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ABSTRACT
We present a regret-based multiagent learning algorithm
which is provably guaranteed to converge (during self-play)
to the set of Nash equilibrium in a wide class of games.
Our algorithm, FRAME, consults experts in order to obtain
strategy suggestions for agents. If the experts provide ef-
fective advice for the agent, then the learning process will
quickly reach a desired outcome. If, however, the experts do
not provide good advice, then the agents using our algorithm
are still protected. We further expand our algorithm so that
agents learn, not only how to play against the other agents
in the environment, but also which experts are providing the
most effective advice for the situation at hand.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory

Keywords
Multiagent Learning, Game Theory

1. INTRODUCTION
How and what agents should learn in the presence of oth-

ers is one of the important questions in multiagent systems.
The problem has been studied from several different perspec-
tives, and in particular has garnished a lot of interest from
both the game-theory community (see, for example, [4]) and
the AI community (see, for example, [2]).

In this paper we investigate the problem of whether iden-
tical agents, who repeatedly play against each other, can
learn to play strategies which form a Nash equilibrium (see,
for example [2]). In particular, we are interested in settings
where there are potentially more than two agents, and where
agents have potentially more than just two actions to choose
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from. We are also interested in ensuring that agents learn
to play a best response against stationary opponents.

Our learning procedure, a Framework for Regret Anneal-
ing Methods using Experts or FRAME, is a regret-based
learning algorithm for repeated games which combines a
greedy random sampling method with consultation of ex-
perts, that return strategy profiles. More importantly, by
consulting carefully chosen experts we can greatly improve
the convergence rate to Nash equilibria in self-play, but in
the case where the experts do not return useful advice, then
we still have guarantees that our algorithm will lead agents
to a Nash equilibrium.

2. BACKGROUND
An n-player stage game is defined as G = 〈N, A1, . . . , An,

u1, . . . , un〉 where N = {1, 2, . . . , n} is the set of agents par-
ticipating in the game, and Ai is the set of possible actions
that agent i can take. During the stage game, agents simul-
taneously choose to play actions and each agent receives a
reward based on the joint action a = (a1, . . . , an). In par-
ticular ui : A1 × . . . × An → R is the utility function for
agent i, and so ui(a) is the reward that agent i receives if
the joint action is a. With out loss of generality, we assume
ui ∈ [0, 1]. Agents play strategies, where a strategy, σi, of
agent i is a probability distribution over action space Ai and
σi(aj) denotes the probability with which agent i chooses to
play action aj ∈ Ai. We let Σi denote the strategy space of
agent i, and let σ = (σ1, . . . , σn) ∈ Σ = Σ1 × . . . × Σn de-
note a joint strategy. If there exists an action aj such that
σi(aj) = 1, then σi is called a pure strategy. We use the
notation σ = (σi, σ−i) to represent a joint strategy, where
σ−i is defined to be equal to (σ1, . . . , σi−1, σi+1, . . . , σn). By
abuse of notation, we can define the utility of an agent in
terms of a joint strategy σ = (σi, σ−i) as

ui(σi, σ−i) =
X

a∈A

ui(a)Πn
j=1σj(aj).

We assume that agents are self-interested and that they
wish to play strategies that maximize their own utility. That
is, if all agents but i are playing σ−i, then agent i should
play a strategy σi that maximizes its utility, i.e. σi should
be a best response to σ−i. We say that agents’ strategies are
in (Nash) equilibrium if no agent is willing to change their
strategy, given that no other agents change.

Definition 1. A strategy profile σ∗ = (σ∗
1 , . . . , σ∗

n) is a



Nash equilibrium if for every agent i

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i) ∀σ

′
i 6= σ

∗
i .

A strategy profile σ∗ is an ǫ-Nash equilibrium if for every
agent i, ui(σ

∗
i , σ∗

−i) ≥ ui(σ
′
i, σ

∗
−i) − ǫ ∀σ′

i 6= σ∗
i .

Agents are also able to evaluate their strategy choice by
measuring the regret they experience from playing a partic-
ular strategy.

Definition 2. Given a joint strategy σ, agent i’s regret
is ri(σ) = maxσ′

i
∈Σi

[ui(σ
′
i, σ−i) − ui(σi, σ−i)].

Given σ, we define the regret of a game to be the maxi-
mum regret among all agents, i.e. r(σ) = maxi∈N(ri(σ)).

A repeated game, G, is a game where agents play a specific
stage game over and over. At stage t we denote the strategy
profile that the agents played by σt and the actual action
profile that the agents played by at. Given σt, each agent i
is able to compute its immediate regret, ri(σ

t).
As the stage game is repeated, agents gain experience and

are able to adjust their strategies so that they fair better
against their opponents. In this paper we are interested
in learning approaches which use regret, and in particular
regret-minimization, to guide the agents’ strategy adapta-
tions. Our goal is to develop a learning procedure which will
converge to an interesting set of strategies for the agents. In
particular, we would like to develop an approach such that
r(σt) → 0 as t → ∞ (i.e. the process converges to the set
of Nash equilibria for the stage game).

Regret-based learning is a broad type of learning that can
achieve various degrees of convergence. However, the results
for achieving convergence to the set of Nash equilibria are
mostly negative. Some positive results have been achieved
using randomized learning algorithms. One example of this
approach is Experimental Regret Technique (ERT) [5]. The
basic idea of ERT is to have all agents with high regret
randomly choose a new strategy, to have all agents with
medium regret to slightly modify their current strategy in
some systematic way, and to have agents with low regret
to keep playing their strategy. Germano and Lugosi further
improved upon this technique with their algorithm Annealed
Localized Experimental Regret Technique (ALERT) which
provably converges to the set of Nash equilibria for almost
all games and the set of ǫ-Nash equilibria for all games.

3. FRAME
Although ALERT is theoretically important, there are two

main issues which limit its applicability in actual multiagent
systems. First, since ALERT is an uncoupled algorithm,
agents have almost no information from which they can de-
termine whether they are playing an ǫ-equilibrium. Instead,
ALERT’s guarantees are in the form of bounds on the prob-
ability of not being in an ǫ-equilibrium. Second, ALERT
uses a naive method for having agents find new strategies.
In particular, ALERT has the agents choose new strategies
uniformally at random and then checks whether these strate-
gies meet a set of conditions. Our algorithm, a Framework
for Regret Annealing Methods using Experts, or FRAME, is
inspired by ALERT but explicitly addresses these two issues,
while still maintaining the theoretical guarantees of ALERT.

To address the first issue, FRAME is not a fully uncoupled
algorithm. Instead, we assume that the agents’ strategies
are publicly available to all agents, as is done by several

Algorithm 1 FRAMEi

- σ0
i is a strategy picked uniformly at random

for t = 0, 1, . . . do

- with probability p, βt+1
i is the strategy returned by

consulting the expert
if βt+1

i is not in the bounded region B(σt
i , d(r(σt))) or

the expert was not consulted then

- βt+1
i is the strategy picked uniformly from

B(σt
i , d(r(σt))))

end if

if the regret of β is less than the regret of σt then

- σt+1 = βt+1

else

- σt+1 = σt

end if

- τi is strategy picked uniformly at random from Σi

if the regret of τ is less than half the regret of σt+1

then

- with probability η, set σt+1 = τ .
end if

end for

other researchers [2]. We also assume that the maximum
regret of all agents is publicly available. Our algorithm will
still work without these two assumptions, as it is possible to
experimentally determine regret (both for individual agents
and overall), but this comes with a substantial increase in
the number of iterations required by our algorithm.

To deal with the second issue, FRAME allows an agent,
with some probability, to consult an expert, which returns
a possible new strategy. Any expert will work, even a mali-
cious one that actively provides bad strategies. If the expert
provides good strategies, then FRAME will be able to reduce
an agent’s regret quickly. If all agents are using FRAME and
are consulting good experts, then the convergence rate to a
Nash equilibrium greatly improves.

The FRAME algorithm for agent i is shown in Algo-
rithm 1. The algorithm, with respect to agent i, works as
follows. Agent i first chooses an initial strategy σ0

i uniformly
at random from Σi. To obtain a new strategy for time t+1,
FRAME then uses the provided expert, which agent i con-
sults with a provided probability of p, independent of all
other agents. If consulted, the expert returns a possible
strategy βt+1

i . To provide protection against poor experts,
FRAME checks to see if βt+1

i is inside the bounded region
B(σt

i , d(rt)), which is centered on σt
i and has a minimum

width of d().1 If βt+1
i is not, or the expert was not consulted,

βt+1
i is chosen uniformly at random from the bounded search

region. Agent i then calculates ri(β
t+1). If r(βt+1) < r(σt),

then σt+1 = βt+1, otherwise, σt+1 = σt. To avoid the off-
chance of getting stuck at a locally optimal joint strategy,
each agent chooses an alternative strategy τi uniformly at
random from Σi. If the regret at τ is less than half the cur-
rent regret, then with a given probability η, the game resets
to τ . This process repeats until the regret is zero.

FRAME’s correctness is provided by Proposition 1.

Proposition 1. If η > 0, then as t approaches infinity,
σt approaches the set of Nash equilibria.

The proof is omitted due to space limitations.

1d() may be any function so long as d(x) > 0, for x > 0.



0, 0 1, 0 0, 1
0, 1 0, 0 1, 0
1, 0 0, 1 0, 0

Figure 1: Shapley’s Game.

It should be noted that FRAME also works when some
subset of the agents are playing stationary strategies. Specif-
ically, agents using FRAME are able to achieve a best re-
sponse against those agents playing stationary strategies.

3.1 Experimental Results
In this section we discuss our findings from a series of

experiments.

3.1.1 Experimental Setup
While in theory any expert will work in FRAME, methods

that make gradual adjustments to the strategies of agents
are preferred. In our experiments we chose two such experts;
Win or Learn Fast (WoLF) [2] and Logistic Fictitious Play
(LFP) [4]. As a basis for comparison, we also used the Naive
Expert, which always picks a strategy at random.

WoLF is a variable learning rate applied to a gradient-
ascent learning approach. Each turn the strategy is moved
towards a best response, however the strategy is moved more
aggresively when the agent is doing worse than expected.

LFP is a form of learning where, at each iteration, the
agent chooses a particular action with a probability that is
in proportion to an exponential function of the utility that
this action has yielded in the past.

We ran experiments on a wide range of games, including
repeated Prisoner’s Dilemma, Battle of the Sexes, 2-Player
Matching Pennies and 3-Player Chicken. Due to space lim-
itations we are unable to report our findings in these games
in any detail, except to say that in self-play, agents using
FRAME were able to quickly converge to Nash equilibria.
We report, in detail, our findings from Shapley’s game (Fig-
ure 1). Shapley’s game is a classic but challenging one.
In particular, WoLF does not converge in Shapley’s game
whereas LFP does.

For our experiments, LFP was run with λ = 0.5 and WoLF
with δw = 1

100+t
and δl = 3δw. For FRAME, we let p = 0.75.

3.1.2 Results
A trial was said to have converged when the joint strat-

egy was within three decimal places of any Nash equilibrium.
Each of our experiments consisted of 1000 trials. We present
our findings in a histogram format, which show the percent-
age of each experiment (grouped into 25 bins) that took a
certain number of iterations to converge.

As shown in Figure 2, convergence in Shapley’s Game is
achieved using just a Naive Expert. However, by picking a
better expert, we can do much better. Figure 2, shows the
convergence when LFP is used as the expert and consulted
75% of the time. The convergence rate improves by three
orders of magnitudes. We also conducted other experiments
which showed that as LFP was consulted more and more
often, the convergence continued to improve. On the other
hand, Figure 2, shows the convergence rate when an expert
poorly suited for Shapley’s game, such as WoLF, is used as
the expert, the convergence rate suffers but convergence is
still achieved.

4. ADAPTIVE-FRAME
Despite the success of FRAME, it has one fundamental

limitation. As our experiments showed, any specific expert
is only useful for a limited set of games. Hence, once an
agent picks its expert, it has limited the set of games for
which it can achieve good convergence rates. Furthermore,
even if an agent was allowed to pick a new expert for each
game, it would not always be possible to know, before the
game started, which expert was best to use.

To address this problem, we created a generalization of
FRAME called adaptive-FRAME. Adaptive-FRAME allows
an agent, at any point in a game, to choose from many pos-
sible experts. To help agents make the decision of which
expert to actually consult, agents make use of an experts al-
gorithm. An experts algorithm is any algorithm that, given
a set of experts and their past performances, suggests which
expert to consult. This allows adaptive-FRAME the flexi-
bility to deal with new and unknown games.

Formally, the set of possible experts for agent i to consult
is denoted by Ei = {ei,0, . . . , ei,|Ei|−1}. The Naive Expert
is always ei,0. With slight abuse of notation, we define ei to
be some specific but undefined expert for agent i. At time t
expert ei is consulted with probability pt

i (ei) and returns
a suggested strategy βei

. Agent i’s experts algorithm is
denoted by æi and pi is called æi’s policy. We only require
that for all t, pt

ei,0
> 0 and

P∞
t=0 pt

ei,0
= ∞; as long as this

holds, the correctness for adaptive-FRAME follows directly
from the proof of correctness for FRAME.

4.1 LERRM
To create a MAL experts algorithm, we first need a useful

way of measuring performance of the experts. Since the goal
of experts is to try and reduce an agent’s regret, we created
a metric, Expected Regret Reduction (ERR), defined as

ERR(ei)
T
i =

PT−1
t=0 (r(βt)t

i − r(βt+1
ei

, βt+1
−i )t+1

i )

T
.

ERR estimates expert ei’s ability to reduce an agent’s regret
over some time period {0, . . . , T} by assuming that all other
agents’ strategies are fixed but that ei’s suggested strate-
gies were always followed. ERR then calculates the average
reduction in regret ei’s strategies would have achieved.

Our experts algorithm, Logistic Expected Regret Reduction
Maximization (LERRM), is based on the idea of LFP;

LERRM(ei)
t
i =

e
1

λ
ERR(ei)

t
i

P

e′
i
∈Ei

e
1

λ
ERR(e′

i
)t
i

.

LERRM is designed as a general approach that can be
used in other MAL settings.

4.2 Experimental Results
We tested adaptive-FRAME using Shapley’s game. We

tested three different experts algorithms. The Naive Experts
Algorithm, which chooses each expert with equal probabil-
ity, served as a benchmark by which to compare the others.
Besides our experts algorithm, LERRM, we also used Hedge,
a standard experts algorithm [3]. Hedge assigns “weights”
to each expert and then consults an expert with a probabil-
ity equal to that expert’s weight proportional to all of the
weights.
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Figure 2: Convergence Rates for Shapley’s Game using FRAME with the Naive Expert, LFP and WoLF,

respectively. Note the difference in order of magnitude for the results for LFP.
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Figure 3: Convergence Rates for Shapley’s Game using adaptive-FRAME with various experts algorithms.

4.2.1 Results
As seen by comparing Figure 3 to the results in Figure 2,

all three of the experts algorithms do much better than the
worst expert. Hedge and LERRM give, on average, much
faster convergence rates compared to the Naive Experts Al-
gorithm. In particular LERRM performs very well.

How are Hedge and LERRM able to achieve this perfor-
mance? Since LFP is the best-suited expert for this game,
Hedge and LERRM should consult LFP with high proba-
bility and WoLF with low probability. Our experimental
results confirm this. At the point of convergence, Hedge
was consulting LFP almost exclusively 20% of the time and
LERRM consulted LFP almost exclusively 90% of the time.
This difference helps explain why LERRM out performed
Hedge.

5. CONCLUSION
In this paper we introduced two new multiagent learn-

ing algorithms, FRAME and adaptive-FRAME, and showed
that, under certain assumptions, agents using either of these
algorithms in self-play will converge to the set of Nash equi-
libria. The key idea of FRAME is that it will sometimes
consult experts. If the expert is an effective learning proce-
dure itself, then FRAME will also be effective. However, if
the expert performs poorly, then FRAME’s theoretical prop-
erties still hold, and in particular FRAME is still guaranteed
to converge to a Nash equilibrium. The key idea of adaptive-
FRAME is to allow agents the possibility of consulting differ-
ent experts. Furthermore, agents can use experts algorithms
to help them decide which expert to consult.

There are several research directions which we intend to
pursue. First, there are several other experts, each special-
izing in their own class of games, that could be used [1]. By
combining experts we might be able to create a powerful and
highly effective general learning procedure.
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