and so on, are only made after 
the hot spots have already emerged). Therefore, an interesting 
question, which will be addressed in future research, is whether 
simulation models of criminal displacement can be useful for 
anticipatory policies (i.e., to increase the number of guardians at 
locations where hot spots are likely to emerge, instead of at the 
present locations of hot spots). 

Furthermore, note that, although the parameter settings used for 
the simulation experiments described in this paper were inspired 
by empirical studies such as [7]3, no effort was put into creating 
settings that correspond exactly to the characteristics of real cities 
and populations. Therefore, the results of the presented 
experiments should not be considered as conclusive about real 
world situations. Rather, they provide preliminary insight in the 
process of displacement, and provide support for the usefulness of 
the presented approach as an analysis tool. For future work, the 
authors plan to use more realistic parameter settings (including 
temporal relationships) to investigate to what extent the approach 
is able to reproduce empirical data. 

When such more realistic parameter settings will be considered, 
also scaling issues will have to be addressed. Although the current 
simulation model handles population sizes of hundreds of 
(heterogeneous) agents relatively easily, the simulation time is 
polynomial in the number of agents. Therefore, complexity 
problems will arise when populations of (more than) thousands of 
agents are considered. These problems could be solved by 
translating the current simulation model to a stochastic model, as 
is done, for example, in the analysis of epidemics [1]. To make 
such a translation, the description of the dynamics of a population 
will shift from a “micro” perspective (at the level of individual 
agents) to a “macro” perspective (at the level of groups of agents). 
For example, the number of criminals, assaults and arrests at 
certain locations may be described by global variables, which are 
influenced by probabilistic rules. A comparable, but slightly 
different approach is presented in [4], where the expected number 
of crimes in certain populations is estimated on the basis of 
probabilities of opportunities. The main advantage of these types 
of macro-level approaches is that they can deal with larger 
populations. An inevitable drawback is however that they imply a 
loss of detail at the individual agent level. In future work, the 
benefits of such approaches will be explored. 
                                                                 
3 For example, the authors tried to pick reasonably realistic settings for 

agents’ preferences and ratios between types of agents. 
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