
Non-linear Dynamics in Multiagent Reinforcement
Learning Algorithms

(Short Paper)
Sherief Abdallah

British University
Dubai, United Arab Emirates

sherief.abdallah@buid.ac.ae

Victor Lesser
University of Massachusetts

Amherst, MA
lesser@cs.umass.edu

ABSTRACT
Several multiagent reinforcement learning (MARL) algorith-
ms have been proposed to optimize agents’ decisions. Only
a subset of these MARL algorithms both do not require
agents to know the underlying environment and can learn
a stochastic policy (a policy that chooses actions accord-
ing to a probability distribution). Weighted Policy Learner
(WPL) is a MARL algorithm that belongs to this subset
and was shown, experimentally in previous work, to con-
verge and outperform previous MARL algorithms belonging
to the same subset.

The main contribution of this paper is analyzing the dy-
namics of WPL and showing the effect of its non-linear na-
ture, as opposed to previous MARL algorithms that had
linear dynamics. First, we represent the WPL algorithm as
a set of differential equations. We then solve the equations
and show that it is consistent with experimental results re-
ported in previous work. We finally compare the dynamics
of WPL with earlier MARL algorithms and discuss the in-
teresting differences and similarities we have discovered.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

Keywords
Reinforcement Learning, Multiagent Systems, Dynamics, Con-
vergence Analysis

1. INTRODUCTION
Our focus in this paper is on a class of MARL algorithms

that use a gradient-ascent approach to guide policy search.
We will refer to that class as GA-MARL throughout the
paper. The general idea of GA-MARL algorithms (more de-
tails later in Section 2) is to approximate the policy-gradient
using a payoff-gradient and follow the gradient until reaching
a local maxima.

A GA-MARL algorithm learns a stochastic policy (a pol-
icy that chooses actions according to a probability distri-

bution) without knowing the underlying model of the en-
vironment. This ability is particularly important when the
world is not fully observable. Another advantage of GA-
MARL algorithms is their (relative) simplicity, which makes
analyzing their dynamics possible.

The first GA-MARL algorithm whose dynamics were ana-
lyzed is the Infinitesimal Gradient Ascent (IGA) algorithm.
The dynamics of IGA were linear and IGA’s convergence
was fairly limited [1]. The IGA-WoLF algorithm had later
been developed to address IGA’s limitations. The dynamics
of IGA-WoLF were piece-wise-linear1 and IGA-WoLF made
strong assumptions in order converge.

We previously developed the Weighted Policy Learner (WPL)
[2], which we showed experimentally to converge without
knowing the equilibrium strategy, a major improvement over
IGA-WoLF. The main contribution of this paper is provid-
ing an analysis of WPL’s dynamics, showing that it is non-
linear, and comparing it to other gradient-based MARL al-
gorithms.

The document is organized as follows. Section 2 intro-
duces previous gradient ascent multiagent learning algorithms.
Section 3 breifly described the WPL algorithm. Section 4
formulates the WPL algorithm as a set of differential equa-
tions. Section 5 discusses the symbolic solution of WPL’s
differential equations and how it differs from previous gra-
dient ascent MARL algorithms. In Section 6 we present the
results of solving WPL’s differential equations numerically,
and compare our results to the experimental results reported
in previous work. Section 7 discusses WPL’s dynamics in
comparison to previous gradient-based MARL algorithms.
Finally in Section 8 we conclude and discuss future work.

2. GRADIENT-BASED MARL ALGORITHMS
The first gradient-based MARL algorithm whose dynam-

ics were analyzed is the Infinitesimal Gradient Ascent (IGA)
[1]. IGA is a simple gradient ascent algorithm where each
agent i updates its policy πi to follow the gradient of ex-
pected payoffs (or the value function) Vi. The following
equations describe how an agent using IGA updates its pol-
icy.

∆πi ← η
∂Vi(π)

∂πi

πi ← limit(πi + ∆πi)

1We review the analysis of both IGA and IGA-WoLF
dynamics later in the paper.

Cite as: Non-linear Dynamics in Multiagent Reinforcement Learning Algorithms
(Short Paper), S. Abdallah and V. Lesser, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp. 1321-1324.
Copyright°c 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1321

Variable η is called the learning rate and approaches zero
in the limit (η → 0) (hence the word Infinitesimal in IGA).
Function limit projects the updated policy to the space of
valid policies, i.e. where limit(x) = argminx′:valid(x′)|x −
x′|.2 A policy is valid if it sums to 1 and every action is
played with non-negative probability.

IGA does not converge in all two-player-two-action games.
Algorithm IGA-WoLF (WoLF stands for Win or Learn Fast)
was proposed [4] in order to improve convergence properties
of IGA by using two different learning rates. More formally,

∆πi(a) ← ∂Vi(π)

∂πi
(a) ∗

{
ηlose if Vi(πi, π−i) < Vi(π

∗
i , π−i)

ηwin otherwise

πi ← limit(πi + ∆πi)

Notice that if an agent moves away from its equilibrium
policy, this means the value (expected reward) of the cur-
rent policy is higher than the value of the equilibrium policy
and vice versa (which explains the conditions in the above
equation). The dynamics of IGA-WoLF have been analyzed
and proven to converge in all 2-player-2-action games [4],
as we briefly review in the following section. IGA-WoLF
has limited practical use, however, because it requires each
agent to know its equilibrium policy.

3. WEIGHTED POLICY LEARNER (WPL)
The WPL algorithm is shown in Algorithm 1 for agent

i. Variable ∆ is the policy gradient that is used to update
policy πi. The idea of the algorithm is to start learning
fastest when ∆ changes its direction and then to gradually
slow down learning if the policy gradient does not change its
direction.

Algorithm 1: WPL: Weighted Policy Learner

begin

V̂ ← total average reward =
∑

a∈Ai
Vi(a)

|A| .

foreach action a ∈ Ai do

∆(a) ← Vi(a)− V̂
if ∆(a) > 0 then ∆(a) ← ∆(a)(1− πi(a))
else ∆(a) ← ∆(a)(πi(a))

end
πi ← limit(πi + η∆)

end

WPL detects changes in the gradient direction using the
difference between action rewards. If the reward of action
a is decreasing, then the change in πi(a), ∆(a), is weighted
by πi(a), otherwise it is weighted by (1− πi(a)). Therefore,
the largest positive change in πi(a), ∆(a), is when πi(a) is

low and Vi(a) is higher than the average reward V̂ , and the
largest negative change is when πi(a) is near 1 and Vi(a) is

lower than V̂ .
Notice that there are few differences and similarities be-

tween IGA-WoLF and WPL’s update rules. Both algorithms
have two modes of learning rates. IGA-WoLF needs to know
the equilibrium strategy in order to distinguish between the
two modes, unlike WPL. Also while IGA-WoLF has fixed

2This general definition of the limit function was later
developed [3].

learning rates for the two modes, WPL uses a continuous
spectrum of learning rates, depending on the current policy.
It is this particular feature that causes WPL’s dynamics to
be non-linear, as we discuss in the following section.

4. FORMULATING WPL AS DIFFERENTIAL
EQUATIONS

The policies of two agents, p and q, following WPL can
be expressed as follows

q(t) ← limit(q(t− 1) + ∆q(t− 1))

p(t) ← limit(p(t− 1) + ∆p(t− 1))

where

∆q(t) =

{
η(1− q(t))(u3p(t) + u4) if u3p(t) + u4 > 0
ηq(t)(u3p(t) + u4) if u3p(t) + u4 < 0

∆p(t) =

{
η(1− p(t))(u1q(t) + u2) if u1q(t) + u2 > 0
ηp(t)(u1q(t) + u2) if u1q(t) + u2 < 0

We continue derviation of q(t), and similar analysis holds
for p(t).

q(t)− q(t− 1)

η
=

{
(1− q(t))(u3p(t) + u4) if p(t) > p∗ = −u4/u3

q(t)(u3p(t) + u4) if p(t) < p∗ = −u4/u3

As η ← 0, the equations above become differential:

q′(t) =

{
(1− q(t))(u3p(t) + u4) if p(t) > p∗ = −u4/u3

q(t)(u3p(t) + u4) if p(t) < p∗ = −u4/u3

Since WPL is a gradient ascent approach, WPL will con-
verge to a deterministic NE if one exists, similar to IGA and
IGA-WoLF. This is clear from the gradient definition: a de-
terministic NE means one action is always better than the
other, and therefore the gradient direction always points to
it leading to eventual convergence [1]. The challenging case
is when there is no deterministic NE (the NE is inside the
joint policy space). We will therefore focus on this case.

It should be noted that while IGA and IGA-WoLF needed
to take the limit function into account, we can safely ignore
the limit function while analyzing the dynamics of WPL
for 2-player-2-action games. This is due to the way WPL
scales the learning rate using the current policy. By the
definition of ∆p(t), a positive ∆p(t) approaches zero as p(t)
approaches one and a negative ∆p(t) approaches zero as p(t)
approaches zero. In other words, as p (or q) approaches 0 or
1, the learning rate approaches zero, and therefore p (or q)
will never go beyond the valid period [0, 1]. The following
section discusses the symbolic solution of these equations.

5. SYMBOLIC SOLUTION
Our goal is to prove that p(t) and q(t) will eventually

converge (i.e. in the limit, when t → ∞) to p∗ and q∗

respectively. To do so, it is enough to show that if one
player starts at a policy q∗, then the next time the player
returns to q∗ the other player will be closer to its NE, and
consequently the joint policy will also be a bit closer.

Figure 1 illustrates this point and depicts p(t) and q(t)
over a period of time 0 → T4, (the figure to the left shows

1322

policies evolution over time, while the figure to the right
shows the joint policy space). If we can prove that over the
period 0 → T4 an agent’s policy p(t) gets closer to the NE
p∗, i.e. pmin2−pmin1 > 0 in Figure 1, then by induction the
next time period p will get closer to the equilibrium and so
on. Policy

time

qmax

qmin

pmax

pmin1

pmin2

q*

p*

q

p

T1 T2 T3 T4

(pmin1,q*)

(p*,qmax)

(pmax,q*)

(pmin2,q*)

Figure 1: An illustration of WPL convergence.

For readability, p and q will be used instead of p(t) and q(t)
for the remainder of this section. The overall period 0 → T4
is divided into four intervals defined by times 0, T1, T2, T3,
and T4. Each period corresponds to one combination of p(t)
and q(t) as follows. For the period 0 → T1, where p(t) < p∗,
q(t) > q∗: by dividing p′ and q′

dp

dq
=

(1− p)(u1q + u2)

(1− q)(u3p + u4)

Then by separation we have
∫ p∗

pmin1

u3p + u4

1− p
dp =

∫ qmax

q∗

u1q + u2

1− q
dq

−u3(p
∗ − pmin1) + (u3 + u4)ln

1− pmin1

1− p∗
=

−u1(qmax − q∗) + (u1 + u2)ln
1− q∗

1− qmax

Unlike IGA and IGA-WoLF, however, the equations are
non-linear and do not have a closed-form solution (note the
existence of both x and ln(x)). This is the case for the
remaining three time periods as well. We solve the equations
numerically as described in the following section.

6. NUMERICAL SOLUTION
We used Mathematica and Matlab to solve the equations

numerically. Figure 2 shows the theoretical behavior pre-
dicted by our model for the matching-pennies game. There
is a clear resemblance to the actual (experimental) behavior
that was reported in the original WPL paper [2] for the same
game (Figure 3). Note that the time-scale on the horizontal
axes of both figures are effectively the same, because what is
displayed on the horizontal axis in Figure 3 is decision steps.
When multiplied by the actual learning rate η used in the
experiments, 0.001, both axes become identical.

Figure 4 plots p(t) versus q(t), for a game with NE=
(0.9, 0.9) (u1 = 0.5, u2 = −0.45, u3 = −0.5, , u4 = 0.45)
and starting from 160 initial joint policies. Figure 6 plots
p(t) and q(t) against time, verifying convergence from each
of the 160 initial joint policies.

We repeated the above numerical solution for 100 different
NE(s) that make a 10x10 grid in the p-q space (starting

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Convergence of WPL as predicted by the the-

oretical model for the matching pennies game.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1
player1

player2

Figure 3: Convergence of WPL through experiments

[2].

from the 160 boundary joint policies). The WPL algorithm
converges to the NE in a spiral fashion similar to Figure 4
in all the 100 cases. Instead of drawing 100 figures (one for
each NE), Figure 5 plots the merge of the 100 figures in a
compact way: plotting the joint policy from time 700 to 800
(which is enough for convergence as Figure 6 shows). The
two agents converge in all the 100 NE cases, as indicated by
the centric points (a diverging algorithm would not have a
clean grid with concentrated centric plots).

Figure 4: An illustration of WPL convergence to the

(0.9,0.9) NE in the p-q space: p on the horizontal axis

and q on the vertical axis.

Figure 5: An illustration of WPL convergence for 10x10

NE(s).

1323

Figure 6: An illustration of WPL convergence to the

(0.9,0.9) NE: p(t) (gray) and q(t) (black) are plotted on

the vertical axis against time (horizontal axis).

7. COMPARING DYNAMICS OF IGA, IGA-
WOLF, AND WPL

With differential equations modeling each of the three al-
gorithms, we now compare their dynamics and point out
the main distinguishing characteristics of WPL. Matlab was
again used to solve the differential equations (of the three
algorithms) numerically. Figure 7 shows the dynamics of
the three algorithms in a game with u1u3 < 0 and the
NE=(0.5,0.5). The joint strategy moves in clockwise direc-
tion. The dynamics of WPL are very close to IGA-WoLF,
with slight advantage in favor of IGA-WoLF (after one com-
plete round around the NE, IGA-WoLF is closer to the NE
than WPL). It is still impressive that WPL has compara-
ble performance to IGA-WoLF, while WPL does not require
agents to know their NE strategy a priori.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

player 1

pl
ay

er
 2

IGA
IGA−WoLF
WPL

Figure 7: Dynamics of IGA, IGA-WoLF, and WPL in a

game with NE=(0.5,0.5).

Figure 8 shows the dynamics in a game with again u1u3 <
0 but the NE=(0.5,0.1). Three interesting regions in the fig-
ure are designated with A,B, and C. Region A shows that
both IGA and IGA-WoLF dynamics are discontinuous due
to the hard constraints on the policy. Because WPL uses a
smooth policy weighting scheme, the dynamics remain con-
tinuous. This is also true in region B. In region C, WPL
initially deviates from the NE more than IGA, but eventu-
ally converges as well. The reason is that because the NE, in
this case, is closer to the boundary, policy weighting makes
the vertical player move at a much slower pace when moving
downward (the right half) than the horizontal player.

Figure 9 shows the dynamics for the coordination game,
starting from initial joint policy (0.1,0.6). The coordination
game has two NEs: (0,0) and (1,1). All algorithms converge
to the closer NE, (0,0), but again we see that both IGA
and IGA-WoLF have discontinuity in their dynamics, unlike
WPL which smoothly converge to the NE.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

player 1

p
la

y
e

r
2

IGA
IGA−WoLF
WPL

A

B

C

Figure 8: Dynamics of IGA, IGA-WoLF, and WPL in a

game with NE=(0.5,0.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

player 1

pl
ay

er
 2

IGA
IGA−WoLF
WPL

Figure 9: Dynamics of IGA, IGA-WoLF, and WPL in

the coordination game with two NEs=(0,0) and (1,1).

8. CONCLUSION AND FUTURE WORK
The main contribution of this paper is formally analyzing

the Weighted Policy Learner algorithm and showing that it
is the first gradient-ascent (GA) MARL algorithm with non-
linear dynamics. The paper models the WPL algorithm for
two-player-two-action games as a set of differential equa-
tions and then discusses both symbolic and numerical solu-
tions to the equations. The predicted theoretical behavior
closely resembles and confirms previously obtained experi-
mental results. Furthermore, the paper solves the equations
for 100 games, each starting from 160 initial joint policies
and verified WPL’s convergence in all of them. Finally, a
comparison of WPL’s dynamics with previous GA-MARL
algorithms’ dynamics is given, along with a discussion of
similarities and differences.

9. REFERENCES
[1] Singh, S., Kearns, M., Mansour, Y.: Nash convergence

of gradient dynamics in general-sum games. In: the
16th Conference on Uncertainty in Artificial
Intelligence. (2000) 541–548

[2] Abdallah, S., Lesser, V.: Learning the task allocation
game. In: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS). (2006)

[3] Zinkevich, M.: Online convex programming and
generalized infinitesimal gradient ascent. In:
Proceedings of the International Conference on
Machine Learning. (2003) 928–936

[4] Bowling, M., Veloso, M.: Multiagent learning using a
variable learning rate. Artificial Intelligence 136(2)
(2002) 215–250

1324

Expediting RL by Using Graphical Structures

(Short Paper)
Peng Dai

Dept of Computer Science
and Engineering

University of Washington
Seattle, WA 98195

daipeng@cs.washington.edu

Alexander L. Strehl
Yahoo! Research
New York, 10018

strehl@yahoo-inc.com

Judy Goldsmith
Dept of Computer Science

University of Kentucky
Lexington, KY 40506-0046
goldsmit@cs.uky.edu

ABSTRACT
The goal of Reinforcement learning (RL) is to maximize reward
(minimize cost) in a Markov decision process (MDP) without know-
ing the underlying model a priori. RL algorithms tend to be much
slower than planning algorithms, which require the model as input.
Recent results demonstrate that MDP planning can be expedited,
by exploiting the graphical structure of the MDP. We present ex-
tensions to two popular RL algorithms, Q-learning and RMax, that
learn and exploit the graphical structure of problems to improve
overall learning speed. Use of the graphical structure of the under-
lying MDP can greatly improve the speed of planning algorithms, if
the underlying MDP has a nontrivial topological structure. Our ex-
periments show that use of the apparent topological structure of an
MDP speeds up reinforcement learning, even if the MDP is simply
connected.

1. INTRODUCTION
Given a set of states, a set of actions, an initial state and a set of

goal states, classical planning finds a sequence of actions that pro-
ceeds from the initial state to a goal state while minimizing cost.
Decision theoretic planning [2] is a powerful extension that intro-
duces outcome uncertainty.

Markov decision processes are a widely used model for AI re-
searchers to represent decision theoretic planning problems. Given
an MDP model, a planner finds a solution that has the optimal or
at least acceptable cost. Classical MDPs solvers such as value it-
eration [1] use dynamic programming. This assumes the model
is known. In reinforcement-learning (RL), the MDP environment
is initially unknown, so dynamic programming is not immediately
applicable.

There are two main approaches to RL, model-free learning and
model-based learning (or simply model-learning) [12]. Model-free
algorithms learn a value function or policy directly from the data,
while model-based algorithms first construct an MDP model that
they then use to reason about future actions and costs.

We show two basic RL algorithms can be made faster and more
practical by learning and exploiting knowledge of the underlying
graphical structure of environments. By examining the topological
structure of the MDP’s reachability graph rooted at the initial state,
algorithms that use dynamic programming techniques can be mod-
Cite as: Expediting RL by Using Graphical Structures (Short Paper), Peng
Dai, Alexander L. Strehl and Judy Goldsmith, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal,pp. 1325-1328.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ified to find near-optimal policies more quickly in many MDPs.
The contribution of our paper is three-fold. We show, in de-

tail, how two representative reinforcement learning algorithms, Q-
learning (model-free) and RMax (model-based), can be modified to
use the underlying graphical MDP structure. We discuss how this
method can be extended to current and future RL algorithms. Fi-
nally, we provide extensive empirical evaluation of our algorithms
in comparison with the old algorithms. The experiments show that
graphical-structure analysis significantly benefits RL algorithms.

2. BACKGROUND
A scenario based MDP is a six-tuple 〈S, A, T, C, s0, G〉. S is a

finite set of system states. A is a finite set of actions. Ta(s′|s) is the
probability of the system changing from state s to s′ by performing
action a. C(s, a) is the instantaneous cost of performing action a
at state s. s0 ∈ S is the initial state and G ⊆ S is a set of goal
states. We will use “MDP" for “scenario based MDP" for the rest
of the paper.

Given an MDP, we define a policy π : S → A to be a map-
ping from the state space to the action space. A value function
V π for policy π, V π(s) : S → R denotes the value of the to-
tal expected cost starting from state s and following the policy π:
V π(s) = C(s, π(s)) +

∑
s′∈S Tπ(s)(s

′|s)V π(s′). A policy π1

dominates another policy π2 if Vπ1(s) ≤ Vπ2(s) for all s ∈ S. An
optimal policy π∗ is a policy that is not dominated by any other pol-
icy, and is the optimal solution of the MDP. The value function of
the optimal policy is called the optimal value function V ∗(·). Bell-
man [1] showed that V ∗(·) can be calculated by solving a system
of linear equations in the form

V ∗(s) = mina∈A(s)[C(s, a) +
∑

s′∈S

Ta(s′|s)V ∗(s′)]. (1)

Equation 1 is also know as the Bellman equation. Using the Bell-
man equation as an assignment operator over a particular state is
denoted as a Bellman backup. Bellman backups are the basic oper-
ations of dynamic programming, a technique of solving MDPs by
calculating their optimal value functions.

Dynamic programming works directly in value function space.
It backs up the value of states according to some order, until a time
when further backups would result in only a very small change to
the value function. We use the term converge loosely and infor-
mally to mean that the learned value function is sufficiently close
to the optimal value functions. The simplest variant of value itera-
tion [1], for example, initializes the value functions arbitrarily, and
updates its value function by applying Bellman backups on every
state in a fixed order. The algorithm halts when the largest change

1325

in value during the most recent iteration is smaller than a thresh-
old. Once the optimal value function is sufficiently approximated,
a near-optimal policy, π, is easily extracted by choosing an action
for each state:

π(s) = argmina∈A(s)[C(s, a) +
∑

s′∈S

Ta(s′|s)V (s′)].

Topological value iteration (TVI) [4] is a recent dynamic pro-
gramming MDP algorithm . It makes use of the graphical structure
of MDPs to perform Bellman backups in a better order. TVI first
constructs a directed graph G from an MDP: the vertices of G are
the states of the MDP, and the directed edges are state transitions.
If the probability Ta(s′|s) > 0, then the edge s → s′ is in G. TVI
then computes the strongly connected components (SCCs) of G
and their topological order. It solves every connected component
sequentially by value iteration, according to this order. TVI out-
performs VI significantly in MDP domains that have a reasonable
number of SCCs.

3. MODEL-FREE LEARNING
Previously, we discussed how to obtain a near-optimal value func-

tion and policy for an MDP assuming we already have a model. The
model consists of the cost function C and transition function T . In
the reinforcement learning setting, we want to find a near-optimal
value function and policy when the model is not initially provided.
RL algorithms interact with the environment to get approximations
of the model, and therefore solve the MDP.

Q-learning [13, 14] is a standard RL algorithm for MDPs. The
algorithm maintains Q-values for each state action pair. Q∗(s, a) =
C(s, a) +

∑
s′∈S Ta(s′|s)mina′Q

∗(s′, a′). Q∗(s, a) stands for
the minimum expected cost of being in state s, applying action
a, and then following the optimal policy. Thus, the optimal value
function of s is the minimum Q-value with respect to s, V ∗(s) =
minaQ∗(s, a).

In MDPs, Q-learning initiates exploitation trials from the initial
state. In each step of the trial, an action a is chosen for the cur-
rent state s, which transitions the learning agent stochastically to
s′ according to the (unknown) transition function. A cost c(s, a) is
sensed, and Q(a, s) is updated by Q(s, a) = Q(s, a)+α(c(s, a)+
mina′Q(s′, a′)−Q(s, a)), where α is the learning factor, which it
is often decreased as the time passes. Updating a Q-value is called
a Q-backup.

Q-learning is very powerful, and is guaranteed to converge to
an optimal policy, albeit sometimes slowly. One weakness is that
it uses the same learning strategies for every MDP. The intuition
behind our topological Q-learning (TQL) algorithm comes from
TVI. TQL has two phases. The first phase is the initial learning
phase. Here, we learn graphical information as well as Q-values.
We initiate trials from the initial state the same way as Q-learning.
As well as updating the value function for state-action pairs en-
countered along the trials, we record all predecessor-successor pairs
visited during those trials. In other words, we mark all the visited
edges of G. After a certain number (x) of trials, we use the recorded
edge information to construct a directed graph, the reachability
graph, GR. Notice that the reachability graph is by no means guar-
anteed to be identical to the real G, since the trials might not visit
all edges or even all states. However, if the learning process is
sufficiently long, the information of learned state-action pairs is
sufficient to solve the original MDP.

Given the reachability graph, we apply Kosaraju’s algorithm to
find the SCCs of GR and their topological order. In the second
phase, we choose one component at a time according to this order,
pick one state from this component, and initiate trials from that

state until the current component is converged. These trials are
slightly different from trials of Q-learning. In Q-learning, a trial
terminates only when a goal state is encountered. But trials of the
second phase TQL finish when they run into a goal state or get
into a state belonging to a component whose topological order is
larger than the current one. This is because when a component
is converged, all its states are converged, and we do not back up
converged states. So if a later trial reaches converged states, we
stop it. In each component, we initiate trials from the same state,
since every other state in the component is reachable from this state.
If we do enough trials, every state in that component gets backed
up sufficiently.

Suppose we are asked to provide an online RL agent that takes
advantage of the topological structure. We outline a simple exten-
sion to TQL to achieve this goal. When TQL learns that a transi-
tion from state s to s′ is possible, it stores this fact in its reacha-
bility graph. With little additional overhead, we could store each
experience-tuple (s, a, c, s′) that is observed by agent, and link
each of these tuples to the state s in our reachability graph.1 Then,
in the second phase, instead of initiating more trials from various
states according to the topological ordering, we could simply run
Q-learning over our saved experience-tuples from those states (and
their outgoing neighbors in the reachability graph). This method
can be viewed as a version of the “experience replay” algorithm
[12] that takes advantage of learned topology.

One problem with the experience-replay approach described above
is that storing every experience-tuple is memory intensive. An al-
ternative approach is to maintain and update an approximate model
of the underlying MDP.2 After this, we can initiate Q-learning trials
from any state by simulating them in our model. Alternatively, we
could solve the model directly. This approach is developed in full
detail in the next section.

4. MODEL-BASED LEARNING
Model-based RL algorithms use the agent’s experience to esti-

mate the system dynamics (transitions and costs) of the underly-
ing MDP. It is straightforward to compute the maximum-likelihood
model of the cost and transition distributions for each state-action
pair. For instance, if we’ve seen n1 transitions from state s to state
s′ after action a, out of n2 total transitions from state s after action
a, we would estimate the unknown transition probability Ta(s′|s)
by T̂a(s′|s) = n1/n2. As the agent gains experience over the state-
action space, its model converges to the true MDP. Once the agent
estimates the model, it can then solve the model using any MDP
planner, and act according to an optimal policy. Unfortunately,
when little experience has been gathered, the empirical model may
be inaccurate, and resulting policies are suboptimal.

Several effective model-based algorithms have been developed,
such as E3 [7], RMax [3], and MBIE [11]. These algorithms esti-
mate a model and its uncertainty. They use their models to obtain
either the best known cost (exploitation) or knowledge that will re-
duce model uncertainty (exploration). The RMax algorithm is a
model-based algorithm that has formal guarantees on its learning
time [3, 6]. Therefore, we use it as a representative model-based
RL algorithm. We describe RMax and discuss how to augment it to
take advantage of the MDP’s graphical structure. This very simple
modification brings vast improvement.

The MDP model used by RMax contains the empirical transi-

1Here s′ is the state reached and c is the immediate cost of taking
action a at s.
2The Q-values computed by the experience replay algorithm con-
verge to the optimal Q-values of the approximate model.

1326

tion and reward distributions only for those state-action pairs that
have been experienced by the agent at least m times, for some ex-
ploration parameter m. The transition distribution for other state-
action pairs is a self loop, and the cost for those state-action pairs
is 0, the minimum possible. The intuition is that the transition and
cost estimates for those state-action pairs that have not been tried m
times are likely to be inaccurate. Instead of using past experience
to compute a model for these state-action pairs, we make them min-
imally costly in RMax’s model. By choosing m carefully, RMax
learns a near-optimal policy in polynomial time [3, 6].

Here we present an extension of RMax, Topological RMax (TR-
Max). In RMax, whenever a new state-action pair (s, a) has been
visited at least m times, we gather all the other relevant state-action
pairs, the state-action pairs (s′, a′) that have the same property, and
perform value iteration over them. Like TQL, TRMax has two
phases. The first is the same as RMax, except we also remember
the visited successor-predecessor pairs. After x trials, we compute
the SCCs of the current reachability graph GR as well as their topo-
logical order, then enter the second phase. From then on, when a
state-action pair (s, a) has been visited m times, for a state-action
pair (s′, a′) to be relevant, we require (s′, a′) to have been visited
at least m times, and s′ must belong to a component that has a
higher topological order than the component of s in GR. We use
topological value iteration in solving the new model.

We originally extended RMax by recomputing the SCCs of the
reachability graph and the topological ordering each time a new
state-action pair was visited m times. We discarded that approach
since constructing the SCCs of a directed graph is costly in practice.
One possible improvement is to update the SCCs and topological
ordering incrementally [10]. The overhead required may limit its
practicality, but we plan to test this.

5. EXPERIMENTS
RL algorithms often do not have a well defined stopping crite-

rion. During our experiments we kept a running average of the
(estimated) value of the initial state. When the most recent value
was sufficiently close to the long-term average, we terminated the
experiment.

Any implementation of RMax must choose a technique for solv-
ing its model and this choice will affect the computational complex-
ity of the algorithm. For our experiments, we used value iteration.

Our topological RL algorithms are based on the reachability graph
that is known when we call Kosaraju’s algorithm after x trials.
What is a reasonable choice for x?

The influence of a state s with respect to a policy π, Iπ(s), is the
expected number of times that state is visited in a trial following
policy π [9]. Since any trial originates from the initial state s0,
the influences of s0 is 1. Similarly,

∑
g∈G Iπ(g) = 1. When

Iπ(s) < 1, it is the probability of s being visited in the exploitation
trial. The influence of a state s with respect to the optimal policy is
called the optimal influence I∗(s).

Iπ(s) =
∑

s′∈S,a=π(s′)

Ta(s|s′)Iπ(s′),

I∗(s) =
∑

s′∈S,a=π∗(s′)

Ta(s|s′)I∗(s′).

The influence measures the effect that changing the value of s
will have on the value of s0.

THEOREM 1. If a state has an optimal influence of at least ε,
then with probability p = 1 − (1 − ε)t, the optimal policy will

|S| 5000 10000 1000 2000
nl QL TQL QL TQL RMax TRMax RMax TRMax
10 21.72 15.25 50.31 27.93 28.14 9.47 117.87 35.78
20 17.68 11.41 38.55 19.94 30.34 10.33 122.72 36.76
30 13.80 9.03 36.32 18.32 28.27 9.40 81.96 22.41
40 16.66 10.32 32.16 17.83 26.45 8.80 95.60 26.73
50 11.68 7.96 38.99 20.70 21.41 6.80 100.82 28.31
60 11.52 7.19 36.30 18.20 23.23 7.46 34.67 15.96
70 11.21 6.77 34.67 15.96 21.77 7.11 87.97 23.64
80 11.91 7.46 36.26 17.50 22.32 7.08 83.98 22.46
90 14.72 9.13 31.76 15.29 24.63 7.01 79.13 21.48

100 12.51 7.78 34.42 19.06 21.45 6.76 82.41 22.19

Table 1: Convergence time (seconds) of learning algorithms on
MDPs ma=5 and ms = 10 with various layer numbers

visit it at least once in t trials. (In particular, when ε = 10−6,
t = 10, 000, p = 0.99.)

PROOF. From the definition of I∗(s), the probability that state s
is not visited by a trial is 1− I∗(s). Given t independent trials, the
probability that s is not visited in any of them is (1 − I∗(s))t, so
the probability of s being visited at least once is 1− (1− I∗(s))t.
By hypothesis, I∗(s) ≥ ε, so with probability p = 1− (1− ε)t, s
should be visited at least once in t trials.

We used x = 10, 000 in our experiments. When we called
Kosaraju’s algorithm, states that were not visited in those x trials
were ignored. Theoretically, we know from the above theorems that
they have very small probabilities of making any real difference to
the ultimate V ∗(s).

We tested Q-learning (QL), Topological Q-learning (TQL), RMax,
and Topological RMax (TRMax). Each algorithm was implemented
in C, and executed on the same Intel Pentium 4 1.50GHz processor
with 512M main memory and a cache of 256kB.

domain |S| QL TQL RMax TRMax
RMDP 1000 3.67 4.09 50.05 50.07

racetrack 1849 3.68 3.14 162.39 109.72
RMDP 2000 17.60 17.07 236.89 140.61
RMDP 4000 13.01 12.85 1043.83 576.53

racetrack 5566 24.90 23.82 976.84 279.65
RMDP 10000 43.55 37.83 - 3566.59

racetrack 21371 139.42 160.84 - -
racetrack 50077 1443.17 1311.60 - -

Table 2: Convergence time (seconds) of four algorithms on sin-
gle connected component domains

We first used “layered" MDP domains,3 [4], and larger problems
for QL and TQL, which are usually faster than RMax and TRMax.
Each layered MDP configuration is a four-tuple 〈|S|, ma, ms, nl〉,
where |S| is the size of the MDP, ma the maximum number of ac-
tions of each state, ms the maximum number of successors of a
state-action pair, nl the number of layers. We fixed |S|, ma=10,
ms=5, and varied nl. For each configuration, we ran 20 MDPs,
and averaged their statistics. For each problem, we measured the
convergence time, the time taken to get an optimal policy, and the
deviation of the calculated policy, the difference between the values
V ∗(s0) computed by RL algorithms and by value iteration. Con-
vergence times are listed in Table 1. All the deviations in our ex-
periments were O(10−2), so were not listed. Looking at the table,
we first notice that our topological learning algorithms converged
faster than their basic algorithms. Comparing the left and right ta-
ble, we also find that TRMax achieved a bigger speedup ratio over
RMax compared to TQL over QL. This shows that model-based
3The “layered" MDPs are nonrepresentational MDPs with multiple
SCCs.

1327

learning benefited more from the graphical structure learning. An-
other interesting phenomenon is that as the number of layers in-
creased, the running time of all the learning algorithms decreased.
This is the opposite to the performance curve of dynamic program-
ming approaches reported in [4].

Using TQL, we solved an MDP with 20,000 states and 100 lay-
ers within 1 minute, instead of more than 3 minutes by QL. We also
solved an MDP with 4,000 states and 50 layers by TRMax within
2 minutes rather than over 6 minutes using RMax. The constant
factor speedup shows that topological RL indeed widens the appli-
cability of RL.

Topological value iteration reduces to value iteration when an
MDP is strongly connected. We want to investigate if this is also
the case for our topological learning algorithms. In this set of ex-
periments, we used strongly-connected MDP problems. In Table 2,
we listed the convergence times of algorithms on eight such prob-
lems. Random MDP was abbreviated as RMDP. The cut-off time
was set at 90 minutes.

The convergence times of TQL were sometimes slower than QL.
In those few cases, however, the termination time increased by at
most 15%. Interestingly, TQL ran slightly faster than QL on three
random MDP problems and two racetrack problems. This phe-
nomenon is more distinct in the comparison between TRMax and
RMax.

For the biggest racetrack problem we tested that RMax and TR-
Max can solve, TRMax was more than twice as fast as RMax,
and consistently faster than RMax except for the smallest problem.
This is counter-intuitive, since TRMax behaves like RMax except
that it uses additional computation by calling Kosaraju’s algorithm.
The reason for these results follow. First, the solution graph of an
MDP, containing the set of states and transitions that can be reached
from s0 using the optimal policy, has many fewer edges than G, so
may contain multiple connected components. For our problems,
the number of SCCs in the solution graph of two smaller racetrack
problems are 546 and 1751 respectively. Similar observations were
reported in the evaluation of policies for partially observable MDPs
[5] (on page 117). In problems where a few actions are obviously
better than others, the learning algorithm verifies their optimality
quickly. The following trials continue to take these actions. Thus,
some suboptimal action transitions might never be traversed. Our
reachability graph, GR, is built on the edges visited in the trials,
so it skips unvisited suboptimal action transitions. Basically, back-
ing up a state s is meaningful only when the backup is driven by
a value change of the descendants of s (the set of states reachable
from s) in the solution graph, because such a change might poten-
tially change the value of V ∗(s0). Since GR skips a lot of edges
that are not in the solution graph, most of the backups skipped by
TRMax and not by RMax are necessary. So TRMax runs faster
than RMax on strongly-connected MDPs.

6. RELATED WORK
The idea of performing value iteration on connected components

in their topological order is not new. Our main contribution is to
extend its applicability to the learning setting. The procedure de-
scribed above is roughly outlined (on page 75) in the paper by [2].
It is streamlined and fully developed into the TVI algorithm and
analyzed in full by [4].

In Prioritized Sweeping [8], states are prioritized according to
their absolute Bellman error and backed up in priority order. Con-
sider an MDP with connected components C1, C2, and C3, con-
nected in a chain, and states s1, s2, and s3 in those components, re-
spectively. Suppose that for actions a, a′, and a′′, Ta(s3|s1) > 0,
Ta′(s3|s2) > 0, and Ta′′(s2|s1) > 0. Suppose that the priority

of backing up s1 is always higher than the priority of s2. When s3

is backed up, s1’s value will be recomputed, and then s2’s value,
which change s1’s. The situation is more complex when more com-
ponents proceeds C1. In TVI, the value for state s3 is computed
exactly (or closely approximated) before it is used to compute the
values of s2 and s1, so it saves a lot of premature backups on s2

and s1. Wingate and Seppi [15] extended the notion of Prioritized
Sweeping to General Prioritized Solvers. They consider a variety of
prioritization schemes, and introduce the notion of partition. They
do not, however, mention partitions via SCCs. They discuss topo-
logical order on vertices in a cyclic graph, and focus on approximat-
ing a topological order. Within a connected component, it might be
possible to use one of their priority metrics to improve TVI.

7. CONCLUSION
We propose a practical method to speed up RL approaches for

MDPs. By learning successor-predecessor information of MDP
models during learning trials, we are able to construct a reacha-
bility graph that restores the dominating graphical structures of the
original MDP. Using the topological order of SCCs in this reach-
ability graph can help us either initiate useful future trials (model-
free learning), or perform backups wisely (model-based learning).
On all the problems tested, TQL and TRMax consistently outper-
formed their nontopological counterparts by a constant factor. We
proved that it is safe to only consider the reachability graph instead
of the original MDP as long as our initial learning is sufficient.
Therefore, the scope of the problems solvable by these algorithms
has been enlarged.

8. REFERENCES
[1] R. Bellman. Dynamic Programming. Princeton University Press,

Princeton, NJ, 1957.
[2] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning:

Structural assumptions and computational leverage. J. of Artificial
Intelligence Research, 11:1–94, 1999.

[3] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial
time algorithm for near-optimal reinforcement learning. J. of
Machine Learning Research, 3:213–231, 2002.

[4] P. Dai and J. Goldsmith. Topological value iteration algorithm for
Markov decision processes. In Proc. IJCAI-07, pages 1860–1865,
2007.

[5] E. Hansen. Finite Memory Control of Partially Observable Systems.
PhD thesis, University of Massachusetts, Amherst, 1998.

[6] S. M. Kakade. On the sample complexity of reinforcement learning.
PhD thesis, Gatsby Computational Neuroscience Unit, University
College London, 2003.

[7] M. Kearns and S. Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[8] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time. Machine Learning,
13:103–130, 1993.

[9] R. Munos and A. Moore. Influence and variance of a Markov chain :
Application to adaptive discretization in optimal control. In Proc. of
IEEE Conference on Decision and Control, 1999.

[10] D. J. Pearce and P. H. Kelly. A dynamic topological sort algorithm
for directed acyclic graphs. ACM J. of Experimental Algorithmics,
11:1.7, 2007.

[11] A. L. Strehl and M. L. Littman. A theoretical analysis of model-based
interval estimation. In Proc. of ICML-05, pages 856–863, 2005.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

[13] C. J. Watkins. Learning from Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, UK, 1989.

[14] C. J. Watkins and P. Dayan. Q-Learning. Machine Learning,
8(3-):279–292, 1992.

[15] D. Wingate and K. D. Seppi. Prioritization methods for accelerating
MDP solvers. J. of Machine Learning Research, 6:851–881, 2005.

1328

Transfer of Task Representation in Reinforcement
Learning using Policy-based Proto-value Functions ∗

(Short Paper)

Eliseo Ferrante
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

eliseo.ferrante@mail.polimi.it

Alessandro Lazaric
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

lazaric@elet.polimi.it

Marcello Restelli
Dept. of Electronics and

Information,
Politecnico di Milano

piazza Leonardo Da Vinci, 32,
20133 Milan, Italy

restelli@elet.polimi.it

ABSTRACT
Reinforcement Learning research is traditionally devoted to
solve single-task problems. Therefore, anytime a new task
is faced, learning must be restarted from scratch. Recently,
several studies have addressed the issue of reusing the knowl-
edge acquired in solving previous related tasks by transfer-
ring information about policies and value functions. In this
paper, we analyze the use of proto-value functions under
the transfer learning perspective. Proto-value functions are
effective basis functions for the approximation of value func-
tions defined over the graph obtained by a random walk on
the environment. The definition of this graph is a key as-
pect in transfer transfer problems in which both the reward
function and the dynamics change. Therefore, we introduce
policy-based proto-value functions, which can be obtained by
considering the graph generated by a random walk guided by
the optimal policy of one of the tasks at hand. We compare
the effectiveness of policy-based and standard proto-value
functions, on different transfer problems defined on a simple
grid-world environment.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Spectral graph theory

Keywords
Reinforcement Learning, Transfer Learning, Proto-value func-
tions

1. INTRODUCTION
Reinforcement Learning (RL) [9] is a very general learn-

ing paradigm. Nonetheless, for each new task, the learning

∗
Cite as: Transfer of Task Representation in Reinforcement Learn-
ing using Policy-based Proto-value Functions (Short Paper), Eliseo Fer-
rante, Alessandro Lazaric, Marcello Restelli,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.1329-1332.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is restarted from scratch and this may lead to prohibitive
complexity (curse of dimensionality). The goal of transfer
learning is to design algorithms able to extract and reuse the
knowledge learned in one or more tasks to efficiently develop
an effective solution for a new task. Many works of transfer
in RL relied on the option framework [8, 4], by learning op-
tions that can be profitably reused in a wide range of tasks.
Another category of transfer approaches involves transfer of
value functions and policies across tasks defined over differ-
ent domains (i.e., with different state and action spaces).
The approach proposed in [10] uses a transfer functional to
map the value function of the source task to a corresponding
value function for the target task. Finally, in [11], the trans-
fer of policies via inter-task mappings across tasks defined
on arbitrary domains is considered.

In this paper, we focus on the problem of learning and
transferring the common representation underlying the op-
timal value functions of a set of related tasks. In particular,
we build on the proto-value functions (PVF) framework [6],
that provides a technique for the automatic extraction of a
set of basis functions based on spectral graph theory. Un-
like other works on transfer with PVFs [3], in which matrix
perturbation theory and Nyström methods are adopted for
domain transfer problems, we focus on the problem in which
both state and action spaces are shared across all the tasks
but both the dynamics and the reward function may vary.
The PVF method is defined under the assumption that the
function to be approximated can be effectively represented
on a graph. Therefore, in the context of transfer, it is impor-
tant to build a graph that captures both the dynamics and
the reward function. For this reason, we introduce policy-
based PVFs obtained from a graph built by considering the
optimal policy of one of the source tasks at hand.

The rest of the paper is organized as follows. In Section 2,
we review the proto-value functions framework. In Section 3,
we give the definition of the transfer problem and we intro-
duce the policy-based proto-value functions. In Section 4,
we compare original PVFs to policy-based PVFs in a grid
world transfer problem. Finally, in Section 5 we conclude
and we discuss some possible future directions.

2. PROTO-VALUE FUNCTIONS
RL problems are formally defined as a Markov Decision

Process (MDP), described as a tuple 〈S ,A, T ,R〉, where S is

1329

the set of states, A is the set of actions, T a
ss′ is the transition

model that specifies the transition probability from state s

to state s′ when action a is taken, and Ra
s is the reward

function. The policy of the agent is defined as a function
π : S ×A → [0; 1] that prescribes the probability to take an
action in each state. The goal of the agent is to learn the
optimal policy π∗ that maximizes the reward received in the
long run. Furthermore, it is possible to compute the optimal
action-value function Q∗(s, a), that is, the expected sum of
discounted rewards in each state obtained by following π∗.
In many practical applications it is unfeasible to store the
value function with a distinct value for each state-action
(curse of dimensionality). The most common approach to
face this problem is to use linear function approximators for
the action value function:

bQ(s, a) =
kX

i=1

φi(s, a)θi,

where [θ1, . . . , θk] is the weights vector to be learned, [φ1 . . . φk]
are the basis functions, where φi : S ×A → R, i ∈ 1, . . . , k is
a basis function defined on the state-action space. Most
of the RL algorithms consider a set of hand-coded basis
functions (e.g., RBFs), while the learning process learns the
weights vector that minimizes the approximation error. On
the other hand, the PVF framework [6] provides an algo-
rithm for the automatic extraction of a set of basis func-
tions based on spectral graph theory [2]. The basic intuition
is that the value functions can be approximated by a set
of orthonormal basis computed from the Laplacian of the
graph obtained by a random walk on the environment at
hand. The Representation Policy Iteration (RPI) algorithm
consists in two phases: the representation learning phase
and the control learning phase. In the representation learn-
ing phase, PVFs are extracted. In particular, an undirected
or directed weighted graph G = 〈N, E,W 〉 that reflects the
topology of the task is built, where N is the set of nodes
(i.e. either states or state-action pairs), E the set of edges
and W the matrix containing the weights wuv between each
pair of nodes u, v ∈ N . Subsequently, spectral analysis of
the graph is performed, extracting the eigenvectors of some
graph operator, that is the PVFs. The most used graph op-
erator is the graph Laplacian, that in turns can be defined
in many ways, with the most common being the normalized
Laplacian definition:

L = I − D
−1/2

WD
−1/2,

where I is the identity matrix and D is a diagonal matrix
called the valency matrix, whose entries duu contain the de-
gree of a node duu =

P
v∈N wuv. Finally, in the control

learning phase, LSPI [5] is used to learn the weights vector.
One of the most critical part in the previous algorithm

is the construction of the graph used to extract the PVFs.
The agent explores the environment using a sampling policy
πσ and a set of sample transitions 〈s, a, s′, r〉 is collected. In
general, the sampling policy is the random policy πσ = πR.
Subsequently, a graph can be constructed alternatively by
taking into account the estimated transition model of the
problem, i.e. by considering the random walk P (containing
the probability of going from state s to s′) computed as:

W ≡ P
s′

s =
X

a∈A

π
σ(s, a)T a

ss′ ,

or by defining a suitable distance function d(si, sj), si, sj ∈

S and using an exponential weighting e−d(su,sv)2 to assign
weights to each edge on the graph (u, v) ∈ E. In this paper,
we focus on graphs defined over the state-action space [7].

3. POLICY-BASED PVFS FOR TRANSFER
We consider the following transfer learning problem. Let

〈S ,A, T, R〉 with T = {T1, . . . , Tn} and R = {R1, . . . ,Rn}
be a family of MDPs sharing the same state space S and
action space A but with different transition models and re-
ward functions. We define two probability distributions:
QT : T → [0, 1] and QR : R → [0, 1], used to select the tran-
sition model and reward function respectively. In particular,
we consider the scenario with one source task, from which
the representation knowledge is extracted, and one or more
target tasks, where learning exploiting transfer occurs. Both
source and target tasks are drawn according to QT and QR.
In the following, we distinguish between goal transfer and
dynamics transfer. In goal transfer we assume that the goal
changes between the source and the target task, whereas the
transition model remains unchanged. In dynamics transfer
the two tasks share the same goal, whereas the dynamics is
different.

3.1 Policy-based Proto-value Functions
The basic assumption underlying the original PVF frame-

work (whose PVFs will be denoted as dynamics-based PVFs)
is that the optimal value function V ∗ can be represented on
the graph G obtained through a random walk following a
fully random policy πR on the task. In goal transfer, we
assume that all the optimal value functions can be well ap-
proximated by the basis of the dynamics-based graph, i.e.,
the one that captures the dynamics of the environment but
completely ignores the reward functions. However, in the
more general case, both the transition model and the re-
ward function may vary. Hence, PVFs should be extracted
taking into account both of them. Unfortunately, it is not
possible to use the reward function in the construction of
graphs directly. Nonetheless, it is possible to bias the ex-
ploration of the environment towards the optimal policy of
the source task, thus indirectly taking its reward function
into account. This yields to a new sampling policy which is
different from the random policy πσ 6= πR. As a result, we
can compute a new kind of graph based on the new sampling
policy. Such graph will be denoted as policy-based graph.

We consider a task with a completely connected but stochas-
tic dynamics consisting of 5 states and with the goal in the
center, denoted with X. A dynamics-based graph would be
the one in Figure 1-(top). On the other hand, a policy-based
graph should take the goal into account. To strengthen the
policy contribution, we compute its t-th power to get the
distribution after t steps and we obtain the graph in Fig-
ure 1-(center). This graph captures information about the
goal, since only the weights on the edges directed towards
the goal are very high. However, dynamics information is
completely lost. Hence, we introduce averaged graphs (Fig-
ure 1-(bottom)). This new graph keeps information about
both the goal and the dynamics.

Following these observations, we propose the state-action
graph construction method. The method takes policy bias
factor δ as input parameter used to adjust the bias towards
the optimal policy π∗ of the source task in the construction
of the graph. In particular, we set the sampling policy πσ

1330

Figure 1: An example of dynamics-based graph
(top), policy-based graph (center) and averaged-
graph (bottom)

to πR with probability 1 − δ and to π∗ with probability δ.
When δ = 0, the optimal policy is not used and dynamics-
based PVFs are extracted. On the other hand, when δ is
close to 1, the policy contribution is very strong and the
walk (and hence the graph) is strongly leaned towards the
goal. The sampling policy πσ is used to compute the initial
weight matrix for the state-action graph [7] by setting each
entry to

W ((si, ak), (sj , al)) = T ak
sisj

π
σ(al|sj),

∀si, sj ∈ S , ak, al ∈ A. Subsequently, the graph averaging is
done. Here, we use the time-averaged transition probability
matrix [1] with discounting, thus leading to the graph

Wet =
tX

i=1

W i(1 − γ)γi−1

1 − γt
.

Finally, the graph needs to be symmetrized, especially when
using the Laplacian as defined on undirected graphs. With
our method, the amount of biasing towards the policy is
controlled by the δ parameter.

4. EXPERIMENTAL RESULTS
In order to compare the learning performance of dynamics-

and policy-based PVFs in transfer problems, we consider the
three-rooms grid-world domain used in [6]. This consists
in a stochastic environment, where each action is success-
ful with probability 0.9, whereas with probability 0.1 the
agent stands still. In all experiments we use state-action
graphs and 15,000 samples during both the representation
and learning phase. LSPI parameters are: discount fac-
tor γ = 0.9, the maximum number of iterations is 16 and
ǫ = 0, 001.

4.1 Goal Transfer Experiment
We first perform goal transfer experiments, in which all

the tasks share the same dynamics but have different reward
functions. We extract a total of 24 state-action dynamics-
based PVFs. We would expect dynamics-based PVFs to
perform well, since they effectively capture the dynamics of
the task. In the first experiment we consider one source task

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning Performances with domain−based PVFs
on Symmetric Goal Transfer

Performance with domain−based PVFs
Optimal performances

Figure 2: Learning performance in goal transfer ob-
tained by moving the goal in a symmetric position

0
10

20
30

0

5

10

15
0

2

4

6

8

Exact Value Function

Figure 3: A value function with nonlinearities due
to the reward function and not the transition model.

with the goal in the upper right angle of the grid-world, and
one target task with the goal in the upper left corner. The
exact value function of the source task presents some non-
linearities in the regions that are close to the walls. In [6] it
is shown that dynamics-based PVFs can effectively capture
those nonlinearities. Learning performance are reported in
Figure 2. In this case, the two tasks are completely unrelated
in terms of their goal and their optimal policy, whereas their
dynamics is the same. Results show that dynamics-based
PVFs can effectively achieve goal transfer in this case.

We now consider a goal transfer problem in which the re-
ward functions are obtained by perturbation of the reward
function of a source task. In the target task the goal is
placed at (8, 27), close to the upper-right corner and the
corresponding optimal value function is reported in Figure
3. It is interesting to notice that, in this case, the value
function has many nonlinearities that are not related to the
dynamics of the environment but that are generated by the
reward function. Thus, the dynamics-based PVFs are likely
to fail to approximate the optimal value functions of target
tasks that share these characteristics with the source task.
On the other hand, the policy-based PVFs generated from
the graph obtained by biasing the exploration towards the
optimal policy of the source task, better capture the partic-
ular shape of the value functions to approximate.

We consider 9 target tasks where the goal is moved around
the goal of the source task (including itself). We plot the
average learning performances of dynamics-based PVFs and
policy-based PVFs obtained with policy bias factor δ =
0.75, and we compare them with the average optimal perfor-
mance. As it can be noticed in Figure 4-(left), policy-based
PVFs performs better than dynamics-based PVFs. This is
because policy-based PVFs help to capture and transfer the
information about the nonlinearities close to the goal.

1331

2 4 6 8 10 12 14 16 18
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning Performance comparing domain−based PVFs
with policy−based PVFs in goal transfer in multiple target tasks

Performance with domain−based PVFs
Performance with Policy−based PVFs
Average optimal performance

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LSPI iteration

L
e

a
rn

in
g

 p
e

rf
o

rm
a

n
c
e

Learning performance comparing domain−based PVFs
with policy−based PVFs in domain transfer

Performance with domain−based PVFs

Performance with policy−based PVFs

Optimal performance

2 4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

LSPI iteration

Le
ar

ni
ng

 p
er

fo
rm

an
ce

Learning performance comparing domain−based PVFs
with policy−based PVFs in goal and domain transfer

Performance with policy−based PVFs
Performance with domain−based PVFs
Optimal performance

Figure 4: Learning performance in goal (left), dynamics (center), and goal-dynamics (right) transfer

4.2 Dynamics Transfer Experiment
We consider a dynamics transfer experiment in which tasks

are strictly related in terms of their optimal policy but with
different dynamics. Furthermore, we assume that the shared
representation can be compactly extracted by using a low
number of PVFs (6 in the experiment). The goal is placed
in the upper-right corner in both tasks. The source task
has a dynamics which is “tilted” in the opposite direction
of the goal. This means that the probability of success of
actions that aims in the opposite direction of the goal are
higher than the one aiming towards the goal. In the target
task, the dynamics is unchanged, with actions having the
same probability of success. Figure 4-(center) compares the
learning performance of dynamics-based PVFs with those of
policy-based PVFs obtained with δ = 0.75. As it can be no-
ticed, policy-based PVFs outperform dynamics-based PVFs
in this transfer experiment. This is because the two tasks
share the representation about their optimal policy, and this
can be better captured using policy-based PVFs.

4.3 Goal-Dynamics Transfer Experiment
In the final experiment we consider a source task whose

dynamics is tilted towards the bottom-left direction and a
goal at (8, 27). We consider three target tasks: (i) stan-
dard untilted dynamics and the goal at (8, 28), (ii) dynam-
ics tilted towards north and the goal at (9, 27), and (iii)
dynamics tilted towards south and the goal at (9, 26). We
consider 6 PVFs and δ = 0.5. Figure 4-(right) compares the
learning performance of dynamics-based PVFs with those
of policy-based PVFs. Optimal performances are reported
as well. Also in this case, policy-based PVFs outperform
dynamics-based PVFs. By transferring information about
the optimal policy, we are able both to counter-balance the
effect of the nonlinearity close to the goal and the change in
the dynamics.

5. CONCLUSIONS
In this paper, we focused on the problem of transfer in

terms of the extraction of a set of basis functions that can
be profitably used for the approximation of the optimal value
functions of a set of related tasks. In particular, building on
the PVF framework, we showed that, in the transfer prob-
lem, the graph construction method should take into consid-
eration both the transition model and the reward function.
Hence, we proposed policy-based PVFs, extracted using an
averaged discounted graph obtained through an exploration
biased towards the optimal policy of the source task. In
case of goal transfer, dynamics-based PVFs achieve effective
transfer whenever the optimal value functions has nonlinear-

ities directly related with the intrinsic structure of the envi-
ronment. On the other hand, when optimal value functions
present some nonlinearities caused by the reward function,
the use of the optimal policy of the source target leads to
policy-based PVFs that can better approximate the target
functions. Furthermore, the dynamics transfer experiments
showed that the policy-based PVFs can improve transfer ca-
pabilities in cases where the source and the target task share
a similar optimal policy, but the dynamics are different.

A direction for future work is to define a method to in-
crementally adapt the initial set of PVFs according to the
target tasks at hand, thus improving their approximation
capabilities on the tasks that must be actually solved.

6. REFERENCES
[1] A. T. Bharucha-Reid. Elements of the Theory of

Markov Processes and Their Applications. Dover
Publications, 1997.

[2] F. R. Chung. Spectral Graph Theory. Amer
Mathematical Society, 1997.

[3] K. Ferguson and S. Mahadevan. Proto-transfer
learning in markov decision processes using spectral
methods. In ICML Workshop on Transfer Learning,
2006.

[4] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
IJCAI, pages 895–900, 2007.

[5] M. G. Lagoudakis and R. Parr. Least-squares policy
iteration. JMLR, 4:1107–1149, 2003.

[6] S. Mahadevan and M. Maggioni. Proto-value
functions: A laplacian framework for learning
representation and control in markov decision
processes. JMLR, 8:2169–2231, 2007.

[7] S. Osentoski and S. Mahadevan. Learning state-action
basis functions for hierarchical mdps. In ICML ’07,
pages 705–712, 2007.

[8] T. J. Perkins and D. Precup. Using options for
knowledge transfer in reinforcement learning.
Technical report, University of Massachusetts,
Amherst, MA, USA, 1999.

[9] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[10] M. E. Taylor, P. Stone, and Y. Liu. Value functions
for RL-based behavior transfer: A comparative study.
In AAAI, pages 880–885, July 2005.

[11] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning
via inter-task mappings for temporal difference
learning. JMLR, 8:2125–2167, 2007.

1332

Reinforcement Learning for DEC-MDPs with Changing
Action Sets and Partially Ordered Dependencies

(Short Paper)

Thomas Gabel and Martin Riedmiller
Neuroinformatics Group, Department of Computer Science, Institute of Cognitive Science

University of Osnabrück, 49069 Osnabrück, Germany
{thomas.gabel|martin.riedmiller@uos.de}

ABSTRACT
Decentralized Markov decision processes are frequently used
to model cooperative multi-agent systems. In this paper, we
identify a subclass of general DEC-MDPs that features reg-
ularities in the way agents interact with one another. This
class is of high relevance for many real-world applications
and features provably reduced complexity (NP-complete)
compared to the general problem (NEXP-complete). Since
optimally solving larger-sized NP-hard problems is intracta-
ble, we keep the learning as much decentralized as possible
and use multi-agent reinforcement learning to improve the
agents’ behavior online. Further, we suggest a restricted
message passing scheme that notifies other agents about
forthcoming effects on their state transitions and that al-
lows the agents to acquire approximate joint policies of high
quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Design, Theory

Keywords
Decentralized MDPs, Interaction, Communication

1. INTRODUCTION
Research on distributed control of cooperative multi-agent

systems has received a lot of attention during the past years.
Among the models discussed in the literature, the DEC-
MDP framework [4], that is characterized by each agent
having only a partial view of the global system state, has
been frequently investigated. In this regard, it has been
shown that the complexity of general DEC-MDPs is NEXP-
complete, even for the benign case of two cooperative agents.

Decentralized decision-making is required in many real-life
applications. Examples include distributed sensor networks,
teams of autonomous robots, or production planning and
optimization scenarios. Being important for practice, the

Cite as: Reinforcement Learning for DEC-MDPs with (...) (Short Pa-
per), Thomas Gabel, Martin Riedmiller,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.1333-1336..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

enormous computational complexity of solving DEC-MDPs
conflicts with the fact that real-world tasks do typically have
a considerable problem size. Therefore, in this paper we will
identify a subclass of general DEC-MDPs that features reg-
ularities in the way the agents interact with one another.
For this class, we can show that the complexity of optimally
solving an instance of such a DEC-MDP is provably lower
(NP-complete) than the general problem (Section 2). More-
over, we analyze methods for the agents to benefit from par-
tially knowing about the state transition dependencies. To
this end, we propose the use of a restricted message passing
scheme that notifies other agents about forthcoming effects
on their state transitions and we investigate its usefulness
(Section 3). For adapting the agents’ policies, we propose
the usage of a multi-agent reinforcement learning (RL) ap-
proach, where the agents are independent learners and do
their learning online which we evaluate in the context of
larger-sized scheduling problems (Section 4).

2. PROBLEM DESCRIPTION

2.1 DEC-MDP Framework
Basically, the subclass of problems we are focusing on in

this paper may feature an arbitrary number of agents whose
actions influence, besides their own, the state transitions of
maximally one other agent in a specific manner. We embed
the problem settings of our interest into the framework of
decentralized Markov decision processes (DEC-MDP) [4].

Definition 1. A factored m-agent DEC-MDP M is de-
fined by a tuple

〈Ag,S, A, P, R, Ω, O〉
where Ag = {1, . . . , m} is a set of agents, S is the set
of world states that can be factored into m components
S = S1 × · · · × Sm (Si belong to one of the agents each),
A = A1 × ...×Am is the set of joint actions to be performed
by the agents (a = (a1, . . . , am) ∈ A denotes a joint action
that is made up of elementary actions ai taken by agent
i), P is the transition function with P (s′|s, a) denoting the
probability that the system arrives at state s′ upon execut-
ing a in s, R is a reward function with R(s, a, s′) denoting
the reward for executing a in s and transitioning to s′.

Ω = Ω1×· · ·×Ωm is the set of all observations of all agents
(o = (o1, . . . , om) ∈ Ω denotes a joint observation with oi as
the observation for agent i) and O denotes the observation
function that determines the probability O(o1, . . . , om|s, a, s′)
that agent 1 through m perceive observations o1 through om.

1333

Moreover, M is jointly fully observable, i.e. the current
state is entirely determined by the amalgamation of all agents’
observations: if O(o|s, a, s′) > 0, then Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈ Ai,
and oi ∈ Ωi as the local state, action, and observation of
agent i. A joint policy π is a set of local policies 〈π1, . . . , πm〉
each of which is a mapping from agent i’s sequence of lo-
cal observations to local actions, i.e. πi : Ωi → Ai. In
the following, we allow each agent to fully observe its local
state, i.e. we consider factored m-agent DEC-MDPs with lo-
cal full observability which implies that for all agents i and
for all local observations oi there is a local state si such that
Pr(si|oi) = 1. Note that joint full observability and local
full observability of a DEC-MDP do generally not imply full
observability, which would allow us to consider the system
as a single large MDP and to solve it with a centralized
approach.

A factored m-agent DEC-MDP is called reward indepen-
dent, if there exist local functions R1 through Rm, each de-
pending on local states and actions of the agents only, as
well as a function r that amalgamates the global reward
value from the local ones, such that maximizing each Ri in-
dividually also yields a maximization of r. Throughout this
paper, we will consider the global reward to be the sum of
the local ones.

If, in a factored m-agent DEC-MDP, each agent’s observa-
tion depends only on its current and next local state and on
its action, then that DEC-MDP is called observation inde-
pendent. Then, in combination with local full observability,
the observation-related components Ω and O are redundant
and can be removed from Definition 1.

While the DEC-MDPs of our interest are observation in-
dependent and reward independent, they are not transition
independent. That is, the state transition probabilities of
one agent may very well be influenced by another agent.

2.2 Variable Action Sets
We assume that there are some regularities that determine

the way local actions exert influence on other agents’ states.
First, we assume that the sets of local actions Ai change
over time.

Definition 2. A factored m-agent DEC-MDP is said to
feature changing action sets, if the local state of agent i is
fully described by the set of actions currently selectable by i

(si = Ai \ {α0}) and Ai is a subset of the set of all available
local actions Ai = {α0, αi1 . . . αik}, thus Si = P(Ai \ {α0}).
Here, α0 represents a null action that does not change the
state and is always in Ai. We abbreviate Ar

i = Ai \ {α0}.

Concerning state transition dependencies, one can dis-
tinguish between dependent and independent local actions.
While the former influence an agent’s local state only, the
latter may additionally influence the state transitions of
other agents. As pointed out, our interest is in non-transition
independent scenarios. In particular, we assume that an
agent’s local state can be affected by an arbitrary number
of other agents, but that an agent’s local action affects the
local state of maximally one other agent.

Definition 3. A factored m-agent DEC-MDP is said to
have partially ordered transition dependencies, if there exist
functions σi for each agent i with

1. σi : Ar
i → Ag ∪ {∅} and

2. ∀α ∈ Ar
i the directed graph Gα = (Ag ∪ {∅}, E) with

E = {(j, σj(α))|j ∈ Ag} is acyclic and contains a path
of length m

and it holds P (s′i|s, (a1 . . . am), (s′1 . . . s′i−1, s
′
i+1 . . . s′m))

= P (s′i|si, ai, {aj ∈ Aj |i = σj(aj), j 6= i}).
The influence exerted on another agent always yields an

extension of that agent’s action set: If σi(α) = j, i takes
local action α, and the execution of α has been finished,
then α is added to Aj(sj), while it is removed from Ai(si).

So, the σi functions indicate whose other agents’ state is
affected when agent i takes a local action. Also, condition 2
in Definition 3 implies that for each local action α there is
a total ordering of its execution by the agents. While these
orders are total, the global order in which actions are exe-
cuted is only partially defined by that definition and subject
to the agents’ policies. Lemma 1 states that for the prob-
lems considered any local action may appear only once in
an agent’s action set and, thus, may be executed only once.

Lemma 1. In a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered transition dependen-
cies it holds: ∀i ∈ Ag, ∀α ∈ Ar

i , ∀t ∈ {1 . . . T} and ∀si =
(s1

i . . . st
i): If there is a ta (1 ≤ ta < T) with α ∈ sta

i and a

tb (ta < tb ≤ T) with α 6∈ s
tb
i , then ∀τ ∈ {tb . . . T} : α 6∈ sτ

i .

Proof. The proofs of this and of the following lemmas
are omitted due to space constraints.

2.3 Implications on Complexity
While the complexity of solving general DEC-MDPs is

known to be NEXP-complete [4], several authors have iden-
tified subclasses of the general problem that provably yield
lower (NP-complete) complexity (e.g. [3, 6, 2]). As shown in
[9], a key factor that determines whether the problem com-
plexity is reduced to NP-completeness is whether the agents’
histories can be compactly represented. In particular, there
must exist an encoding function Enci : Ωi → Ei such that

1. a joint policy π = 〈π1 . . . πm〉 with πi : Ei → Ai is
capable of maximizing the global value and

2. the encoding is polynomial, i.e. that |Ei| = O(|S|ci).

For our class of factored m-agent DEC-MDPs with changing
action sets and partially ordered transition dependencies we
can define an encoding that adheres to both of these condi-
tions, thus showing that those problems are NP-complete.

The interaction history of a DEC-MDP is the sequence
of local observations oi ∈ Ωi which in our case corresponds

to the history of local states si ∈ Si = ×
T

t=1 Si, since we
assume local full observability (recall that Si = P(Ar

i)).

Definition 4. Given a local action set Ai = {α0 . . . αk}
and a history si = (s1

i . . . st
i) ∈ Si of local states of agent

i, the encoding function is defined as Enci : Si → Ei with
Ei = Cα1

× · · · × Cαk
and Cαj

= {0, 1, 2}. And it holds
Enci(si) = (ci,α1

. . . ci,αk
) ∈ Ei with

ci,αj
=

8
><
>:

0 if ∄τ with αj ∈ sτ
i

1 if αj ∈ st
i

2 else

1334

Basically, the encoding guarantees that each agent knows
whether some local action has not yet been, is currently,
or had been in its action set. Proving that this encoding
is capable of representing the optimal policy and showing
that it is a polynomial encoding, we can conclude that the
subclass of DEC-MDPs we identified is NP-complete.

Lemma 2. Enci provides a polynomial encoding of agent
i’s observation history.

Lemma 3. Enci provides an encoding of agent i’s obser-
vation history such that a joint policy π = 〈π1 . . . πm〉 with
πi : Ei → Ai is sufficient to maximize the global value.

As deciding a polynomially encodable DEC-MDP is NP-
hard [9], solving a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered dependencies is so, too.

3. RESOLVING DEPENDENCIES
Besides using an encoding of an agent’s interaction his-

tory (Section 2), there are other options for exploiting the
regularities in the transition dependencies of the class of
DEC-MDPs we identified that.

3.1 Reactive Policies and Their Limitations
An agent taking its action based solely on its most recent

local observation si ⊆ Ai is in general not able to contribute
to optimal joint behavior: It faces difficulties in assessing the
value of its idle action α0. Because a purely reactive agent
has no information related to other agents and dependencies
at all, it is incapable of properly distinguishing when it is
favorable to remain idle and when not. For these reasons,
we exclude α0 from all Ai for purely reactive agents.

Definition 5. For an m-agent DEC-MDP with changing
action sets and partially ordered transition dependencies, a
reactive policy πr = 〈πr

1 . . . πr
m〉 consists of m reactive local

policies with πr
i : Si → Ar

i where Si = P(Ar
i).

That is, purely reactive policies always take an action α ∈
Ai(si) = si (except for si = ∅), even if it was better to stay
idle and wait for a transition from si to some s′i = si ∪ {α′}
induced by another agent, and then execute α′ in s′i.

3.2 Awareness of Dependencies
In Definition 4, we stated that the probability that agent

i’s local state moves to s′i depends on that agent’s current
local state si, its action ai, as well as on the set {aj ∈ Aj |i =
σj(aj), i 6= j} =: ∆i, i.e. on the local actions of all agents
that may influence agent i’s transition. Although knowing
∆i is in general not feasible for each agent, we may enhance
the capabilities of a reactive agent i by allowing it to get at
least some partial information about this set. For this, we
extend a reactive agent’s local state space from Si = P(Ar

i)

to Ŝi such that for all ŝi ∈ Ŝi it holds ŝi = (si, zi) with
zi ∈ P(Ar

i \ si). So, zi is a subset of the set of actions
currently not in the action set of agent i.

Definition 6. Let 1 . . . m be reactive agents acting in a
DEC-MDP, as specified in Definition 3, whose local state
spaces are extended to Ŝi. Assume that current local actions
a1 . . . am are taken consecutively. Given that agent j decides
for aj ∈ Aj(sj) and σj(aj) = i, let also si be the local state
of i and ŝi its current extended local state with ŝi = (si, zi).
Then, the transition dependency between j and i is said to
be resolved, if zi := zi ∪ {aj}.

Resolving transition dependencies according to Definition
6 means letting agent i know some of those current local
actions of other agents by which i’s local state will soon be
influenced. Since, for the class of problems we are dealing
with, inter-agent interferences are always exerted by chang-
ing (extending) another agent’s action set, in this way agent
i gets to know which further action(s) will soon be available
in its action set. Integrating this piece of information into i’s
extended local state description Ŝi, i gets the opportunity to
willingly stay idle (execute α0) until the announced action
aj ∈ zi enters its action set and can finally be executed.

The notification of agent i, which instructs him to extend
its local state component zi by aj , may easily be realized by
a simple message passing scheme (assuming cost-free com-
munication between agents) that allows agent i to send a
single directed message to agent σi(α) upon the local ex-
ecution of α. Obviously, this kind of partial resolving of
transition dependencies is particularly useful in applications
where the execution of atomic actions takes more than a
single time step and where, hence, decision-making proceeds
asynchronously across agents. Under those conditions, up to
half of the dependencies in ∆i (over all i) may be resolved.

4. DISCUSSION AND EVALUATION
Distributed problem solving in practice is often character-

ized by a factored system state description where the agents
base their decisions on local observations. Also, our assump-
tions that local actions may influence the state transitions of
maximally one other agent and that any action has to be per-
formed only once are frequently fulfilled. Sample real-world
applications include scenarios from manufacturing, produc-
tion planning, or assembly line optimization, where typi-
cally the production of a good involves a number of process-
ing steps that have to be performed in a specific order. In
a factory, however, usually a variety of products is assem-
bled concurrently, which is why an appropriate sequencing
of single operations is of crucial importance for overall per-
formance. Thus, the class of factored m-agent DEC-MDPs
with changing action sets and partially ordered transition
dependencies covers a variety of such scheduling problems,
for example flow-shop and job-shop scheduling scenarios [7].
Beyond that, a big portion of supply chain problems where
complex items are assembled through a series of steps are
covered. Other practical application domains to which our
model is of relevance include network routing (e.g. sub-task
of determining the order of forwarding packets), railway traf-
fic control (e.g. task of allowing trains to pull into the station
via agent-based track switches), or workflow management.

Joint Policy Acquisition with RL
Solving a DEC-MDP optimally is NEXP-hard and intractable
for all except the smallest problem sizes. Unfortunately, the
fact that the subclass of DEC-MDPs we identified is in NP
and hence simpler to solve, does not rid us from the compu-
tational burden implied. So, our goal is not to develop yet
another optimal solution algorithm applicable to small prob-
lems only, but to use a technique capable of quickly finding
approximate solutions in the vicinity of the optimum.

We let the agents acquire their local policies indepen-
dently of the other agents by repeated interaction with the
DEC-MDP and concurrent evolvement of their policies. Our
learning approach is made up of alternating data collection
and learning stages that are being run concurrently within

1335

all agents. At its core, a specialized variant of a neural fit-
ted Q iteration (NFQ) algorithm [8], enhanced for usage in
multi-agent domains, is used that allows the agents to de-
termine a value function over their local state-action spaces.
A detailed description of that approach can be found in [5].

Experiments
For the purpose of evaluation, we focus on various job-
shop scheduling (JSS) benchmark problems (taken from [1])
that are known to be NP-hard. The goal of scheduling
is to allocate a given number of jobs to a limited num-
ber of resources such that some objective is optimized. In
job-shop scheduling, n jobs must be processed on m ma-
chines in a pre-determined order, while minimizing maxi-
mum makespan Cmax, which corresponds to finishing pro-
cessing as quickly as possible. Each job consists of a specific
number of operations that each have to be handled on a cer-
tain resource for a certain duration, where the whole job is
finished after its last operation has been entirely processed.

JSS problems are suited to be modelled as factored m-
agent DEC-MDPs with changing action sets and partially
ordered transition dependencies: The world state can be fac-
tored, if we assume that to each of the resources one agent
i is associated whose local action is to decide which wait-
ing job to process next. Further, the local state of i can be
fully described by the changing set of jobs currently waiting
for further processing, and after having finished an oper-
ation of a job, this job is transferred to another resource,
which corresponds to influencing another agent’s local state
by extending that agent’s action set. Examining the for-
mal definition of JSS problems [7], it is obvious that we can
also easily define σi : Ar

i → Ag ∪ {∅} (see Definition 3) for
all agents/resources i and that the corresponding directed
graph Gα is indeed acyclic with a path of length m.

The primary concern of the experiments conducted was on
an analysis of the three approaches discussed in this paper.
We compared agents that independently learn purely reac-
tive policies πr

i (see Section 3.1) defined over Si = P(Ar
i)

that never remain idle when their action set is not empty
(RCT), reactive policies π̂i that are partially aware of their
dependencies on other agents (being notified about forth-
coming influences exerted by other agents, COM), and poli-
cies πi : Ei → Ai where Ei is an encoding of that agent’s
observation history Si according to Definition 4 (ENC).

Findings
Using RCT-agents, only schedules from the class of non-
delay schedules Snd can be created by applying reactive
policies. Since Snd ⊆ Sa and it is known that the opti-
mal schedule is always in Sa [7], but not necessarily in Snd,
RCT-agents can at best learn the optimal solution from Snd.
By contrast, learning with ENC-agents, the optimal solution
can in principle be attained, but we found that the time re-
quired by our learning approach for this to happen increases
significantly due to larger-sized local state spaces.

We also found that the awareness of inter-agent dependen-
cies achieved by partial dependency resolvements via com-
munication in fact realizes a good trade-off between the for-
mer two approaches. On the one hand, resolving a transition
dependency according to Definition 6, an agent i can be-
come aware of an incoming job. Thus, i may decide to wait
for that arrival, instead of starting to execute another job.
Hence, also schedules can be created that are not non-delay.

On the other hand, very poor policies with unnecessary idle
times can be avoided, since a decision to stay idle may be
taken only when a future job arrival has been announced.

Averaged over 24 different benchmark instances [1] of vary-
ing sizes (up to 15 agents) for which it is known that the op-
timal solution is not in Snd, the learned policies nearly reach
the theoretical optimum (schedule with minimal Cmax) miss-
ing it by 6.18% for RCT-agents, by 9.55% for ENC-agents,
and by 4.78% for COM-agents. Dispatching rule based sche-
duling approaches are clearly surpassed (best conventional
scheduling rule reaches a remaining error of 8.59%).

5. CONCLUSION
We have identified a class of cooperative decentralized

MDPs that features a number of regularities in the way
agents influence the state transitions of other agents. Ex-
ploiting the knowledge about these correlations, we have
proven that this class of problems is easier to solve (NP-
hard) than general DEC-MDPs (NEXP-hard). Subsequently,
we have looked at possibilities for modeling memoryless agents
and enhancing them by restricted allowance of communica-
tion. For solving instances of the DEC-MDP class identified
we relied on a coordinated batch-mode reinforcement learn-
ing algorithm that facilitates the agents to concurrently and
independently learn their local policies of action online.

6. ACKNOWLEDGEMENTS
This research has been supported by the German Research

Foundation (DFG) under grant number Ri-923/2-3.

7. REFERENCES
[1] J. Beasley. OR-Library, 2005, http://people.brunel

.ac.uk/∼mastjjb/jeb/info.html.

[2] R. Becker, S. Zilberstein, and V. Lesser. Decentralized
Markov Decision Processes with Event-Driven
Interactions. In Proceedings of AAMAS 2004, pages
302–309, New York, USA, 2004. ACM Press.

[3] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.
Solving Transition Independent Decentralized MDPs.
Journal of AI Research, 22:423–455, 2004.

[4] D. Bernstein, D. Givan, N. Immerman, and
S. Zilberstein. The Complexity of Decentralized Control
of Markov Decision Processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

[5] T. Gabel and M. Riedmiller. Adaptive Reactive
Job-Shop Scheduling with Learning Agents.
International Journal of Information Technology and
Intelligent Computing, 2(4), 2008.

[6] C. Goldman and S. Zilberstein. Optimizing Information
Exchange in Cooperative Multi-Agent Systems. In
Proceedings of AAMAS 2003, pages 137–144,
Melbourne, Australia, 2003. ACM Press.

[7] M. Pinedo. Scheduling. Theory, Algorithms, and
Systems. Prentice Hall, 2002.

[8] M. Riedmiller. Neural Fitted Q Iteration – First
Experiences with a Data Efficient Neural
Reinforcement Learning Method. In Proceedings of
ECML 2005, Porto, Portugal, 2005. Springer.

[9] J. Shen, R. Becker, and V. Lesser. Agent Interaction in
Distributed POMDPs and Implications on Complexity.
In Proceedings of AAMAS 2006, pages 529–536,
Hakodate, Japan, 2006. ACM Press.

1336

Using Adaptive Consultation of Experts to Improve
Convergence Rates in Multiagent Learning

(Short Paper)

Greg Hines
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

ggdhines@cs.uwaterloo.ca

Kate Larson
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

klarson@cs.uwaterloo.ca

ABSTRACT
We present a regret-based multiagent learning algorithm
which is provably guaranteed to converge (during self-play)
to the set of Nash equilibrium in a wide class of games.
Our algorithm, FRAME, consults experts in order to obtain
strategy suggestions for agents. If the experts provide ef-
fective advice for the agent, then the learning process will
quickly reach a desired outcome. If, however, the experts do
not provide good advice, then the agents using our algorithm
are still protected. We further expand our algorithm so that
agents learn, not only how to play against the other agents
in the environment, but also which experts are providing the
most effective advice for the situation at hand.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory

Keywords
Multiagent Learning, Game Theory

1. INTRODUCTION
How and what agents should learn in the presence of oth-

ers is one of the important questions in multiagent systems.
The problem has been studied from several different perspec-
tives, and in particular has garnished a lot of interest from
both the game-theory community (see, for example, [4]) and
the AI community (see, for example, [2]).

In this paper we investigate the problem of whether iden-
tical agents, who repeatedly play against each other, can
learn to play strategies which form a Nash equilibrium (see,
for example [2]). In particular, we are interested in settings
where there are potentially more than two agents, and where
agents have potentially more than just two actions to choose

Cite as: Using Adaptive Consultation of Experts to Improve Conver-
gence Rates in Multiagent Learning (Short Paper), Greg Hines and Kate
Larson,Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.1337-1340..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

from. We are also interested in ensuring that agents learn
to play a best response against stationary opponents.

Our learning procedure, a Framework for Regret Anneal-
ing Methods using Experts or FRAME, is a regret-based
learning algorithm for repeated games which combines a
greedy random sampling method with consultation of ex-
perts, that return strategy profiles. More importantly, by
consulting carefully chosen experts we can greatly improve
the convergence rate to Nash equilibria in self-play, but in
the case where the experts do not return useful advice, then
we still have guarantees that our algorithm will lead agents
to a Nash equilibrium.

2. BACKGROUND
An n-player stage game is defined as G = 〈N, A1, . . . , An,

u1, . . . , un〉 where N = {1, 2, . . . , n} is the set of agents par-
ticipating in the game, and Ai is the set of possible actions
that agent i can take. During the stage game, agents simul-
taneously choose to play actions and each agent receives a
reward based on the joint action a = (a1, . . . , an). In par-
ticular ui : A1 × . . . × An → R is the utility function for
agent i, and so ui(a) is the reward that agent i receives if
the joint action is a. With out loss of generality, we assume
ui ∈ [0, 1]. Agents play strategies, where a strategy, σi, of
agent i is a probability distribution over action space Ai and
σi(aj) denotes the probability with which agent i chooses to
play action aj ∈ Ai. We let Σi denote the strategy space of
agent i, and let σ = (σ1, . . . , σn) ∈ Σ = Σ1 × . . . × Σn de-
note a joint strategy. If there exists an action aj such that
σi(aj) = 1, then σi is called a pure strategy. We use the
notation σ = (σi, σ−i) to represent a joint strategy, where
σ−i is defined to be equal to (σ1, . . . , σi−1, σi+1, . . . , σn). By
abuse of notation, we can define the utility of an agent in
terms of a joint strategy σ = (σi, σ−i) as

ui(σi, σ−i) =
X

a∈A

ui(a)Πn
j=1σj(aj).

We assume that agents are self-interested and that they
wish to play strategies that maximize their own utility. That
is, if all agents but i are playing σ−i, then agent i should
play a strategy σi that maximizes its utility, i.e. σi should
be a best response to σ−i. We say that agents’ strategies are
in (Nash) equilibrium if no agent is willing to change their
strategy, given that no other agents change.

Definition 1. A strategy profile σ∗ = (σ∗
1 , . . . , σ∗

n) is a

1337

Nash equilibrium if for every agent i

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i) ∀σ

′
i 6= σ

∗
i .

A strategy profile σ∗ is an ǫ-Nash equilibrium if for every
agent i, ui(σ

∗
i , σ∗

−i) ≥ ui(σ
′
i, σ

∗
−i) − ǫ ∀σ′

i 6= σ∗
i .

Agents are also able to evaluate their strategy choice by
measuring the regret they experience from playing a partic-
ular strategy.

Definition 2. Given a joint strategy σ, agent i’s regret
is ri(σ) = maxσ′

i
∈Σi

[ui(σ
′
i, σ−i) − ui(σi, σ−i)].

Given σ, we define the regret of a game to be the maxi-
mum regret among all agents, i.e. r(σ) = maxi∈N(ri(σ)).

A repeated game, G, is a game where agents play a specific
stage game over and over. At stage t we denote the strategy
profile that the agents played by σt and the actual action
profile that the agents played by at. Given σt, each agent i

is able to compute its immediate regret, ri(σ
t).

As the stage game is repeated, agents gain experience and
are able to adjust their strategies so that they fair better
against their opponents. In this paper we are interested
in learning approaches which use regret, and in particular
regret-minimization, to guide the agents’ strategy adapta-
tions. Our goal is to develop a learning procedure which will
converge to an interesting set of strategies for the agents. In
particular, we would like to develop an approach such that
r(σt) → 0 as t → ∞ (i.e. the process converges to the set
of Nash equilibria for the stage game).

Regret-based learning is a broad type of learning that can
achieve various degrees of convergence. However, the results
for achieving convergence to the set of Nash equilibria are
mostly negative. Some positive results have been achieved
using randomized learning algorithms. One example of this
approach is Experimental Regret Technique (ERT) [5]. The
basic idea of ERT is to have all agents with high regret
randomly choose a new strategy, to have all agents with
medium regret to slightly modify their current strategy in
some systematic way, and to have agents with low regret
to keep playing their strategy. Germano and Lugosi further
improved upon this technique with their algorithm Annealed
Localized Experimental Regret Technique (ALERT) which
provably converges to the set of Nash equilibria for almost
all games and the set of ǫ-Nash equilibria for all games.

3. FRAME
Although ALERT is theoretically important, there are two

main issues which limit its applicability in actual multiagent
systems. First, since ALERT is an uncoupled algorithm,
agents have almost no information from which they can de-
termine whether they are playing an ǫ-equilibrium. Instead,
ALERT’s guarantees are in the form of bounds on the prob-
ability of not being in an ǫ-equilibrium. Second, ALERT
uses a naive method for having agents find new strategies.
In particular, ALERT has the agents choose new strategies
uniformally at random and then checks whether these strate-
gies meet a set of conditions. Our algorithm, a Framework
for Regret Annealing Methods using Experts, or FRAME, is
inspired by ALERT but explicitly addresses these two issues,
while still maintaining the theoretical guarantees of ALERT.

To address the first issue, FRAME is not a fully uncoupled
algorithm. Instead, we assume that the agents’ strategies
are publicly available to all agents, as is done by several

Algorithm 1 FRAMEi

- σ0
i is a strategy picked uniformly at random

for t = 0, 1, . . . do
- with probability p, βt+1

i is the strategy returned by
consulting the expert
if βt+1

i is not in the bounded region B(σt
i , d(r(σt))) or

the expert was not consulted then
- βt+1

i is the strategy picked uniformly from
B(σt

i , d(r(σt))))
end if
if the regret of β is less than the regret of σt then

- σt+1 = βt+1

else
- σt+1 = σt

end if
- τi is strategy picked uniformly at random from Σi

if the regret of τ is less than half the regret of σt+1

then
- with probability η, set σt+1 = τ .

end if
end for

other researchers [2]. We also assume that the maximum
regret of all agents is publicly available. Our algorithm will
still work without these two assumptions, as it is possible to
experimentally determine regret (both for individual agents
and overall), but this comes with a substantial increase in
the number of iterations required by our algorithm.

To deal with the second issue, FRAME allows an agent,
with some probability, to consult an expert, which returns
a possible new strategy. Any expert will work, even a mali-
cious one that actively provides bad strategies. If the expert
provides good strategies, then FRAME will be able to reduce
an agent’s regret quickly. If all agents are using FRAME and
are consulting good experts, then the convergence rate to a
Nash equilibrium greatly improves.

The FRAME algorithm for agent i is shown in Algo-
rithm 1. The algorithm, with respect to agent i, works as
follows. Agent i first chooses an initial strategy σ0

i uniformly
at random from Σi. To obtain a new strategy for time t+1,
FRAME then uses the provided expert, which agent i con-
sults with a provided probability of p, independent of all
other agents. If consulted, the expert returns a possible
strategy βt+1

i . To provide protection against poor experts,
FRAME checks to see if βt+1

i is inside the bounded region
B(σt

i , d(rt)), which is centered on σt
i and has a minimum

width of d().1 If βt+1
i is not, or the expert was not consulted,

βt+1
i is chosen uniformly at random from the bounded search

region. Agent i then calculates ri(β
t+1). If r(βt+1) < r(σt),

then σt+1 = βt+1, otherwise, σt+1 = σt. To avoid the off-
chance of getting stuck at a locally optimal joint strategy,
each agent chooses an alternative strategy τi uniformly at
random from Σi. If the regret at τ is less than half the cur-
rent regret, then with a given probability η, the game resets
to τ . This process repeats until the regret is zero.

FRAME’s correctness is provided by Proposition 1.

Proposition 1. If η > 0, then as t approaches infinity,
σt approaches the set of Nash equilibria.

The proof is omitted due to space limitations.

1d() may be any function so long as d(x) > 0, for x > 0.

1338

0, 0 1, 0 0, 1
0, 1 0, 0 1, 0
1, 0 0, 1 0, 0

Figure 1: Shapley’s Game.

It should be noted that FRAME also works when some
subset of the agents are playing stationary strategies. Specif-
ically, agents using FRAME are able to achieve a best re-
sponse against those agents playing stationary strategies.

3.1 Experimental Results
In this section we discuss our findings from a series of

experiments.

3.1.1 Experimental Setup
While in theory any expert will work in FRAME, methods

that make gradual adjustments to the strategies of agents
are preferred. In our experiments we chose two such experts;
Win or Learn Fast (WoLF) [2] and Logistic Fictitious Play
(LFP) [4]. As a basis for comparison, we also used the Naive
Expert, which always picks a strategy at random.

WoLF is a variable learning rate applied to a gradient-
ascent learning approach. Each turn the strategy is moved
towards a best response, however the strategy is moved more
aggresively when the agent is doing worse than expected.

LFP is a form of learning where, at each iteration, the
agent chooses a particular action with a probability that is
in proportion to an exponential function of the utility that
this action has yielded in the past.

We ran experiments on a wide range of games, including
repeated Prisoner’s Dilemma, Battle of the Sexes, 2-Player
Matching Pennies and 3-Player Chicken. Due to space lim-
itations we are unable to report our findings in these games
in any detail, except to say that in self-play, agents using
FRAME were able to quickly converge to Nash equilibria.
We report, in detail, our findings from Shapley’s game (Fig-
ure 1). Shapley’s game is a classic but challenging one.
In particular, WoLF does not converge in Shapley’s game
whereas LFP does.

For our experiments, LFP was run with λ = 0.5 and WoLF
with δw = 1

100+t
and δl = 3δw. For FRAME, we let p = 0.75.

3.1.2 Results
A trial was said to have converged when the joint strat-

egy was within three decimal places of any Nash equilibrium.
Each of our experiments consisted of 1000 trials. We present
our findings in a histogram format, which show the percent-
age of each experiment (grouped into 25 bins) that took a
certain number of iterations to converge.

As shown in Figure 2, convergence in Shapley’s Game is
achieved using just a Naive Expert. However, by picking a
better expert, we can do much better. Figure 2, shows the
convergence when LFP is used as the expert and consulted
75% of the time. The convergence rate improves by three
orders of magnitudes. We also conducted other experiments
which showed that as LFP was consulted more and more
often, the convergence continued to improve. On the other
hand, Figure 2, shows the convergence rate when an expert
poorly suited for Shapley’s game, such as WoLF, is used as
the expert, the convergence rate suffers but convergence is
still achieved.

4. ADAPTIVE-FRAME
Despite the success of FRAME, it has one fundamental

limitation. As our experiments showed, any specific expert
is only useful for a limited set of games. Hence, once an
agent picks its expert, it has limited the set of games for
which it can achieve good convergence rates. Furthermore,
even if an agent was allowed to pick a new expert for each
game, it would not always be possible to know, before the
game started, which expert was best to use.

To address this problem, we created a generalization of
FRAME called adaptive-FRAME. Adaptive-FRAME allows
an agent, at any point in a game, to choose from many pos-
sible experts. To help agents make the decision of which
expert to actually consult, agents make use of an experts al-
gorithm. An experts algorithm is any algorithm that, given
a set of experts and their past performances, suggests which
expert to consult. This allows adaptive-FRAME the flexi-
bility to deal with new and unknown games.

Formally, the set of possible experts for agent i to consult
is denoted by Ei = {ei,0, . . . , ei,|Ei|−1}. The Naive Expert
is always ei,0. With slight abuse of notation, we define ei to
be some specific but undefined expert for agent i. At time t

expert ei is consulted with probability pt
i (ei) and returns

a suggested strategy βei
. Agent i’s experts algorithm is

denoted by æi and pi is called æi’s policy. We only require
that for all t, pt

ei,0
> 0 and

P
∞

t=0 pt
ei,0

= ∞; as long as this
holds, the correctness for adaptive-FRAME follows directly
from the proof of correctness for FRAME.

4.1 LERRM
To create a MAL experts algorithm, we first need a useful

way of measuring performance of the experts. Since the goal
of experts is to try and reduce an agent’s regret, we created
a metric, Expected Regret Reduction (ERR), defined as

ERR(ei)
T
i =

PT−1
t=0 (r(βt)t

i − r(βt+1
ei

, βt+1
−i)t+1

i)

T
.

ERR estimates expert ei’s ability to reduce an agent’s regret
over some time period {0, . . . , T} by assuming that all other
agents’ strategies are fixed but that ei’s suggested strate-
gies were always followed. ERR then calculates the average
reduction in regret ei’s strategies would have achieved.

Our experts algorithm, Logistic Expected Regret Reduction
Maximization (LERRM), is based on the idea of LFP;

LERRM(ei)
t
i =

e
1

λ
ERR(ei)

t
i

P
e′

i
∈Ei

e
1

λ
ERR(e′

i
)t
i

.

LERRM is designed as a general approach that can be
used in other MAL settings.

4.2 Experimental Results
We tested adaptive-FRAME using Shapley’s game. We

tested three different experts algorithms. The Naive Experts
Algorithm, which chooses each expert with equal probabil-
ity, served as a benchmark by which to compare the others.
Besides our experts algorithm, LERRM, we also used Hedge,
a standard experts algorithm [3]. Hedge assigns “weights”
to each expert and then consults an expert with a probabil-
ity equal to that expert’s weight proportional to all of the
weights.

1339

0 1 2 3 4 5 6

x 10
5

0

0.05

0.1

0.15

0.2

0.25
P

er
ce

nt
ag

e

Iterations
0 100 200 300 400 500 600

0

0.05

0.1

0.15

0.2

0.25

p
e
=.75

Iterations

P
er

ce
nt

ag
e

0 1 2 3 4 5 6

x 10
5

0

0.05

0.1

0.15

0.2

0.25

p
e
=.75

Iterations

P
er

ce
nt

ag
e

Figure 2: Convergence Rates for Shapley’s Game using FRAME with the Naive Expert, LFP and WoLF,
respectively. Note the difference in order of magnitude for the results for LFP.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
nt

ag
e

Iterations

Naive Experts Algorithm

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
nt

ag
e

Iterations

Hedge

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

P
er

ce
nt

ag
e

LERRM

Figure 3: Convergence Rates for Shapley’s Game using adaptive-FRAME with various experts algorithms.

4.2.1 Results
As seen by comparing Figure 3 to the results in Figure 2,

all three of the experts algorithms do much better than the
worst expert. Hedge and LERRM give, on average, much
faster convergence rates compared to the Naive Experts Al-
gorithm. In particular LERRM performs very well.

How are Hedge and LERRM able to achieve this perfor-
mance? Since LFP is the best-suited expert for this game,
Hedge and LERRM should consult LFP with high proba-
bility and WoLF with low probability. Our experimental
results confirm this. At the point of convergence, Hedge
was consulting LFP almost exclusively 20% of the time and
LERRM consulted LFP almost exclusively 90% of the time.
This difference helps explain why LERRM out performed
Hedge.

5. CONCLUSION
In this paper we introduced two new multiagent learn-

ing algorithms, FRAME and adaptive-FRAME, and showed
that, under certain assumptions, agents using either of these
algorithms in self-play will converge to the set of Nash equi-
libria. The key idea of FRAME is that it will sometimes
consult experts. If the expert is an effective learning proce-
dure itself, then FRAME will also be effective. However, if
the expert performs poorly, then FRAME’s theoretical prop-
erties still hold, and in particular FRAME is still guaranteed
to converge to a Nash equilibrium. The key idea of adaptive-
FRAME is to allow agents the possibility of consulting differ-
ent experts. Furthermore, agents can use experts algorithms
to help them decide which expert to consult.

There are several research directions which we intend to
pursue. First, there are several other experts, each special-
izing in their own class of games, that could be used [1]. By
combining experts we might be able to create a powerful and
highly effective general learning procedure.

6. REFERENCES
[1] B. Banerjee and J. Peng. RVσ(t): A unifying approach

to performance and convergence in online multiagent
learning. In Proceedings of AAMAS-2006, pages 2–7,
Hakodate, Japan, 2006.

[2] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence,
136:215–250, 2002.

[3] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[4] D. Fudenberg and D. Levine. The Theory of Learning
in Games. MIT Press, 1998.

[5] F. Germano and G. Lugosi. Global Nash convergence of
Foster and Young’s regret testing. Games and
Economic Behavior, 60(1):135–154, 2007.

1340

A New Perspective to the Keepaway Soccer: The Takers

(Short Paper)
Atil Iscen

Middle East Technical University
Ankara, Turkey

atil@ceng.metu.edu.tr

Umut Erogul
Middle East Technical University

Ankara, Turkey
umuero@ceng.metu.edu.tr

ABSTRACT
Keepaway is a sub-problem of RoboCup Soccer Simulator
in which ’the keepers’ try to maintain the possession of the
ball, while ’the takers’ try to steal the ball or force it out
of bounds. By using Reinforcement Learning as a learning
method, a lot of research has been done in this domain. In
these works, there has been a remarkable success for the
intelligent keepers part, however most of these keepers are
trained and tested against simple hand-coded takers. We
tried to address this part of the problem by using Sarsa(λ) as
a Reinforcement Learning method with linear tile-coding as
function approximation and used two different state spaces
that we specially designed for the takers. As the results of
the experiments confirm, we outperformed the hand-coded
taker which results in creating a better trainer and tester for
the keepers. Also when designing the new state space, we
noticed that smaller state spaces can also be successful for
this part of the problem.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Experimentation, Performance

Keywords
RoboCup, Keepaway Soccer, Takers

1. INTRODUCTION
Keepaway is a subproblem of the RoboCup Soccer Simu-

lator (RCSS) in which one team, ’the keepers’ tries to main-
tain possession of the ball within a limited region, while the
opposing team, ’the takers’ tries to gain possession of the
ball[2]. This game is commonly preferred in Machine Learn-
ing researches [4][5][7], because it can be a good testbed
with less agents resulting in a less complex problem rather
than two teams with 11 agents playing full team soccer each

Cite as: A New Perspective to the Keepaway Soccer: The Takers (Short
Paper), A. Iscen and U. Erogul, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

having different roles. Because of this, there are many re-
searches focusing on the keepaway game, but most of these
researches apply machine learning methods to maximize the
possession of keeper agents.

In these researches the experiments are made with ba-
sic takers, which run towards the ball without considering
to cooperate, which does not create a big challenge for the
keepers. When developing learning keepers, this type of tak-
ers does not really test the potential of the adversary agents.
In our project we plan to address this part of the problem
by developing learning takers. Another interesting point of
developing takers is that in learning keepers problem only
the keeper with the ball decides an action whereas in learn-
ing takers all the agents have to decide an action in each
step. This makes the agents more dependent on each others
decision, making the game more suitable for cooperation.

Among learning methods we used Reinforcement Lear-
ing[3] which is one of the most preferred learning method
in RCSS, because it is well suited to meeting its challenges,
like sequential decision making, achieving delayed goals and
handling noise. As a Reinforcement Learning algorithm we
have chosen Sarsa(λ) learning with tile coding because of its
previous success in application of keepers in one of the best
known paper in this area.[2]

2. ALGORITHM

2.1 Problem Definition
In keepaway a team of m players faces the task of keep-

ing possession of the ball within a rectangle region of play,
resisting attempts of the opposing team of n takers to wrest
possession. For research purposes, this problem is embedded
into RCSS with the keepaway framework developed by Stone
et Al [1]. This framework contains many classes and meth-
ods and some high level functions like passing and marking.
In addition, although this framework has the main functions
for the learning process, we had to modify some of them to
make the framework suitable for the takers.

We accepted the task as episodic, each starting with one
of the keepers having possession, and finishing when any
of the takers gets the ball or the ball goes out of bounds.
Apart from the keepers, which decide to an action only when
the agent has the ball until its decision to pass, the takers
need to decide to an action in each cycle, which can prevent
them from reaching any of the keepers if their decided ac-
tion changes repeatedly. As this makes it impossible to see
the effects of their immediate decisions, we decided to make
the takers do the selected action n consequent cycles. With

Portugal,pp. 1341-1344.

1341

Figure 1: Keepaway scene and labels

using this ’n step same action’ trick, we made the learning
process easier at start, but this causes a disadvantage when
further agility or sensitivity to the states of disregarded cy-
cles is required. We decided the value of n as 15 cycles,
which is the duration of a successful pass execution.

2.2 States and Actions
Since we are dealing with the takers, the only possible

actions are GotoBall and Mark(n) which means marking the
nth keeper, where keepers are ordered by their distance to
the ball. When deciding on states, we wanted to minimize
the number of states by trying to use the information that
would be sufficient. First, to have a dynamic labeling, we
sort the keepers according to their distance to the ball. K1
means the keeper with the ball. Then the takers are sorted
such that the first taker will be itself. The others are sorted
according to their distance to this taker(Fig. 1). For our
first taker model (atum) the state variables are constructed
as the distances of each taker to each keeper (T1-K1, T1-
K2, T1-K3, ..., T2-K1, T2-K2, ...). For increasing number
of players, the size of the state space becomes a problem. To
overcome this, we minimized the state space by constructing
a second taker model. For this model, only the distances for
the current taker are taken into consideration, for the other
takers only the label of the nearest keeper is considered.
This gives for m keepers and n takers m+(n− 1) variables,
whereas first model has m ∗ n state variables.

2.3 Learning Algorithm
For the learning algorithm, because of its success in learn-

ing keepers [2], we have chosen sarsa(λ) which is a commonly
used algorithm in RL [3]. For feedback, the rewards are zero
until the end of the episode and it becomes 1 when the takers
force keepers to end episode. Eventhough we have less state
variables, the state space is still too large. To decrease the
size, and to generalize the states we used function approx-
imation. For function approximation we used tile coding,
which is a linear function approximation scheme that parti-
tions the input space into axis aligned regions called tiles.

3. EXPERIMENTAL RESULTS

3.1 Methodology
For the keepaway problem the common evaluation method

is the average episode length of the game. Our aim is to
decrease these durations, especially the ones presented in
P.Stone’s research[2], since we also use the keepers they de-
veloped.

After several tries, we chose the learning parameters giv-
ing best learning curves. Although we have infinitely many

Figure 2: Keeper = ka06

choices, we decided on α = 0.125, λ = 0.5, ε = 0.05, γ =
0.8(αbeingLearningRate, γbeingDiscountFactor).

All of the testing and implementation has been done on 32
bit 2.6.22-14 linux kernel, with rcssbase-10.0.11, rcssserver
10.0.7 and keepaway-0.6 on a 2.20Ghz AMD Athlon PC.
The results are converted to graphics using the points con-
structed by a sliding window containing 300 episodes. All
of the experiments are conducted in sync mode(server ad-
vances cycle immediately when all clients have responded
which allows games to be much faster) with unrestricted
vision settings(360 degree view of field).

The first keeper that we used to test is the original hand-
coded version that we got from the keepaway framework and
is denoted as ka06. For further testing we used the learning
keepers provided by M.Taylor et Al[1] which will be denoted
as mt07. For mt07 we used weights learned previously, which
were saved after a learning process having one of the highest
possession durations among learning keepers. For the takers
part, we have only one previous taker to compare our work
with, which is ka06. Our first taker model is denoted as
atum, and the second is denoted as mini in the graphics and
the results. The extended versions of the takers like mini-
ka06 express takers (in this example mini) which use the
previously saved weights against the keepers written after
the ’-’ symbol (ka06 in this example). For atum-l and mini-l,
the extension ’l’ signifies that they load weights saved during
a learning session against learning agents. For durations of
experiments we used long sessions for learning agents, and
shorter ones for agents loading previously learned weights.

3.2 Results
At first, we compared various takers performances against

hand-coded keepers of the keepaway framework[1]. As seen
in the Table 1, the hand-coded keepers versus hand-coded
takers get an average result of 29.2 seconds, whereas our
first taker atum developed to decrease this duration became
successfull by getting 16.3 as average. For the third model
(mini), although the number of state variables is reduced,
it shortens the durations further to 12.9. These statistics
clearly show that our expectations in the success of learning
takers come true.

For the second test, when we compare atum and mini,
there is two important points. First, during the first 5 hours

1342

Table 1: Episode durations against ka06
Takers Average Min Max
ka06 29.2 27.6 31.1
atum 16.3 14.3 24.4
mini 12.9 10.8 15.5

Figure 3: Keeper = mt07

Table 2: Episode durations against mt07
Takers Average Min Max
ka06 26.7 24.9 27.7
atum 10.9 9.9 12.8
mini 11.1 8.3 16.9

mini-ka06 11.1 10.5 12.2
mini-l 15.9 14.8 17.2

atum-ka06 10.1 9.4 10.6
atum-l 15.1 12.4 16.0

Figure 4: Keeper = ka06 in 4 vs 3

of training(Fig. 3), mini converges more quickly. Secondly,
mini has a lower minimum (Table. 2) but its seems more
unstable than atum. In our opinion, this is caused by hav-
ing less state variables not being able to represent the state
clearly.

Interestingly there is a big difference between atum,mini
and atum-l,mini-l respectively. We believe that the reason of
this is the atum-l and mini-l are trained against the keepers
which are at the start of the learning process.

Another interesting point for this test is, the takers trained
against the hand coded takers are as successful as the takers
trained specifically against mt07. This means that the op-
posing keepers ka06 and mt07 behave similarly, as expected
from the statistics given by Stone et Al.[2]

For the last test (Fig. 4), we see that the mini especially
developed for keepaway with more agents is successfull at his
primary mission with a clear improvement over the hand-
coded takers.

4. CONCLUSIONS AND FUTURE WORK
Looking at the results, we can clearly say that we achieved

our initial goal which is to develop a successful learning taker
which performs better than the hand-coded ones. After test-
ing against various keepers, we have shown that our algo-
rithm is robust to different types of keepers. We also con-
cluded that previous studies on learning keepers can be also
applied to the takers with the help of an addition like ’n-step
same action’. As a further research, n could be decreased
during learning when the agent needs more agility.

Also for the takers part of the keepaway learning prob-
lem, using a second model of taker, we saw that we can
achieve similar (sometimes better) results in a less stable
way. With this new model using less state variables, the
same learning process can be used with more than 5 agents
with a manageable state space. As a new application area,
RoboCup-breakaway can be used to test the general success
of this algorithm for the defense team.[6]

In addition to these ones, one of our main contributions
is providing a better challenge and a benchmark to the re-
searchers of the keepaway framework. We think that using
a better taker for the experiments will help the researchers
analyze the true potential of the keepers

1343

5. REFERENCES
[1] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.

Keepaway soccer: From machine learning testbed to
benchmark. In I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, volume 4020, pages 93–105. Springer
Verlag, Berlin, 2006.

[2] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[4] M. E. Taylor, S. Whiteson, and P. Stone. Temporal
difference and policy search methods for reinforcement
learning: An empirical comparison. In Proceedings of
the Twenty-Second Conference on Artificial
Intelligence, pages 1675–1678, July 2007. (Nectar
Track).

[5] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement
learning. In AAMAS ’07: Proceedings of the 6th
international joint conference on Autonomous agents
and multiagent systems, pages 1–8, New York, NY,
USA, 2007. ACM.

[6] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin.
Using advice to transfer knowledge acquired in one
reinforcement learning task to another. In ECML,
pages 412–424, 2005.

[7] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone.
Evolving keepaway soccer players through task
decomposition. Machine Learning, 59(1):5–30, May
2005.

1344

On the Usefulness of Opponent Modeling:
the Kuhn Poker case study

(Short Paper)

Alessandro Lazaric
Politecnico di Milano

Dept. of Elect. and Inf.
Piazza Leonardo da Vinci, 32

Milan, Italy
lazaric@elet.polimi.it

Mario Quaresimale
Politecnico di Milano

Dept. of Elect. and Inf.
Piazza Leonardo da Vinci, 32

Milan, Italy
mario.quaresimale@mail.polimi.it

Marcello Restelli
Politecnico di Milano

Dept. of Elect. and Inf.
Piazza Leonardo da Vinci, 32

Milan, Italy
restelli@elet.polimi.it

ABSTRACT
The application of reinforcement learning algorithms to Par-
tially Observable Stochastic Games (POSG) is challenging
since each agent does not have access to the whole state
information and, in case of concurrent learners, the environ-
ment has non-stationary dynamics. These problems could
be partially overcome if the policies followed by the other
agents were known, and, for this reason, many approaches
try to estimate them through the so-called opponent mod-
eling techniques. Although many researches have been de-
voted to the study of the accuracy of the estimation of op-
ponents’ policies, still little attention has been deserved to
understand in which situations these model estimations can
be actually useful to improve the agent’s performance.

This paper presents a preliminary study about the impact
of using opponent modeling techniques to learn the solution
of a POSG. Our main purpose is to provide a measure of
the gain in performance that can be obtained by exploit-
ing information about the policy of other agents, and how
this gain is affected by the accuracy of the estimated mod-
els. Our analysis focus on a small two-agent POSG: the
Kuhn Poker, a simplified version of classical poker. Three
cases will be considered according to the agent knowledge
about the opponent’s policy: no knowledge, perfect knowl-
edge, and imperfect knowledge. The aim is to identify which
is the maximum error that can affect the model estimate
without leading to a performance lower than that reachable
without using opponent-modeling information. Finally, we
will show how the results of this analysis can be used to im-
prove the performance of a reinforcement-learning algorithm
coped with a simple opponent modeling technique.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Algorithms

Cite as: On the Usefulness of Opponent Modeling: the Kuhn Poker case
study (Short Paper), Alessandro Lazaric, Mario Quaresimale and Marcello
Restelli,Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.1345-1348.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Multi-agent Learning, Opponent Modeling, Reinforcement
Learning

1. INTRODUCTION
In this paper, we propose a preliminary study about the

effectiveness of using Opponent Modeling (OM) techniques
to improve the performances of reinforcement-learning algo-
rithms in Partially Observable Stochastic Games (POSG).

To this day, the main studies in this field concern the
development of OM algorithms [6] devoted to improve the
accuracy of opponent behavior estimation. OM approaches
can be classified according to the amount of prior knowledge
required for their application. Statistical classifiers, artificial
neural networks, deterministic finite automata, and decision
trees are examples of general-purpose methods, while ex-
pert systems, feature-based methods, and plan recognition
belong to the set of domain-specific techniques. Regardless
of which technique is considered, we want to point out that,
when the approximation error of the estimated model is too
large, using this information could prove detrimental for the
learning process.

In order to avoid this eventuality, McCracken and Bowling
studied OM from a different point of view, aiming to ensure
efficacy from its usage. Their research is founded on admit-
ting success of OM, but also focuses on the fact that such
success depends on situations: exploiting a wrong or ineffec-
tive opponent model may drastically reduce performances.
They introduced the Safe Policy Selection algorithm to prof-
itably exploit OM [5], defining as safe a policy that leads to
a total reward not lower than the expected value of the op-
timal policy; in this way, when OM yields to decrease such
safety value, it is not used. McCracken and Bowling apply
the cited above algorithm to Rock-Paper-Scissors, a zero
sum matrix-game, where information about the state space
is complete, while we aim to study OM effectiveness in a
POSG context.

Going in the same direction of such evaluation, we pro-
vide a preliminary analysis on the performances achievable
by exploiting OM techniques, in order to numerically quan-
tify them both in worst and best cases. In particular, we
show how the knowledge of the policies followed by other
agents can be effectively used by the player to improve her
performance. On the other hand, when the opponent’s pol-
icy is not exactly known, but the player can exploit only an

1345

estimated model based on the previously observed actions,
the advantage can be significantly reduced, or it can even
turn into a loss of performance. On the basis of this anal-
ysis, we experimentally show that it is possible to improve
the performance of an RL agent by avoiding to exploit OM
information when the accuracy of the estimated model is too
low.

Recently, many research works have focused on Texas
Hold’em Poker [1] [2], considered as the ideal testbed for
studying POSG. Nevertheless, as Texas Hold’em is too com-
plex for a preliminary analysis, we focus our attention on
studying OM techniques in a simplified version of Poker
Game: the Kuhn Poker [4]. Although this problem is quite
trivial, it still has the key features of the primal game, and
for this reason it was already studied, with other purposes,
in past works [6] [3].

The rest of the paper is structured as follows: next section
briefly describes Kuhn Poker’s rules and its formalization as
a POSG. In Section 3 we expose our OM analysis, which is so
structured: at first, we study the case where no information
about the opponent’s policy is considered, then we analyze
the improvement that can be obtained when the policy fol-
lowed by the opponent is known, and finally we show how
the use of an approximate model of the opponent’s policy
may have negative effects. In Section 4 we experimentally
compare the performance of three RL agents: without OM,
with OM, and using OM only when the model estimation
is accurate enough. In the last section we draw conclusions
and describe future directions.

2. KUHN POKER
Kuhn Poker is a simplified two-person poker, its rules are

as follows:

• Two player, each of whom has two dollars

• 3 card deck: King (K), Queen(Q), Jack (J)

• At start, both players ante one dollar and receive a
private card; the third card remains hidden to each of
them.

• After anting, players can choose between two actions:
BET and PASS.

After both players anting, the non-button chooses whether
to BET or to PASS; then the button replies with her chosen
action. A hand terminates when both players choose BET
or the second action of betting sequence is PASS. The most
long betting sequence is when the non-button chooses PASS
and the button replies with BET: only in this case, non-
button must act again, then the hand is terminated. A
player wins a hand when her opponent folds, or when she
has the highest card in the showdown. The game goes to
showdown when both players bet or pass. If only one player
bets and the other replies with a PASS, showdown does not
occur. Given this betting sequence, the highest pot is 4
dollars, so the best gain an agent can obtain is 2 dollars;
this occurs when both players bet. If showdown is reached
by a two pass sequence, the pot is 2 dollars and the gain for
the winning agent is 1 dollar.

Although the Kuhn Poker is a Partially Observable Stochas-
tic Game (POSG), in this paper we limit our analysis to
the case of fixed opponents, so that the problem can be

modeled as a POMDP, that is described as the tuple: <

S , A, T , R, Ω, O >, where S is the state space describ-
ing the environment, A is the set of actions that can be
performed in the environment, T is the transition function,
expressing the probability to go from a starting state to a
next state when a given action is executed, and R is the
reward function, measuring the goodness of taking an ac-
tion in a certain state. Ω is the set of observations that the
agent can make; O : S × A× Ω −→ [0,1] is the observation
function, where O(s′, a, o) = P (Ωt = o|St = s′, At−1 = a)
is the probability of experiencing observation o, given the
performed action a and being s′ the ending state. The be-
havior of each player is specified by her policy π, which is a
function that, given a state s and an action a, returns the
probability to execute a in s: π : S × A → [0, 1].

3. OPPONENT MODELING ANALYSIS
In this section, we analyze the effectiveness of exploiting

information about the opponent’s policy in the Kuhn Poker
game. Our analysis is carried out by considering that the
opponent is following a stationary policy, so that the prob-
lem can be formalized as a POMDP, where the opponent’s
actions can be used as observations of the hidden part of the
state space. In particular, we consider opponent’s policies
that depend only on her private card, and, fixed one policy,
we compute the utility value for the best-response policy.

Without any information about the opponent’s policy,
each player knows only her own private card. This means
that, if a player owns a Queen, the probabilities that her
opponent owns a Jack or a King are both equal to 0.5. On
the other hand, by knowing the opponent’s policy and ob-
serving her actions, a player can exploit this information to
reduce her uncertainty about the private card of the oppo-
nent. To measure the amount of information that can be
obtained about the opponent’s private card by knowing her
policy, we use the mutual information quantity between the
random variable A, which represents the opponent’s action,
and the random variable C, which represents the opponent’s
private card:

I(A; C) = H(C) −H(C|A), (1)

where H is the entropy function, that measures the uncer-
tainty about a stochastic variable. Since the private card
of the opponent is always randomly extracted, the entropy
H(C) is constant, and attains its maximum value. On the
other hand, the conditional entropy of variable C given the
value of variable A is strictly dependent from the policy πopp

followed by the opponent. Given the assumption that the
opponent’s policy depends only on the value of her private
card, H(C|A) is formally defined as:

H(C|A) = −
X

a∈A

Pr(a)
X

c∈C

Pr(c|a)log(Pr(c|a))

= −
X

a∈A

X

c∈C

πopp(c, a) · Pr(c)

!
·

·
X

c∈C

πopp(c, a)

Pr(a)
log

„
πopp(c, a)

Pr(a)

«
. (2)

Low values of the conditional entropy H(C|A) (and, con-
sequently, high values of the mutual information I(A; C))
mean that, by knowing the opponent model and observ-
ing her actions, we can significantly reduce the uncertainty

1346

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Performance

M
ut

ua
l I

nf
or

m
at

io
n

Opponent’s Policy Unknown

Figure 1: Mutual information and best-response
performance for 1,000 fixed opponent’s policies. No
information about the policies is used.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Opponent’s Policy Known

Performance

M
ut

ua
l I

nf
or

m
at

io
n

Figure 2: Mutual information and best-response
performance for 1,000 fixed opponent’s policies.
Policies are exactly known.

about the opponent’s card. On the other hand, when the
opponent follows a policy that does not depend on the value
of her own card (e.g., a random policy), the conditional en-
tropy H(C|A) is equal to the entropy H(C), so that the
mutual information is zero; in these cases, the use of OM
techniques is useless.

To study the effect of OM techniques in the Kuhn Poker,
we consider several possible stationary policies for the oppo-
nent. For each one of these policies, we compute the corre-
sponding mutual information I(A; C) and the performance
attained by its best-response policy. In general, given an
opponent policy πopp, the expected performance of a policy
π is the average of the expected values of the states weighted
by the probability of visiting the corresponding state:

U(π|πopp) =
X

s∈S

Pr(s|π, πopp)V (s|π, πopp).

The best-response policy π∗ against a given policy πopp is
the one which attains the highest utility:

π
∗
πopp

= arg max
π∈Π

U(π|πopp).

Figure 1 shows relation between the mutual information
of the opponent’s policy (y-axis) and the performance of
its best-response policy (x-axis), in the case where no in-

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Gain with Perfect Modeling

Performance

M
ut

ua
l I

nf
or

m
at

io
n

Figure 3: The arrows show the improvement due to
the knowledge of the opponent’s policy.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Gain with Imperfect Modeling

Performance

M
ut

ua
l I

nf
or

m
at

io
n

Figure 4: The arrows show the improvement (blue)
or the worsening (red) when the player exploits an
estimated model whose distance from the actual op-
ponent’s policy is up to 0.1.

formation about the opponent’s policy is exploited 1. As
we can see from the graph, the opponent’s policy which is
less exploited has a quite high mutual information value. In
particular, it is worth noting that there is no policy for the
opponent that is placed near the origin of the graph. This
means that, if the opponent wants to adopt a policy that can
be hardly exploited, it has to follow a policy that reveals in-
formation about her private card. On the other hand, when
the opponent wants to hide at most the value of her card,
she can be easily exploited. This trade-off is what makes the
use of OM techniques interesting.

Figure 2 shows how the situation changes when the player
knows the policy followed by the opponent, so that the prob-
lem can be formalized as a POMDP and solved by using the
observable histories as state information. As it can be no-
ticed, several points have been moved to the right, since ex-
ploiting the information of the opponent’s policy has allowed
to identify best-response policy with higher performances.
To give a better visualization of the effect of knowing the
opponent’s policy, in Figure 3 we have used arrows to rep-
resent the gain. As expected, when the mutual information
is low, knowing the opponent’s policy results in small gains.

1Each point corresponds to a different opponent’s policy.
The 1,000 policies have been generated by considering ten
evenly-spaced values for the probability of betting given each
value of the private card.

1347

On the other hand, it is not always true that the knowledge
of policies that convey much information can lead to high
gains, especially when the policies are quite weak (look at
the right side of the graph).

Unfortunately, in adversarial problems, a player does not
know the policy of her opponent. For this reason, the resort
to OM techniques is quite common. The problem is that
the estimated model is an approximation of the policy actu-
ally followed by the opponent. Using a model affected by a
large approximation error could lead to a performance that
is worse than that achievable using no model at all. Figure 4
shows how much, in the worst case, the performances change
when the distance between the actual opponent’s policy and
the estimated one is not larger than 0.12. The arrows that
point toward left (red arrows) corresponds to opponent’s
policies for which the agent may have a loss of performance
when using a model with a low accuracy. As we can notice,
the opponent’s policies that are associated to larger losses
are those that have little or not advantage when knowing
the actual policy followed by the opponent.

In the next section, we show how this analysis can be used
to improve the performance of an RL player.

4. LEARNING EXPERIMENTS
In this section, we show some preliminary experiments

obtained by using Q-learning [7], a popular reinforcement-
learning algorithm, against a fixed opponent. In particular,
we consider three different versions of Q-learning:

• Q-learning without OM: the state space depends only
by the player’s private card;

• Q-learning with OM: the state space depends by the
player’s private card and by the observed opponent’s
action3

• Q-learning with reliable OM: in this version, we keep
an estimate of the accuracy of the opponent’s model,
so that when the accuracy is below a certain threshold
we use Q-learning without OM, otherwise we exploit
the opponent modeling information. The choice of the
threshold is made according to the analysis described
in the previous section.

In Figure 5, the performances of the three learning algo-
rithms are represented. As it can be noticed, Q-learning
with OM is ineffective in the first learning steps when the
information about the opponent’s policy is still highly un-
certain. On the other hand, Q-learning without OM is able
to quickly learn a good solution, but it has not enough infor-
mation to exploit the opponent at best. As we can notice,
the third approach, which uses the opponent-modeling in-
formation only when it is accurate enough, is able to attain
both a good learning speed and a good performance in the
long-run.

5. CONCLUSIONS
2The distance between two policies is computed as the L2-
norm of the difference vector between the two vectors that
specify the policies in the two models.
3In this problem, this information is equal to the history of
observations, thus allowing Q-learning to solve the POMDP
problem.

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 10 100 1000 10000

P
er

fo
rm

an
ce

Learning Episodes

Q-learning without OM
Q-learning with OM

Q-learning with reliable OM

Figure 5: Comparison of three RL algorithms
against a fixed opponent’s policy. Results are av-
eraged over 1,000 runs

In this paper we have presented a preliminary study on
measuring the usefulness of using opponent-modeling tech-
niques in Partially Observable Stochastic Games, by focus-
ing on a simple poker game. The results of our analysis
show that, in a context like Kuhn Poker, OM technique can
be very useful, but only under the necessary condition that
the model describing the opponent’s behavior is accurately
estimated.

This paper represents just a first step and opens several
directions for future research. The following steps will be
devoted to extend this analysis to cases where the oppo-
nent can adopt more complex policies, such as stationary
policies that consider the actions performed by the player,
non-stationary policies, and non-stationary policies based on
OM information. The final goal of this work is to extend the
results of these analyses to more complex problems, such as
the Texas Hold’em Poker.

6. REFERENCES
[1] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron.

The challenge of poker. Artificial Intelligence,
134(1-2):201–240, 2002.

[2] D. Billings, D. Papp, J. Schaeffer, and D. Szafron.
Opponent modeling in Poker. In Proceedings of the 15th
National Conference on Artificial Intelligence
(AAAI-98), pages 493–498, Madison, WI, 1998. AAAI
Press.

[3] D. Koller and A. Pfeffer. Representations and solutions
for game-theoretic problems. Artificial Intelligence,
94(1-2):167–215, 1999.

[4] H. Kuhn. A simplified two person poker. In W. H. Kuhn
and A. W. Tucker, editors, Contributions to theory of
games, pages 97–103. Princeton University Press, 1950.

[5] P. McCracken and M. Bowling. Safe strategies for agent
modelling in games. In AAAI 2004 Symposium on
Artificial Multi-Agent Learning. AAAI Press, 2004.

[6] T. Schauenberg. Opponent Modeling and Search in
poker. Master’s thesis, University of Alberta, 2006.

[7] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. Bradford Book, 1998.

1348

Graph Laplacian Based Transfer Learning
in Reinforcement Learning

 (Short Paper)

Yi-Ting Tsao
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

yiting.tsao@gmail.com

Ke-Ting Xiao
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

peter.xiau@gmail.com

Von-Wun Soo
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

soo@cs.nthu.edu.tw

ABSTRACT
The aim of transfer learning is to accelerate learning in related
domains. In reinforcement learning, many different features such
as a value function and a policy can be transferred from a source
domain to a related target domain. Many researches focused on
transfer using hand-coded translation functions that are designed
by the experts a priori. However, it is not only very costly but also
problem dependent. We propose to apply the Graph Laplacian
that is based on the spectral graph theory to decompose the value
functions of both a source domain and a target domain into a sum
of the basis functions respectively. The transfer learning can be
carried out by transferring weights on the basis functions of a
source domain to a target domain. We investigate two types of
domain transfer, scaling and topological. The results
demonstrated that the transferred policy is a better prior policy to
reduce the learning time.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition,
parameter learning.

General Terms
Experimentation, Theory.

Keywords
reinforcement learning, transfer learning, graph Laplacian

1. INTRODUCTION
One of the disadvantages in reinforcement learning (RL) [1] is
that two different domains with different initial states and goal
states must be learned separately to acquire an optimal policy for
each domain. It would waste time to simply learn twice in two
different domains even if they might share some similar subtasks.
Transfer learning is an approach to improve the performance of
cross domains by avoiding redundant learning.

In a reinforcement learning problem, the value function provides
a guideline for action selection in a given state that is known as a
policy. Many transfer methods that transfer different features

from a source domain to a target domain have been proposed [2, 3,
4]. One work is a rule transfer method that acquires some rules
that approximate the policy in a source domain and translates into
ones that can be used as a policy for a target domain [2]. Thus an
agent may apply the translated policy that is acquired by hand-
coded translation functions and revise a partial policy in a target
domain. However, designing general translation functions
becomes a problem. Another work based on case-based reasoning
uses a similar idea but it acquires rules using a decision-tree
method [3]. The other work is to transfer the policy from a source
domain to a target domain directly [4] but it also requires hand-
coded translation functions. Proto-value functions derived from
spectral graph theory, harmonic analysis, and Riemannian
manifold can be used to represent a set of the basis functions to
approximate a value function [5, 6, 7]. A novel transfer method
has been proposed to reuse a set of the basis functions from a
source domain and just to learn the weights of the set of the basis
functions to compose a value function for a target domain. This
method can transfer domain features without hand-coded
translation functions but it needs some exploring trials for a target
domain to acquire the combination weights.

The aim of the transfer learning is to use the knowledge learned
from a source domain to accelerate learning in a related target
domain. In this paper, we propose a transfer method to obtain a
better prior policy from a source domain to reduce the learning
time in a similar target domain without hand-coded translation
functions by spectral graph theory.

2. BACKGROUND
Most reinforcement learning researches are based on Markov
Decision Processes (MDP) and a value function to guide an
agent’s actions in solving a domain. However, a value function
can be too rigid to apply to a domain such that to transfer it
directly to another domain is hard. Finding a set of suitable basis
functions to express the value function helps the transfer. In this
paper, the development is based on a discrete MDP and the
spectral graph theory.

2.1 Markov Decision Process
A discrete Markov Decision Process M which is defined by a 4-
tuple (S, A, ,)a

ssP '
a
ssR ' where S is a finite set of states, A is a finite

Cite as: Graph Laplacian Based Transfer Learning in Reinforcement
Learning (Short Paper), Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo, Proc.
of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp. .
Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1349-1352.

1349

set of actions, and represent the probability and reward
of transiting to state s’ when taking action a on state s
respectively [1]. A function which determines the action that an
agent should take at any state that the agent could reach is called a
policy π. A policy is a mapping from a state to a unique action.
The value function V

a
ssP '

a
ssR '

π represents the value by using policy
function π and the optimal policy π* is defined as a unique
optimal value function V* that can maximize the expected reward
starting at a given state s with discount factor γ. The optimal value
function V*(s) is defined as follows.

∑ +=
'

*
''

*))'((max)(
s

a
ss

a
ssa

sVRPsV γ

The value function is represented in tabular form with one output
for each input tuple. However, the state space in the real world is
often so huge that to memorize the value table is impossible. We
can approximate the value function in terms of a linear
combination of a set of the basis functions as:

B
nn

B VVV ααπ ++= ...11

where each is a basis function. Approximating by the basis
functions saves a lot of memory. However, different sets of the
basis functions may affect the function approximation. Therefore,
for an agent to have good performance, selecting good basis
functions to make good value approximation plays an important
role.

B
iV

2.2 Spectral Graph Theory
A Fourier analysis is to decompose a function in terms of a sum
of trigonometric functions with different frequencies that can be
combined together to represent the original function. Each
frequency of trigonometric functions is inversely proportional to
its importance in representing characteristics of the function.
Therefore, if two functions are similar, their trigonometric
functions tend to be similar at low frequencies and differ at high
frequencies.

A graph Laplacian can be defined as the combinatorial Laplacian
or the normalized Laplacian [8]. The combinatorial Laplacian L
of the undirected unweighted graph G is defined as L = D - A
where A is the adjacency matrix and D is a diagonal matrix whose
entries are the row sums of A. In problem solving, the states are
represented as the vertices and the edges represent the connection
(undirected) or transitions (directed) between the states so that
one state can reach another. Let u and v represent two states in a
graph and dv represents the degree of v, a graph Laplacian L(u, v)
is defined as follows:

⎪
⎩

⎪
⎨

⎧ =
−=

 otherwise
adjacent are and if

 if

0
1),(vu

vud
vuL

v

Let f denote a function mapping each vertex u of the graph into a
real number. The combinatorial Laplacian L acts on a function f
as

∑ −=
vu

vfufuLf
~

))()(()(

where u and v are adjacent vertices. Functions that solve Lf = 0
are called harmonic functions [9]. It turns out that to find the
harmonic functions is equivalent to finding the eigenvectors (or
eigenfunctions) of Lf = λf, where f is the eigenfunction and λ is the
associated eigenvalue. A smaller eigenvalue implies a smoother
eigenfunction. Furthermore, we can extend the idea in general
with normalized graph Laplacian[8]. In our cases, the normalized
graph Laplacian has the better consequences than the
combinatorial Laplacian.

The spectral analysis of the graph Laplacian operator provides an
orthonormal set of the basis functions that can approximate any
square-integrable functions on a graph [8]. These basis functions
which are called as proto-value functions in [5, 6, 7] construct a
global smooth approximation of a function on the graph. In other
words, the function can be decomposed into a sum of the basis
functions [10]. Besides, the notion of the spectral analysis on
graph Laplacian is similar to the Fourier analysis. The basis
functions of a graph Laplacian corresponding to the smaller
eigenvalues represent more valuable features and are thus more
important. It implies that if two graphs are similar, their features
tend to be similar at low-order basis functions and different at
high-order basis functions.

3. THE TRANSFER METHOD
In [6], the authors distinguished three transfer types: task transfer,
topological domain transfer, and scaling domain transfer as shown
in Figure 1. The domain transfer problem means only the
topology of the state space changes and rewards do not change. In
this paper, we focus on both topological and scaling domain
transfer.

RR RR RR

(a) 8 x 8 grids (b) 8 x 8 grids (c) 10 x 10 grids
source topological target scaling target

Figure 1. The example of topological and scaling domain
transfer.

The transfer algorithm is described in Figure 2. The first step is to
collect the topological knowledge of both domains retrieving
basis functions respectively. The second step is to compute the
corresponding basis functions of the graph Laplacian. The third
step is to compute the coefficients of the basis functions
approximating the real value function in the source domain. The
fourth step is to approximate the target value function in terms of
the target basis functions and the weights that are obtained from
the source domain. The last step is to acquire the target policy
through the approximated target value function.

The reason why the transfer algorithm works is that the basis
functions of both domains with the same order play the same
important role for the value functions at each domain respectively.
Therefore, we transfer the obtained weights from a source domain
to a target domain. If two domains are similar, the basis functions
tend to be similar. It does not imply similar numeric value but

1350

similar structure as shown in Figure 3. On the one hand, a small
change of the domain cannot affect the global smooth structure so
the low-order basis functions for the target domain tend to be the
same as the corresponding basis functions for the source domain.
On the other hand, the high-order basis functions for the target
domain are affected by a small change of the domain so the target
policy can be obtained from the target low-order basis functions
that are similar to the source low-order basis functions and the
high-order basis functions that are modified by a small change.

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

4. EXPERIMENTS
First of all, we illustrate the basis functions of the graph Laplacian
with different size of domains with the same topology. The upper
two graphs and lower two graphs in Figure 4 and 5 show some
low-order and high-order basis functions from graph Laplacian
respectively. We note the two upper graphs in Figure 4 and 5 that
represent the smoothest k basis functions of different domains
respectively tend to be very similar while the lower graphs are not.

We design the experiments on scaling and topological domain
transfer and evaluate the performance of an agent in the domains
using different policies: random, transferred and optimal
respectively. The agent is an active agent with ε-greedy behavior
[1]. In other words, the agent has probability ε to act at random. A
random policy selects an action at random, a transferred policy is

obtained from the transfer method, and an optimal policy selects
an action based on the optimal value function obtained by the
value iteration method. The results are shown in Figure 6 and 8.
The x-axis and the y-axis represent the number of states and the
number of steps reaching the reward respectively. The diamond,
square, and triangle lines represent the random, transferred and
optimal policies respectively. Each point in the line represents the
average number of steps reaching the reward state over all
possible initial states.

1. Perform random walk of M trials, each with maximum
N steps on source domain and target domain and build
the undirected graphs GS, GT respectively.

2. Construct the normalized Laplacian on GS, GT and
solve the Laplacian to obtain the basis functions V ,

. Sort them by eigenvalue in ascending order.

B
S

B
TV

3. Approximate the source value function V using V
by the least-square error fit method to obtain the
weight w

*S
B

S

i corresponding to the source basis
functionV . B

Si

4. Transfer the weight wi from the source basis function
 to the corresponding target basis functionV . B

SiV B
Ti

∑=
i

B
TiiT VwV *

5. Convert the approximation target value function to the
target policy.

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

Figure 4. The basis functions of Figure 1(a).

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy
va

lu
e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

Figure 2. Pseudo-code of the transfer algorithm.

Figure 3. The similar structure of the basis functions of
Figure 1(a) and 1(b).

Figure 5. The basis functions of Figure 1(c).

4.1 Scaling Domain Transfer
These experiments investigate the effects of the scaling domain
transfer. We separate the scaling domain transfer into two cases:
up-scaling and down-scaling. The topology of each case is the
same as shown in Figure 1(a). In up-scaling case, we choose the
6x6 grids world as a source domain and 8x8, 10x10, 12x12,
14x14, 16x16, 18x18, and 20x20 grids as target domains. In
down-scaling case, we choose the 20x20 grids world as a source
domain and 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, and 18x18
grids as target domains. The results show that regardless of the
size in a target domain, the transferred policy still performs very
close to the optimal one as shown in Figure 6.

1351

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

4.2 Topological Domain Transfer
These experiments investigate the effects of the topological
domain transfer. The topology in the source domain is shown in
Figure 1(a) and we design three different topological cases as
target domains. Figure 7(a) represents a case that splits the door
into two separating doors, Figure 7(b) represents a case that splits
the door into two separating doors farther, and Figure 7(c)
represents a case that increases the size of a door.

RR RR RR

The results demonstrate that if both domains are similar enough,
the transferred policy may perform very close to the optimal one
as shown in Figure 8(a). However, when the source and target
domains are not similar enough as in the case of Figure 8(c) in
which the larger size domains are more affected than the smaller
ones. Besides, when the number of states is small, the effect of a
small change in the domain is large, but when the number of
states is large enough, the effect of a small change in the different
size domains is similar as shown in Figure 8(b).

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

(a) (b)

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

(c)

5. CONCLUSIONS
The theoretical analysis of the transfer method is based on the
spectral analysis on graph Laplacian. The low-order basis
functions of the graph Laplacian represent major features of a

value function while the high-order ones represent miner features.
If the low-order basis functions of the source and target domains
are similar, the transfer method performs well. In other words,
similar domains tend to keep similar distributions in low-order
basis functions so we can transfer the weights of the source
domain to the target domain and acquire a good approximate
policy for the target domain. In this paper, we have proposed a
domain transfer method based on the topology of the state space
to support the transfer for reinforcement learning. Our
experimental results show that if two domains are similar
topologically, the policy learned from transfer learning can be
very close to the optimal one. However, how to determine if a
topological similarity is enough to apply the transfer learning to
ensure its error bound be close to the optimality still needs more
theoretical analysis. This work only considers the state space
topology of the problem but not the rewards. We should revise the
domain transfer method by considering how to map a state in a
source domain to the corresponding one in a target domain that
considers the rewards in future work.

(a) up-scaling case (b) down-scaling case
Figure 6. The results of scaling domain transfer.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Council of
Taiwan under grant number NSC 96-2628-E-007-044-MY3.

7. REFERENCES
[1] Richard S. Sutton and Andrew G. Barto. Reinforcement

learning: an introduction. MIT Press, 1998. (a) (b) (c)
Figure 7. The topological transfer targets.

[2] Matthew E. Taylor and Peter Stone. Cross-domain transfer
for reinforcement learning. In Proceedings of the Twenty-
fourth International Conference on Machine Learning, 2007.

[3] Andreas von Hessling and Ashok K. Goel. Abstracting
reusable cases from reinforcement learning. In Proceedings
of the Sixth International Conference on Case-Based
Reasoning Workshop, 2005.

[4] Mattew E. Taylor, Shimon Whiteson, and Peter Stone.
Transfer via inter-task mappings in policy search
reinforcement learning. In Proceedings of the Sixth
International Conference on Autonomous Agents and
Multiagent Systems, 2007.

[5] Sridhar Mahadevan. Proto-value functions: developmental
reinforcement learning. In Proceedings of the Twenty-second
International Conference on Machine Learning, 2005.

[6] Ferguson Kimberly and Sridhar Mahadevan. Proto-transfer
learning in Markov decision processes using spectral
methods. In Proceedings of the Twenty-third International
Conference on Machine Learning Workshop on Structural
Knowledge Transfer for Machine Learning, 2006. Figure 8. The results of

topological domain transfer.
(a), (b) and (c) correspond to
Figure 7(a) (b) (c) respectively.

[7] Sridhar Mahadevan and Mauro Maggioni. Proto-value
functions: a Laplacian Framework for learning representation
and control in Markov decision processes. Technical Report,
2006.

[8] Fan R. K. Chung. Spectral graph theory. American
Mathematical Society, 1997.

[9] Sheldon Axler, Paul Bourdon, and Ramey Wade. Harmonic
function theory. Springer, 2001.

[10] Mikhail Belkin and Partha Niyogi. Semi-supervised learning
on Riemannian manifolds. Machine Learning, 2004.

1352

Autonomous Agent Learning using an Actor-Critic
Algorithm and Behavior Models

(Short Paper)

Victor Uc Cetina
Department of Computer Science

Humboldt University of Berlin
Unter den Linden 6, 10099 Berlin, Germany

cetina@informatik.hu-berlin.de

ABSTRACTWe introdu
e a Supervised Reinfor
ement Learning (SRL)algorithm for autonomous learning problems where an agentis required to deal with high dimensional spa
es. In ourlearning algorithm, behavior models learned from a set ofexamples, are used to dynami
ally redu
e the set of rele-vant a
tions at ea
h state of the environment en
ounteredby the agent. Su
h subsets of a
tions are used to guide theagent through promising parts of the a
tion spa
e, avoidingthe sele
tion of useless a
tions. The algorithm handles
on-tinuous states and a
tions. Our experimental work with adi�
ult robot learning task shows
learly how this approa
h
an signi�
antly speed up the learning pro
ess and improvethe �nal performan
e.
Categories and Subject DescriptorsI.2.6 [Computing Methodologies℄: Arti�
ial Intelligen
e�learning
General TermsAlgorithms, Experimentation
Keywordsreinfor
ement learning, behavior model, a
tor-
riti

1. INTRODUCTIONThe idea of supervision or advi
e giving was �rst proposedin 1958 by M
Carthy [9℄. More re
ently, Clouse and Utgo�[5℄ presented an online method of SRL. With this method, ahuman tea
her monitors the agent's progress. If the tea
herdetermines that the agent is not performing well, the tea
hertakes
ontrol and o�ers advi
e in the form of an a
tion that isexe
uted at that time. Then, the agent learns from su
h ad-vi
e by reinfor
ing the tenden
y to
hoose the a
tion re
om-mended and performed by the tea
her. Another attempt toa

elerate the learning pro
ess was the one proposed by Lin[6℄. He introdu
ed a very e�e
tive way to speed up the Re-infor
ement Learning (RL) pro
ess through the replaying ofCite as: Autonomous Agent Learning using an Actor-Critic Algorithm
and Behavior Models (Short Paper), Victor Uc Cetina,Pro
. of 7th Int.Conf. on Autonomous Agents and Multiagent Systems (AA-MAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16.,
2008, Estoril, Portugal, pp.1353-1356..
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

experien
es. The advi
e-giver provides
omplete sequen
esof states and a
tions st, at+1, st+1, at+2, . . . that the agentreplays internally many times. By doing so ba
kwards, thelearning pro
ess is further a

elerated. Ma
lin and Shavlik[7, 8℄ approa
hed the advi
e giving problem in a di�erentway, by using
onne
tionist Q-learning. The advi
e-giverwat
hes the learner and o

asionally makes suggestions, ex-pressed as instru
tions in a simple programming language.Using knowledge-based neural networks, those programs arein
luded into the agent's utility fun
tion. Later, Rosensteinand Barto [10℄ proposed a
ombination of supervised learn-ing with and a
tor-
riti
 ar
hite
ture. They used a super-vised learning method to in
lude the knowledge provided bya human supervisor into the a
tor-
riti
 learning pro
ess. A
omposite a
tor is formed with the a
tor, a supervisor anda gain s
heduler. The a
tion exe
uted at ea
h moment isthe result of a linear
ombination of the a
tions provided bythe a
tor and the supervisor. Abbeel and Ng [1, 2℄ studiedthe use of an expert in order to learn to perform a task insituations where the reward fun
tion is not provided or it isdi�
ult to design. The main idea
onsists of using inversereinfor
ement learning to try to obtain the unknown rewardfun
tion whi
h is supposed to be impli
it in the expert's be-havior. Their method manages to get performan
es
lose tothat of the expert. Moreover, Atkeson and S
haal [3℄ usedhuman demonstrations to have a robot learn to perform atask. First, they learn from the demonstrations a rewardfun
tion and a task model. Then, based on the learnedreward fun
tion and task model, they
ompute a poli
y.Finally, another work that is worth to mention is that byCarpenter et al [4℄, who approa
hed the problem of how tohandle advi
e from several sour
es and also how to solve
on�i
ting advi
es. Due to spa
e
onstraints we
an onlymention those approa
hes more similar to ours.All of the works mentioned above have one thing in
om-mon, the fa
t that the supervisor provides one a
tion orsequen
es of a
tions whi
h should be dire
tly performed bythe agent in order to learn from the expert. One ex
eptionis the method proposed by Rosenstein and Barto[10℄, wherethe a
tion exe
uted is a
ombination of the a
tion suggestedby the supervisor and the a
tion sele
ted by the agent. Weuse an approa
h where the a
tion suggested by the supervi-sor is not dire
tly exe
uted by the agent, not even a mod-i�
ation of it. Instead, the a
tion is used to dynami
allygenerate a redu
ed set of
urrent relevant a
tions. We
allrelevant a
tions to those a
tions in the
lose neighborhood
1353

Figure 1: A supervised reinfor
ement learning ar-
hite
ture that uses a behavior modelof the a
tion suggested by the supervisor. This subset ofa
tions is then passed to the agent whi
h uses it to sele
tthe next greedy a
tion. The experiments performed showthat our algorithm
an signi�
antly redu
e the amount oftraining episodes required to learn a di�
ult task.The rest of this paper is organized as follows. In Se
tion2 we explain the SRL ar
hite
ture and introdu
e the algo-rithm. Se
tion 3
ontains the des
ription of our testbed.In Se
tion 4 we present the experimental results. Finally,in Se
tion 5 we
on
lude the paper and mention our futurework.
2. SUPERVISED REINFORCEMENT

LEARNING

2.1 ArchitectureThe SRL ar
hite
ture, whi
h we have tested previouslywith Sarsa and Q-learning in [12℄, fo
uses on redu
ing theamount of exploration of the a
tion spa
e, by giving advi
eto the agent about what a
tions would be good to try, giventhe
urrent state of the environment. Figure 1 illustratesthe main idea of having the standard RL agent intera
tingwith the environment, meanwhile a behavior model is usedto provide the agent with a subset of
urrent relevant a
-tions. Su
h subset of a
tions in
ludes the a
tion suggestedby the behavior model, and its n
losest neighbor a
tions.Noti
e that two di�erent a
tions are
onsidered to be neigh-bors if they are expe
ted to produ
e similar results in theenvironment, when they are applied in similar states.Two are the key features in this ar
hite
ture: (1) it al-lows to
onsiderably redu
e the amount of exploration ofthe a
tion spa
e, and (2) the supervisor does not need tobe a perfe
t tea
her with the possession of the optimal pol-i
y. Instead, its expertise is used to guide the agent throughrelevant parts of the a
tion spa
e and not expli
itly indi-
ating whi
h a
tion should be performed at ea
h moment.Given that the behavior model
an be seen as a MultilayerPer
eptron (MLP), or any other Supervised Learning (SL)method, trained with a set of
olle
ted examples, it will al-ways provide an a
tion, and therefore the subset of a
tions
an be generated. If the suggested a
tion is wrong, then theredu
ed a
tion set would probably be also wrong. In those
ases, the greedy a
tion sele
ted by the agent
ould be sim-

ply seen as an exploratory a
tion. Of
ourse, our behaviormodel is expe
ted to be as a

urate as possible. Under this
ondition, the agent will always have mu
h to win and noth-ing to lose.
2.2 AlgorithmThe whole learning pro
ess is divided in two phases. In the�rst phase, an expert is used to generate a set of examplesof the form st → at+1. That is, given the
urrent state ofthe environment st, knowing whi
h is the a
tion at+1 thatour expert would perform in the next time step. Using su
hexamples and a SL method we build the behavior model.On
e we have built the behavior model, we pro
eed withthe se
ond learning phase.The se
ond learning phase is shown in Algorithm 1, whi
his a modi�ed version of the typi
al a
tor-
riti
 algorithmdes
ribed by Sutton and Barto [11℄. At ea
h state s thebehavior model is used to generate what we
all the experta
tion ae. Su
h a
tion ae is
onsidered to be a near optimala
tion and we use it to
reate the set of
urrent relevanta
tions As, where As ⊂ A. Su
h subset As is de�ned by theinterval (ae − B̂, ae + B̂), where B̂ spe
i�es how far fromthe expert a
tion ae we are willing to explore the a
tionspa
e. By doing so, the agent will always have to sele
t thegreedy a
tion from the set of most promising a
tions, whi
h
auses an improvement in the learning rate. The optimalsize of B̂ grows inversely proportional to the a

ura
y ofour behavior model. In other words, with more a

uratebehavior models, we need a smaller B̂. Noti
e that the set
As is used only to
hoose the greedy a
tion. Random a
tionsare sele
ted from the whole set A. By doing so, we let theagent exploit the knowledge provided by the supervisor asmu
h as possible, at the same time that we allow it to explorethe whole a
tion spa
e looking for better a
tions that arebeyond the knowledge of the same supervisor.The �rst learning phase
an be seen as a straightforwardappli
ation of SL. Meanwhile, the se
ond learning phase
ould be implemented using modi�ed versions of any RLalgorithm.
3. ROBOT DRIBBLING TASKIn the RoboCup simulation league, one of the most dif-�
ult skills that the robots
an perform is dribbling. Drib-bling
an be de�ned as the skill that allows a player to runon the �eld while keeping the ball always in its ki
k range. Inorder to a

omplish this skill, the player must alternate runand ki
k a
tions. The run a
tion is performed through theuse of the
ommand (dash Power), while the ki
k a
tionis performed using the
ommand (ki
k Power Direction),where Power ∈ [−100, 100] and Direction ∈ [−180, 180].Su
h
ommands, belong to the set of basi

ommands pro-vided by the simulator.There are three fa
tors that make this skill a di�
ult oneto a

omplish. First, the simulator adds noise to the move-ment of obje
ts, and to the parameters of
ommands. This isdone to simulate a noisy environment and make the
ompe-tition more
hallenging. Se
ond, sin
e the ball must remain
lose to the robot without
ollisioning with it, and at thesame time it must be kept in the ki
k range, the marginfor error is small. And third, the most
hallenging fa
tor,the use of heterogeneous players during
ompetitions. Usingheterogeneous players means that for ea
h game the simu-lator generates seven di�erent player types at startup, and

1354

Algorithm 1: Supervised A
tor-Criti
 Algorithminitialize the weights ve
tors of the A
tor and Criti
1 arbitrarilyforea
h training episode do2 initialize s3 take suggested a
tion ae from Behavior Model4 generate set (ae − B̂, ae + B̂)5 take greedy a
tion a ∈ (ae − B̂, ae + B̂)6 with probability ǫ
hoose random a
tion a ∈ A7 repeat for ea
h step of episode8 perform a
tion a, observe r, s′9 TDError ← r + γCriti
(s′)− Criti
(s)10 TargetValue ← Criti
(s) + αTDError11 train Criti
 with example (s,TargetValue)12 if TDError > 0 then13 train A
tor with example (s, a)14 end15 take suggested a
tion a′
e from Behavior Model16 generate set (a′

e − B̂, a′
e + B̂)17 take greedy a
tion a′ ∈ (a′

e − B̂, a′
e + B̂)18 with probability ǫ
hoose random a
tion a′ ∈ A19

s← s′, a← a′20 until s is terminal21 end22the eleven players of ea
h team are sele
ted from this set ofseven types. Given that ea
h player type has di�erent �phys-i
al�
apa
ities, an optimal poli
y learned with one type ofplayer is simply suboptimal when followed by another playerof di�erent type. In theory, the number of player types isin�nite.Due to these three reasons, a good performan
e in thedribbling skill is very di�
ult to obtain. Up today, eventhe best teams perform only a redu
ed number of dribblingsequen
es during a game. Most of the time the ball is simplypassed from one player to another.
4. EXPERIMENTS AND RESULTSFor the �rst learning phase, we
onstru
ted our dribblingbehavior model based on the Wright Eagle team, whi
h isa RoboCup team with highly developed skills. We
olle
tedthe information of 500 games and with the help of somes
ripts, we extra
ted the sequen
es of the games where aplayer managed to dribble for at least 3 meters. On
e thatwe gathered the examples, we �ltered them using an appli-
ation developed spe
i�
ally to identify and eliminate in
or-re
t examples. The �nal set of 18,000 examples were used totrain 2 multilayer per
eptrons. One MLP learned to predi
tthe dash power and the other the ki
k power. The inputof both MLPs is the
urrent state, seen as a 12-dimensionalve
tor. This ve
tor
onsists of the following variables: playerde
ay, dash power rate, ki
kable margin, ki
k rand, ball po-sition x - player position x, ball position y - player positiony, ball velo
ity x - player velo
ity x, ball velo
ity y - playervelo
ity y, ball velo
ity x, ball velo
ity y, player velo
ity x,player velo
ity y. The �rst 4 variables are some of the pa-rameters that de�ne a type of player, and for this problem,they were the most useful during our experimentation. Theother 8 variables are needed to spe
ify the
urrent physi
alstate of the ball and player. The output of the MLPs are

Figure 2: Di�erent stru
tures used to approximatethe value fun
tion. (a) Radial basis fun
tions. (b)Multilayer per
eptron with one layer of radial basisfun
tionsthe dash power and ki
k power respe
tively, and togetherformed the behavior model. These MLPs predi
t the powerof dashes and ki
ks with an error of 15 units. This error isbig enough to prevent us from using those MLPs to dire
tly
ontrol our agents. However, the knowledge en
apsulated inthem proved to be very useful when used as a supervisorysour
e of information.For the se
ond learning phase, we implemented a RL agentthat per
eives the
urrent state of the environment using thesame input ve
tor used by the behavior model. Ea
h train-ing episode was initiated pla
ing the player in the
enter ofthe �eld with the ball besides it, at a distan
e of 0.5 me-ters, both with velo
ity zero. The training episodes wereterminated either when the robot ki
ked the ball away fromits ki
k margin, or when 35 a
tions were performed. Thereward fun
tion gives always the s
alar value resulting fromthe
al
ulation of: 0.25(player position x + ball position x +player velo
ity x + ball velo
ity x). There is also a punish-ment of −100 everytime the player loses the ball or whenthere is a
ollision with it. The learning parameters were:
ǫ = 0.3, α = 0.01 and γ = 0.5. A key design point when wework with reinfor
ement learning in
ontinuous spa
es is thestru
ture used to approximate the value fun
tion. In our ex-perimental work we employed two di�erent stru
tures: (1)an array of radial basis fun
tions, and (2) a multilayer per-
eptron enhan
ed with one layer of radial basis fun
tions.Su
h stru
tures whi
h are a linear and a non-linear fun
tionapproximator respe
tively, are illustrated in Fig. 2.Figure 3 shows the learning
urves of the a
tor-
riti
 algo-rithm using radial basis fun
tions to approximate the valuefun
tion, and 2 di�erent implementations of the SRL algo-rithm, for di�erent sizes of the relevant a
tions set As. The
urves represent moving averages of size 1,000 that were av-eraged over 10 runs. From these results we
an see thatthe supervised a
tor-
riti
 method is
learly superior to thepure a
tor-
riti
 version, when we use B̂ = 15. Howeverwhen we use B̂ = 10, the resulting learning
urve is worsethan that obtained with the pure a
tor-
riti
 algorithm. Thereason for this is simple. We are redu
ing the explorationspa
e mu
h more than we should do, given the a

ura
y

1355

0 20 k 40 k 60 k 80 k 100 k

Training episodes

0 0

2 2

4 4

6 6

8 8

M
et

er
s

AC with RBFs
SAC 15 with RBFs
SAC 10 with RBFs

Figure 3: Learning
urves of the A
tor-Criti
 andthe Supervised A
tor-Criti
 algorithms using radialbasis fun
tions
0 20 k 40 k 60 k 80 k 100 k

Training episodes

0 0

2 2

4 4

6 6

8 8

M
et

er
s

AC with MLPs-RBFs
SAC 15 with MLPs-RBFs
SAC 10 with MLPs-RBFs

Figure 4: Learning
urves of the A
tor-Criti
 andthe Supervised A
tor-Criti
 algorithms using multi-layer per
eptrons with one layer of radial basis fun
-tionsof our behavior model. The typi
al a
tor-
riti
 algorithmhas a performan
e of 2 meters, after training for 100,000episodes. Meanwhile, the best SRL algorithm, has a perfor-man
e slightly under 5 meters.In Fig. 4 we
an see the learning
urves of the same threealgorithms, but using instead the non-linear value fun
tion.It is
lear that the supervised a
tor-
riti
 algorithm has alsoa mu
h better performan
e than the typi
al a
tor-
riti
 al-gorithm. Besides, we
an see that the result with the sim-ple a
tor-
riti
 method is slightly better than that obtainedwith the linear value fun
tion in Fig. 3. We
an also see thatthe performan
e of the supervised algorithm with B̂ = 15is better than that obtained using a linear value fun
tion.Finally, when we
he
k the performan
e of the supervisedalgorithm with B̂ = 10, something interesting o

urs, thelearning
urve is identi
al to the
urve obtained with thenon-linear value fun
tion and B̂ = 15. In this
ase, thelearning rate was not a�e
ted by the redu
tion of B̂, as ithappened when we used the linear fun
tion approximator.This di�eren
e is due to a better ability of the non-linearfun
tion approximator to generalize, whi
h makes it morerobust to
hanges in B̂ than a linear fun
tion approximator.
5. CONCLUSION AND FUTURE WORK

We have presented one algorithm to implement super-vised a
tor-
riti
 learning. In our algorithm, behavior mod-els previously learned from examples, are used to dynami-
ally generate subsets of relevant a
tions at ea
h moment.Using these subsets of a
tions, the agent
an a

elerate itslearning rate. Performan
es obtained after 100,000 trainingepisodes are better when we use the supervised version ofthe a
tor-
riti
 algorithm, being more robust when the non-linear fun
tion approximator is used to represent the valuefun
tion. We tested our algorithms with the robot drib-bling problem, in the framework of the RoboCup simulationleague. Su
h problem involves
ontinuous state and a
tionspa
es with high dimensionality. Our future work will
on-sider the use of eligibility tra
es and options, as a way toimprove the �nal performan
es.A
knowledgements This resear
h work was supported bya PROMEP s
holarship from the Edu
ation Se
retariat ofMexi
o (SEP), and Universidad Autónoma de Yu
atán.
6. REFERENCES[1℄ P. Abbeel and A. Y. Ng. Apprenti
eship learning viainverse reinfor
ement learning. In Pro
eedings of the21st International Conferen
e on Ma
hine Learning,2004.[2℄ P. Abbeel and A. Y. Ng. Exploration andapprenti
eship learning in reinfor
ement learning. InPro
eedings of the 22nd International Conferen
e onMa
hine Learning, 2005.[3℄ C. Atkeson and S. S
haal. Robot learning fromdemonstration. In Pro
eedings of the FourteenthInternational Conferen
e on Ma
hine Learning, 1997.[4℄ P. V. M. Carpenter P., Riley and G. Kaminka.Integration of advi
e in an a
tion-sele
tionar
hite
ture. RoboCup 2002: Robot So

er World CupVI. Le
ture Notes in Computer S
ien
e, 2003.[5℄ J. A. Clouse and P. E. Utgo�. A tea
hing method forreinfor
ement learning. In Pro
eedings of the NinthInternational Workshop on Ma
hine Learning, 1992.[6℄ L.-J. Lin. Self-improving rea
tive agents based onreinfor
ement learning, planning and tea
hing.Ma
hine Learning, (8):293�321, 1992.[7℄ R. Ma
lin and J. W. Shavlik. In
orporating advi
einto agents that learn from reinfor
ements. InPro
eedings of the Twelfth National Conferen
e onArti�
ial Intelligen
e, 1994.[8℄ R. Ma
lin and J. W. Shavlik. Creating advi
e-takingreinfor
ement learners. Ma
hine Learning,(22):251�282, 1996.[9℄ J. M
Carthy. Programs with
ommon sense. InPro
eedings of the Teddington Conferen
e on theMe
hanization of Thought Pro
esses, 1958.[10℄ M. T. Rosenstein and A. G. Barto. Superviseda
tor-
riti
 reinfor
ement learning. In Learning andApproximate Dynami
 Programming: S
aling Up tothe Real World. John Wiley & Sons, 2004.[11℄ R. S. Sutton and A. G. Barto. Reinfor
ementLearning: An Introdu
tion. MIT Press, 1998.[12℄ V. U
-Cetina. Supervised reinfor
ement learning usingbehavior models. In Pro
eedings of the 6thInternational Conferen
e on Ma
hine Learning andAppli
ations, 2007.

1356

Teaching Sequential Tasks with Repetition through
Demonstration

(Short Paper)
Harini Veeraraghavan

Computer Science Department
Carnegie Mellon University

harini@cs.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
veloso@cs.cmu.edu

ABSTRACT
For robots to become prevalent in human environments, the robots
need to be able to perform complex tasks often involving sequen-
tial repetition of actions. In this work, we present a demonstration-
based approach to teach a robot generalized plans for performing
sequential tasks with repetitions. We introduce action definitions
through perception. Using the action definitions and the demon-
stration, the robot learns a task specific plan for tasks containing
repetition of sub-sequences.

1. INTRODUCTION
A majority of tasks in human environments involve repetitions,

be it assembling furniture using actions such as “HammerNail”,
“TightenScrew”. For a robot to automatically generate a plan using
the actions alone for a complex task such as assembling a furniture
or performing some elaborate sequence of motions is very chal-
lenging. On the other hand, given an example demonstration, the
robot can easily learn a task specific plan for performing the same
task on different problems.

In this work, we contribute a demonstration-based approach to teach
a robot task specific plans. We focus on real world domain and
present an approach that learns task specific plans with repeating
sub-tasks. Concretely, in our approach, both the human and robot
actively participate in the learning task. Through demonstration
the human instantiates the task specific actions. The robot learns
the appropriate action definitions and then using the sequence of
executed actions, learns a task specific plan with repetitions.

This paper is organized as follows. We first present the related work
in Section 2 followed by the experimental domain and the basics of
the teaching approach in Section 3. We present the learning ap-
proach in Section 4, an illustrative result in Section 5 and finally
conclude the paper in Section 6.

2. RELATED WORK
Examples of works that actually implement a planning algorithm

on a robot for learning to execute a task include the works in [3,
8]. Demonstration based learning approaches such as in [4, 5, 7]
learn generalized plans for sequences of actions with little or no

Cite as: Teaching Sequential Tasks with Repetition through Demonstra-
tion (Short Paper), H. Veeraraghavan and M. Veloso, Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal,pp. 1357-1360.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

repetitions. The work in [1] uses demonstration-based learning
for a single action. Another interesting approach to teaching se-
quential plans is in [9] where a robot learns a specific plan without
any generalization or repetition from a user through simple spoken
language dialogues. Our work to learning looping plans is most
closely related to the work of Winner and Veloso [11] which learns
domain specific plans from example demonstrations for completely
defined domain specific actions in simulated domains. Another in-
teresting approach to loop learning from demonstration with anno-
tations is in [6]. Our approach differs from the afore-mentioned
work in that the action definitions are themselves obtained through
perception in a real world problem domain and the robot success-
fully learns a plan containing repetitions on sub-tasks.

3. ELEMENTS OF LEARNING TASK AND
EXPERIMENTAL DOMAIN

Figure 1: The robot used for the clear table task.

The reference task domain used in this work for learning plans
with loops consists of clearing a table. Fig. 1 depicts the experi-
mental platform and the robot used in this work. The task consists
of applying a sequence of actions repeatedly to move all the ob-
jects from a table into a destination box. The individual actions
such as pick, drop, search, etc are the set of skills that are pre-
programmed into the robot. However, the robot does not know in
what sequence the various actions need to be carried out to achieve
a particular task, such as clearing the table. Similarly, the action
definitions are general so that the robot does not know what objects
are associated with each task. We call such actions robot behaviors.
During demonstration, it learns the association of the robot behav-
iors to objects relevant to the particular task. We call such actions
task-specific actions. The objects are identified by their color using
color thresholding. We now define the different terms used in the
paper.

1357

• Robot behavior is a non-instantaneous sequence of physi-
cal actions performed by the robot that changes the state of
the world. A behavior is composed of a number of primi-
tive actions that are executed in a predefined sequence. The
behaviors are pre-programmed into the robot. Example of a
behavior is PickObject(object) which can be executed on any
object.

• Task-specific action is an instantiation of the robot behavior
but associated with a specific object type. For example, Pick-
ObjectYellowBall(object - yellowballType) is an instantiation
of behavior PickObject but always executed only on objects
that are yellow colored balls. The task specific action is also
composed of a completely defined precondition and effects
corresponding to the specific object types in its argument
list. The task specific action with parameterized objects is
referred to as task-specific operator or simply operator. The
task specific action instantiated with specific objects such as
ball1 is referred to as a grounded action.

• Predicate or Proposition is a representation of the sensed
measurements as facts or relations between different objects.
Each proposition is associated with a visual measurment. For
example, in order to verify the truth of a proposition such as
holdingObject(yellowBall) , the robot first moves its hands to
the level of its head and then checks if it can color segment
the ball object.

• State is a set of observed predicates.

Robot Behavior A robot behavior is activated by the human demon-
strator using an appropriate vision-based cue such as a colored card
and can be executed on any object. Once associated with an object,
a task-specific action is generated which is used for the task spe-
cific plan. The task specific actions on the other hand can only
be executed on the specific object types associated with the input
arguments. The object types in our case correspond to specific ob-
ject color. The task specific actions are also generated during the
demonstration phase.

• searchObject_objecttype : This action is performed by ex-
ecuting the following physical actions in order. (a) If ob-
ject is not detected, follow table for a few time steps, else
stop, (b) Move close to table and look for object, (c) If ob-
ject is detected, stop, else go back to (a). The task specific
action is renamed with the appropriate object type such as
searchObject_type1 for an object of type type1 .

• pickObject_objecttype : This action is performed by execut-
ing (a) While object is not in center of image, move to align
with object, (b) Grasp object with both hands.

• carryObjectToBasket_objecttypeList : This action is performed
by executing the following physical actions: (a) If basket
is not detected, hold object and follow table for a few time
steps, else stop, (b) Move close to table and look for basket,
(c) If basket is detected, stop, else go back to (a).

• dropObjectIntoBasket_objecttypeList : This action is performed
as follows: (a) Release hands to drop the object.

Representing World Observations The effect of executing a
behavior results in a change in the state of the world. In order to
obtain the state of the world, the robot needs to have a knowledge
of the relevant observations and know what measurements are re-
quired for each observation. These observations are represented in

the plan as propositions. Thus, in addition to the behaviors, task
specific actions and objects, the robot also contains a list of propo-
sitions with appropriate visual measurements. The set of propo-
sitions and the associated vision-based measurements used by the
robot are as follows:

• closeToObject_objecttype Vision-based measurement checks
whether the robot is standing sufficiently close to the object
by measuring the objects relative distance from the robot.
The proposition is set to true when the object is detected
within a fixed pre-defined threshold τ from the robot.

• holdingObject_objectype To detect whether the robot is hold-
ing an object, it moves its arms to the level of its head and
checks whether it can segment the appropriate object.

• in_objectypeList This is a binary predicate where the vision-
based measurement checks which pair of objects in the ar-
gument list of action satisfy the condition for in . One ob-
ject obj1 is said to be inside the other object obj2 when the
bounding rectangle of the obj1 is enclosed by the bounding
rectangle of obj2 .

4. TEACHING TASKS WITH REPETITIONS
The teaching approach consists of a demonstration phase and a

learning phase. In the demonstration phase, the robot executes the
sequence of robot behaviors on specific objects as indicated by the
human. It then instantiates task specific actions from the behaviors,
fills in the appropriate preconditions for those actions, and then
learns a task specific plan for the executed action sequence.

4.1 Demonstration Phase
Demonstration is the first step in the teaching approach. To

demonstrate the action sequence, the demonstrator indicates the ap-
propriate actions and the objects relevant to the same action. Every
action is associated with a specific color that can be identified by
color thresholding upon viewing a correspondingly colored action
card. The human indicates the objects by moving a laser pointer
across the object. The robot tracks the laser spots and computes
the region of interest as the bounding box enclosing all the tracked
spots. It then identifies the appropriate object by matching the tar-
get model such as a color histogram or by applying an average
(RGB) color threshold on the region of interest. As the goal of
problem is not robust sensing, we eliminate perceptual ambiguities
such as occlusions.

4.2 Learning Phase: Filling Action Precondi-
tions and Effects

The first step to recognizing the plan for the demonstrated task
is to extract the task specific action preconditions and effects. The
algorithm for filling the action preconditions and effects is depicted
in Algorithm 1. By operator we mean the task specific action asso-
ciated with an object type. A grounded action on the other hand is a
task specific action associated with a particular object correspond-
ing to an object type. For task specific action definition extraction,
we make use of the multiple occurrences of the same action instan-
tiated on different objects but of the same type. In our case, the
types correspond to the color. Given that the demonstrator is as-
sumed to guide the robot through the actions in the correct order, in
general the states preceding an action will contain all the predicates
necessary to execute the same action. This in turn simplifies the ex-
traction of the preconditions and effects. However, in the absence
of multiple instantiations, a different learning algorithm such as [2]

1358

Algorithm 1 Precondition and Effect Filling
Input: Grounded actions 〈a1, . . . ,aN〉 from demonstration
Input: Preceding and Succeeding states 〈{−Sa1 ,

+Sa1} . . .{−SaN ,+SaN }〉
for each action

Output: Grounded actions 〈a1, . . . ,aN〉 with filled preconditions and ef-
fects

1: GROUP grounded actions into Operators O1, . . . ,Ok , s.t.
∀Oop,op=1...k,@a j,ak{a j,ak ∈ op}, SUBSTITUTE(a j,ak) is in-
valid

2: For all Operators op do
3: Collect the action states {−Sa j ,

+Sa j}∀ ja j ∈ op.
4: Remove inconsistent action states.
5: For all Operators op do
6: Get Preconditionsop←− −Sa1 ∧ . . .∧−Sak ,a1, . . . ,ak ∈ op
7: Effects:
8: If exists effect ex

a j
,a j ∈ op∧∃ak ∈ op where

∀yey
ak SUBSTITUTE(ex

a j
,ey

ak) is invalid then
9: If exists predicates cW={w1,...,wm} ∈ −Sa j where

arg(ex
a j

) ∩ arg(cW) 6= /0 ∧
∀i,i 6= j, SUBSTITUTE(ex

a j
,eyai) is invalid ∧ cW 3

−Sai ,where ai,a j ∈ op then
10: Add conditional Effect condE f f ectop←− {cW ,ex

a j
}

11: Else
12: Add disjunctive Effect E f f ectsop←− ex

a j
∨E f f ectsop

13: Else If ∃ effect ex
a j
∈ ∀i{4〈−Sai ,

+Sai 〉}ai,a j ∈ op then
14: Add conjunctive Effect E f f ectsop←− ex

a j
∧E f f ectsop

15: Fill in Preconditions and Effects for each action a j ∈ op

will be more appropriate than the one presented in this work.

As shown in Algorithm 1, the inputs to the algorithm consists of
the sequence of grounded actions obtained from the demonstration,
and the corresponding states associated with each action. A state
with negative ’−’ superscript such as −Sa j corresponds to the state
prior to executing the action a j, while the state with positive super-
script ’+’, such as +Sa j corresponds to the state following the same
action.

The first step in the Algorithm 1 is to group the grounded actions
into their corresponding operators. The SUBSTITUTE procedure
as shown in Line 1 of Algorithm 1 checks for the equality of two
actions. In other words, substitute corresponds to replacing the pa-
rameters of one action for the other. So two grounded actions ai,a j
correspond to the same operator when the result of their substitu-
tion is identical. Note that, here we are just comparing the action
name and the arguments.

The next step of the algorithm is to collect the set of states cor-
responding to every action in each operator, following which, any
inconsistent states are removed as depicted in Lines[2-4]. An in-
consistent state is one where the intersection of the same (preced-
ing) state corresponding to a specific grounded action with at least
T (preceding) states corresponding to T grounded actions for the
same operator is an empty set. In other words, for a pair of states
−Sak ,

+Sak abbreviated as −S,+S,

Inconsistent(−S,+S) =
{

If ∑
m
i=1{−Sak ∩

−Sai}→ { /0}> T, true
Else, false

Only the states preceding the action are checked for inconsistency.
However, both of {−Sa j

+Sa j} from an action a j will be removed
when −Sa j is found to be inconsistent. The inconsistency check
is performed to ensure that the precondition list of an operator is

never an empty set. It is assumed that all preconditions for an ac-
tion are conjunctive.

Next, the preconditions for the operator is obtained as the intersec-
tion of all the consistent preceding states for the associated actions
as shown in Line 6 of the Algorithm 1. The procedure for obtain-
ing the effects is depicted in Lines [8-14] of the Algorithm 1. The
effects of a grounded action a j corresponds to the set of predicates
in the succeeding state +Sa j occurring mutually exclusively from
the preceding state −Sa j . This is represented as 4{−Sai ,

+Sai} on
Line 13 of Algorithm 1. An effect ex

a j
of a grounded action a j for

operator op is added as a conditional effect when,

• there does not exist a substitution for the same effect ex
a j

in
at least one other grounded action ak in the same operator,

• there exists one or more predicates cW ∈ −Sa j where the in-
tersection of the argument list of cW with ex

a j
is not an empty

set and there exists no substitution for the same predicates in
any state −Sak where substitution for the effect ex

a j
is invalid.

However, when no condition can be found, the effect ex
a j

is added as
a disjunctive effect to the existing set of effects. Finally, the set of
effects that occur in all the consistent action instantiations are added
as conjuctive effects. At the end of this stage in learning, each ac-
tion is represented in the classical PDDL format with preconditions
and effects. As an example, the dropObject is represented as,

(:action dropObject_type1
:parameters (?obj1 - type1 ?obj2 - type2)
:preconditions (and (holdingObject_type1 obj1)

(closeToBasket_type2 obj2))
:effects (and (in obj2 obj1)))

Figure 2: Representation of task specific dropObject action

4.3 Extracting Plans With Repetitions
Using the action definitions and the demonstration sequence, we

then extract a partial ordering graph of the individual actions in
the plan using [10] which links two steps in the demonstration that
satisfy a producer-consumer relation where the producer step has
an effect which is a precondition for the consumer step. The pre-
condition is the rationale for the link. The last phase in learning
from demonstration is to extract an executable planner from the
demonstrated action sequence. In this work, we follow the similar
definition as in programming languages for the loops. A sequence
of actions forms a loop if and only if the same sequence of actions
are repeated over different instances of the loop variable and there
are no ordering constraints between actions occurring at different
loop variable instances. The algorithm for learning the generalized
plans from demonstration is depicted in Algorithm. 2. The first
step transitively reduces the partial order graph for the action steps
in the demonstration sequence to simplify computation for loop de-
tection. In the next step, the actions are parameterized such that the
grounded actions are replaced by actions with variables. Finally,
the different steps and loops are arranged in the dependency order
as obtained from the partial orderings. A set of actions forming
a loop is merged with another loop when the actions in one loop
are connected to the actions in the other loop through the producer-
consumer orderings. Note that this merging still maintains the par-
allel execution of the steps along different branches of the merged
loop.

1359

Pick Object Carry Object Drop Object

Figure 3: Example sequence showing the execution of the task during demonstration.

Algorithm 2 Learning Looping Plans from Example
Input: Partial Order (PO) Graph
Output: Generalized Looping Plan
1: Transitively reduce PO Graph
2: Parameterize trace step actions
3: Detect LOOPS(Actions a1, . . . ,aN)
4: Order Steps by links.

5. ILLUSTRATIVE EXPERIMENT
Experiments were performed in indoor setting with the experi-

mental setup as shown in Fig. 1. The objective of the experiment
was to test whether the robot could learn a correct plan from the
demonstrated sequence of actions. The domain is controlled such
that no perceptual ambiguity such as occlusions or illumination
variations occur. While restrictive for real world applications, ro-
bust sensing and planning with robust sensing is not the focus of
this paper.

An example demonstration sequence consisted of the steps searchOb-
ject, pickObject, carryObjectToBasket, dropObject for two differ-
ent balls repeated one after the other in the same order. An exam-
ple of the task executed by the robot during the demonstration is
depicted in Fig. 3. The plan learned from this demonstration se-
quence is depicted in Fig. 4. As shown, the robot is correctly able
to learn an executable plan for the demonstrated sequence.

while(?loopvar : type1)
if(haveObjectToSearch_type1 loopvar) then

(searchObject_type1 loopvar)
if(closeToObject_type1 loopvar) then

(pickObject_type1 loopvar)
if(holdingObject_type1 loopvar) then
(carryObjectToBasket_type1_type2 loopvar obj2)

if(and (holdingObject_type1 loopvar)
(closeToObject_type2 obj2))

(dropObjectToBasket_type1_type2 loopvar obj2)

Figure 4: Example task specific plan.

6. CONCLUSIONS
In this work, we present an approach for teaching complex se-

quential tasks with repetitions through demonstration. We present
a contribution where using the set of generic behaviors or skills and
a demonstration, the robot can extract the task specific action defi-
nitions and finally a plan with repetitive execution of a sequence of
actions. Additionally, the system has been implemented on a real
world domain where the robot successfully transforms its executed

actions and vision-based sensed measurements into an instantiated
plan that can be used for learning an task specific planner.

7. ACKNOWLEDGEMENTS
The authors would like to SONY for making the QRIOs available

to us for this project. The authors would also like to thank SONY
for also making available the robot specific software libraries.

8. REFERENCES
[1] C. Breazeal, G. Hoffman, and A. Lockerd. Teaching and

working with robots as a collaboration. In Proc. Autonomous
Agents and Multiagent Systems, pages 1028–1035, 2004.

[2] Y. Gil. Learning by experimentation: incremental refinement
of incomplete planning domains. In Proc. Intl. Conf. on
Machine Learning, 1994.

[3] K. Haigh and M. Veloso. Interleaving planning and
execution for asynchrnous user requests. Autonomous
Robots, 5(1):79–95, 1998.

[4] N. Koenig and M. Mataric. Demonstration-based behavior
and task learning. In Working Notes AAAI Symposium To
Boldly Go Where No Human-Robot Team Has Gone Before,
2006.

[5] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by
watching: extracting reusable task knowledge from visual
observation of human performance. IEEE Trans. on Robotics
and Automation, 10(6):799–822, 1994.

[6] T. Lau, S. Wolfman, P. Domingos, and D. Weld.
Programming by demonstration using version space algebra.
Machine Learning, 53(1-2):111–156, 2003.

[7] M. Nicolescu and M. Mataric. Models and Mechanisms of
Immitation and Social Learning in Robots, Humans, and
Animals: Behavioral, Social and Communicative
Dimensions, chapter Task learning through immitation and
human-robot interaction, pages 407–424. 2006.

[8] N. Nilsson. Shakey the robot. Technical Report 323, SRI
International, AI Center, SRI International, Menlo Park, CA,
1984.

[9] P.E.Rybski, K. Yoon, J. Stolarz, and M. Veloso. Interactive
robot task training through dialog and demonstration. In
Proc. Human Robot Interaction Conf., 2007.

[10] E. Winner and M. Veloso. Analyzing plans with conditional
effects. In Proc. Intl. Conf. Artificial Intelligence and
Planning Systems, pages 23–33, 2002.

[11] E. Winner and M. Veloso. Loopdistill: Learning
domain-specific planners from example plans. In In ICAPS
Workshop on Planning and Scheduling, 2007.

1360

Adaptive Kanerva-based Function Approximation for
Multi-Agent Systems

(Short Paper)

Cheng Wu and Waleed M. Meleis

ABSTRACT
In this paper, we show how adaptive prototype optimiza-
tion can be used to improve the performance of function ap-
proximation based on Kanerva Coding when solving large-
scale instances of classic multi-agent problems. We apply
our techniques to the predator-prey pursuit problem. We
first demonstrate that Kanerva Coding applied within a re-
inforcement learner does not give good results. We then de-
scribe our new adaptive Kanerva-based function approxima-
tion algorithm, based on prototype deletion and generation.
We show that probabilistic prototype deletion with random
prototype generation increases the fraction of test instances
that are solved from 45% to 90%, and that prototype split-
ting increases that fraction to 94%. We also show that op-
timizing prototypes reduces the number of prototypes, and
therefore the number of features, needed to achieve a 90%
solution rate by up to 87%. These results demonstrate that
our approach can dramatically improve the quality of the
results obtained and reduce the number of prototypes re-
quired. We conclude that adaptive prototype optimization
can greatly improve a Kanerva-based reinforcement learner’s
ability to solve large-scale multi-agent problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Function approximation, Kanerva coding, Reinforcement learn-
ing, pursuit

1. INTRODUCTION AND RELATED WORK
Multi-agent problems can be difficult to solve by tradi-

tional machine learning techniques because the state space
can be very large. The predator-prey pursuit problem [4] is
a classic example of such a multi-agent problem. A general
version of the problem takes place on a rectangular grid with

Cite as: Adaptive Kanerva-based Function Approximation for Multi-
Agent Systems (Short Paper), Cheng Wu, Waleed M. Meleis,Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16., 2008, Estoril, Portugal, pp.1361-1364..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

one or more predator agents and one or more prey agents.
Each grid cell is either open or closed, and an agent can only
occupy open cells. Each agent has an initial position.

The problem is played in a sequence of time periods. In
each time period, each agent can move to a neighboring open
cell one horizontal or vertical step from its current location,
or it can remain in its current cell. All moves are assumed
to occur simultaneously, and more than one predator agent
may not occupy the same cell at the same time. Each agent
can observe the location of all other agents, and predator
agents and prey agents can each communicate with agents
of the same type. If a predator agent is in the same cell as a
prey agent at the end of a time period, then that target has
been caught. The goal is for the predator agents to catch
all the prey agents in the shortest time.

Pursuit problems are difficult to solve in general. Closed-
form solutions to restricted versions of the problem have
been found [1, 7], but most such problems remain open.
Researchers have used approaches such as genetic algorithms
[5] and reinforcement learning [12] to develop solutions.

Reinforcement learning [11] is, in some respects, well-
suited to solving multi-agent problems, and Q-learning [13]
has emerged as one of the most successful reinforcement
learning strategies. The algorithm works by combining state
space exploration and exploitation to learn the value of each
state-action pair. Through repeated trials, the estimates of
the values of each state-action pair can gradually converge
to the true value, and these can be used to guide the agent
to maximize its reward. Under certain limited conditions,
Q-learning has been shown to converge to an optimal policy.

A key limitation on the effectiveness of Q-learning is the
size of the table needed to store the state-action values.
The requirement that an estimated value be stored for ev-
ery state-action pair limits the size and complexity of the
learning problems that can be solved. Instead, function ap-
proximation [3] can be used to store an approximation of
this table. Many approximation techniques exist, including
coarse coding [6], and tile coding [2], and there are guaran-
tees on their effectiveness in some cases [11].

Sparse distributed memories [8] can also be used to reduce
the amount of memory needed to store the state-action value
table. This approach applied to reinforcement learning, also
called Kanerva Coding [11], represents a function approxi-
mation technique that is particularly well-suited to problem
domains with high dimensionality. A collection of k pro-
totype state-action pairs, (prototypes) is selected, each of
which again corresponds to a binary feature. A state-action
pair and a prototype are said to be adjacent if their bit-wise

1361

representations differ by no more than 1 bit. A state-action
pair is represented as a collection of binary features, each
of which equals 1 if and only if the corresponding prototype
is adjacent. A value θ(i) is maintained for the ith feature,
and an approximation of the value of a state-action pair is
then the sum of the θ values of the adjacent prototypes. In
this way, Kanerva Coding can greatly reduce the size of the
value table that needs to be stored.

If the number of prototypes is very large relative to the
number of state-action pairs, and the prototypes are uni-
formly distributed through the state space, each prototype
will be adjacent to a small number of state-action pairs. In
this case, the approximate state-action values will tend to
be close to the true values, and the reinforcement learner
will operate as usual. However if the number of prototypes
is small, or if the prototypes themselves are not well chosen,
the approximate values will not be similar to the true values
and the reinforcement learner will give poor results.

Adaptively choosing prototypes appropriate to the par-
ticular application is an important way to contribute prior
knowledge and experience to the reinforcement learner. There
is therefore a need for algorithms to select prototypes that
can span the state-space for a particular application. There
have been few published attempts to apply Kanerva coding
to multi-agent problems [9] or to evaluate and improve the
quality of sets of prototypes.

Ratitch [10] has shown that sparse distributed memories
can be used to represent the value table in a reinforcement
learner. However, they add and delete locations only when
the number of locations activated by an individual sample
is below a fixed threshold. This approach may overreact
to individual samples, in contrast to our approach which
considers all samples and all prototypes in a training run
before adding and deleting locations. Also, the deterministic
nature of their decision to delete a prototype is less flexible
than our probabilisitic approach.

2. PROTOTYPE OPTIMIZATION
When two different state-action pairs visited during Q-

learning are mapped to the same subset of the prototypes,
a prototype collision is said to have taken place. Both
state-action pairs will necessarily have the same approxi-
mate value, at least one of which may be far from its true
value. Selecting a set of prototypes that minimizes collisions
will maximize the solver’s ability to solve the problem.

However it is difficult to generate an optimal set of pro-
totypes for several reasons: the space of possible subsets
is very large and the state-action pairs encountered by the
solver depend on the specific problem instance being solved.
We therefore investigate several heuristic solutions to the
prototype optimization problem.

We say that a prototype is visited during Q-learning if it
is adjacent to the current state-action pair. If a specific pro-
totype is rarely visited, it implies that few state-action pairs
are adjacent to this prototype. This suggests that this pro-
totype is inappropriate for the particular application. On
the contrary, if a specific prototype is visited frequently, it
implies that too many state-action pairs are adjacent to the
prototype and collisions are more likely to occur. A neces-
sary condition for collisions to be minimized is that most
prototypes are visited an average number of times.

The frequency distribution of visits to prototypes over a
sample run using Q-learning with Kanerva coding is shown

Figure 1: Distribution of the number of visits per
prototype in a sample run.

in Figure 1 both before and after prototype optimization.
This example is an instance of pursuit with a 32x32 grid,
two predator agents, and one prey agent. The non-uniform
distribution of visit frequencies across prototypes before pro-
totype optimization indicates that some prototypes are fre-
quently visited and others are rarely visited.

We can optimize prototypes using visit frequencies. We
divide the original prototypes into three categories: proto-
types with low visit frequency, prototypes with high visit
frequency, and the rest of the prototypes. Prototype opti-
mization attempts to replace those prototypes with low or
high frequency with prototypes that will have average visit
frequencies, as shown in Figure 1.

We describe and evaluate different optimization mecha-
nisms to achieve this goal. In each case, initial prototypes
are selected randomly from the entire space of possible state-
action pairs. Q-learning with Kanerva coding is used to de-
velop policies for the predator agents, while keeping track of
the number of visits to each prototype. After a fixed num-
ber of iterations, we update the prototypes using one of the
mechanisms described below.

2.1 Prototype deletion
Prototypes that are rarely visited do not contribute to the

solution of instances. Similarly, prototypes that are visited
frequently are likely to cause many collisions. It makes sense
to delete these prototypes and replace them with new pro-
totypes with average frequencies. We evaluate the following
two algorithms for deleting prototypes.

In the first approach, we periodically delete a fraction of
prototypes whose visit frequency is lowest, and a fraction of
prototypes whose visit frequency is highest. The fraction of
prototypes that is deleted slowly decreases as the algorithm
runs. The θ value and visit frequency of the new proto-
type is initially set to zero. We refer to this approach as
deterministic prototype deletion.

An advantage of this algorithm is that it is easy to im-
plement and it uses application- and instance-specific in-
formation to guide the deletion of rarely or heavily visited
prototypes. However, this approach deletes prototypes de-
terministically which does not give the solver the flexibility
to keep some prototypes that are rarely or frequently visited.
For example, if the number of prototypes is very large, some
prototypes that might become useful will not be visited in
an early epoch and will be deleted.

In the second approach, we delete prototypes with a prob-
ability equal to an exponential function of the number of vis-

1362

Figure 2: Effect of prototype deletion.

its. I.e. the probability pdel of deleting a prototype whose
visit frequency is v is pdel = λe−λv, where λ is a parameter
that can vary from 0 to 1. In this approach, prototypes that
are rarely visited tend to be deleted with a high probabil-
ity, while prototypes that are frequently visited are rarely
deleted (we describe how we reduce the visit frequency of
heavily visited prototypes in the next section). We refer to
this approach as probabilistic prototype deletion.

2.2 Prototype generation
We replace prototypes that have been deleted with new

prototypes that will tend to improve the behavior of the
function approximation. We evaluate the following two al-
gorithms for generating prototypes.

In the first approach, new prototypes are generated ran-
domly from the entire state space. While this approach ag-
gressively searches the state space for useful prototypes, it
does not use domain- or instance-specific information.

In the second approach, we create new prototypes by ap-
plying prototype splitting. A prototype s1 that has been
visited the most times is selected, and a new prototype s2

that is a neighbor of s1 is created by inverting a fixed number
of bits in s1. The prototype s1 remains unchanged.

This approach creates new prototypes near prototypes
with the highest visit frequencies. These prototypes are sim-
ilar but distinct which tends to reduce the number of visits
to nearby prototypes, and therefore the number of collisions
they cause.

3. EXPERIMENTAL EVALUATION
We evaluate our prototype optimization algorithms by ap-

plying them to random predator-prey pursuit instances on
a 32x32 grid with two non-communicating predator agents
and one prey agent. Each predator agent can see the po-
sition of the prey agent. Each agent can select one of 9
possible actions, moving one step in any of 8 directions, or
not moving. Each grid instance has 32 random closed cells.

In each epoch, we apply each learning algorithm with 1984
prototypes to 40 random training instances followed by 40
random test instances. Prototype optimization is applied
after every 20 epochs. For every 20 epochs, we record the
average fraction of test instances within those epochs that
are solved within a maximum of 64 moves.

The effect of different prototype deletion algorithms is
shown in Figure 2. The figure shows the average fraction
of test instances solved over a series of epochs for three al-

Figure 3: Effect of prototype generation.

gorithms: the pure Kanerva coding algorithm that uses no
prototype optimization, deterministic deletion, and proba-
bilistic deletion algorithms. These deletion algorithms use
random prototype generation.

The algorithms converge after about 200 epochs, and the
results show that the pure Kanerva algorithm solves ap-
proximately 45% of the test instances, the deterministic-
deletion algorithm solves approximately 79% of the test in-
stances, and the probabilistic-deletion algorithm solves ap-
proximately 90% of the test instances. These results indi-
cate that dynamically deleting and regenerating prototypes
can significantly increase the quality of the results. The re-
sults also indicate that probabilistic prototype deletion sig-
nificantly outperforms deterministic deletion.

The effect of different prototype generation algorithms is
shown in Figure 3. The figure shows the average fraction
of test instances solved over a series of epochs for all four
combinations of deletion and generation algorithms.

The algorithms converge after about 240 epochs, and the
results show that prototype splitting raises the fraction of
test instances solved from 79% to 82% with deterministic
prototype deletion, and from 90% to 94% with probabilistic
prototype deletion. These results indicate that prototype
splitting can improve the quality of the results by a small
but noticeable amount.

The effect of varying the parameter λ in the exponential
distribution used to delete prototypes in the probabilistic
deletion algorithm is shown in Table 1. The table shows the
average fraction of test instances solved over a range of λ

values with either random prototype generation or prototype
splitting. The results show that the best results are achieved
when λ = 1 for both prototype generation algorithms.

Figure 4 shows the minimum number of prototypes needed
to solve an average of 90% of test instances over a range of
grid sizes. The results compare the pure Kanerva algorithm
with the probabilistic-split algorithm with λ = 1. The al-

λ 0 0.5 0.8 1

Random

generation
56.25% 77.00% 86.38% 90.40%

Splitting

generation
60.51% 82.63% 94.13% 94.25%

Table 1: The effect of λ under probabilistic deletion

1363

Figure 4: Minimum number of prototypes to solve
an average of 90% of instances, and % reduction.

gorithm is run for 500 epochs and the average solution rate
is measured over the next epoch. The results are computed
by initially setting the number of prototypes equal to the
total number of possible prototypes. After 500 epochs, if
the result is greater than 90%, the number of prototypes is
gradually decreased and the results are recomputed. This
process continues until the solution rate is less than 90%. We
report the minimum number of prototypes needed to solve
an average of 90% of the test instances, which is shown on
a logarithmic scale. Figure 4 also shows the total number of
possible prototypes and the percent reduction in the number
of prototypes needed.

The results show that prototype optimization dramati-
cally reduces the number of prototypes needed to achieve a
90% solution rate. For example, on a 64x64 grid the num-
ber of prototypes needed is reduced from 62, 516 to 8, 064,
a reduction of 87%.

We show an example of the policy learned after 500 epochs
using our adaptive Kanerva-based function approximation
algorithm in Figure 5. This example is an instance of pursuit
with a 32x32 grid, one prey agent which starts on the left,
and two predator agents.

4. CONCLUSIONS
We have shown that pure Kanerva-based function approx-

imation applied within a reinforcement learner does not give
good results. We described our new adaptive Kanerva-based
function approximation algorithm, based on prototype dele-
tion and generation. We showed that probabilistic proto-
type deletion with random prototype generation increases
the fraction of test instances that are solved from 45% to
90%, and that prototype splitting increases that fraction to
94%. We also showed that optimizing prototypes reduces
the number of prototypes, and therefore the number of fea-
tures, needed to achieve a 90% solution rate by up to 87%.

These results demonstrate that our approach can dra-
matically improve the quality of the results obtained and
reduce the number of prototypes required. We conclude
that adaptive prototype optimization can greatly improve a
Kanerva-based reinforcement learner’s ability to solve large-
scale multi-agent problems.

5. REFERENCES
[1] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and

1

2

3

4

5

6

7

8

9

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

10

14

13

12

11

0

1
 2
 3
 4
 5
 6
 7
 8
 9
 31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
10
 14
13
12
11
0

11

1

2

3

4

5

6

7

8

9

12

1
3
 1

4

1

5

1
6

10

1

 7

1

2

3

4

5

6

7

8

9

10

1

1

1

2

1

3

1

4

1
5

1

6

1

7

1

2

3

4

5

6

7

9

8

1

0

1

1

1

2

13

1

4

1

5

1

6

1

7

Figure 5: Sample policy

B. Vocking. Randomized pursuit-evasion in graphs. In
Proc. of the Intl. Colloq. on Automata, Languages and
Programming, 2002.

[2] J. Albus. Brains, Behaviour, and Robotics.
McGraw-Hill, 1981.

[3] L. Baird. Residual algorithms: Reinforcement learning
with function approximation. In Proc. of the 12th Intl.
Conf. on Machine Learning. Morgan Kaufmann, 1995.

[4] M. Benda, V. Jagannathan, and R. Rodhiawalla. On
optimal cooperation of knowledge sources. Technical
Report, Boeing Computer Services, 1985.

[5] T. Haynes and S. Sen. The evolution of multiagent
coordination strategies. Adaptive Behavior, 1997.

[6] G. Hinton. Distributed representations. Technical
Report, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, 1984.

[7] V. Isler, S. Kannan, and S. Khanna. Randomized
pursuit-evasion with local visibility. SIAM Journal on
Discrete Mathematics, 20(1):26–41, 2006.

[8] P. Kanerva. Sparse Distributed Memory. MIT Press,
1988.

[9] K. Kostiadis and H. Hu. KaBaGe-RL: Kanerva-based
generalisation and reinforcement learning for
possession football. In Proc. of IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2001.

[10] B. Ratitch and D. Precup. Sparse distributed
memories for on-line value-based reinforcement
learning. In Proc. of the European Conf. on Machine
Learning, 2004.

[11] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. Bradford Books, 1998.

[12] M. Tan. Multi-agent reinforcement learning:
Independent vs. cooperative learning. In M. N. Huhns
and M. P. Singh, editors, Readings in Agents, pages
487–494. Morgan Kaufmann, CA, 1997.

[13] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1989.

1364

Efficient Multi-Agent Reinforcement Learning through
Automated Supervision

(Short Paper)
Chongjie Zhang
Computer Science

Department
140 Governors Drive

University of Massachusetts
Amherst, MA 01002-9264

chongjie@cs.umass.edu

Sherief Abdallah
Institute of Informatics

British University in Dubai
Knowledge Village, Block 17
Dubai, United Arab Emirates

sherief.abdallah@buid.ac.ae

Victor Lesser
Computer Science

Department
140 Governors Drive

University of Massachusetts
Amherst, MA 01002-9264
lesser@cs.umass.edu

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) algorithms
suffer from slow convergence and even divergence, especially
in large-scale systems. In this work, we develop a supervi-
sion framework to speed up the convergence of MARL al-
gorithms in a network of agents. The framework defines
an organizational structure for automated supervision and
a communication protocol for exchanging information be-
tween lower-level agents and higher-level supervising agents.
The abstracted states of lower-level agents travel upwards
so that higher-level supervising agents generate a broader
view of the state of the network. This broader view is used
in creating supervisory information which is passed down
the hierarchy. We present a generic extension to MARL
algorithms that integrates supervisory information into the
learning process, guiding agents’ exploration of their state-
action space.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Multiagent Systems, Supervision,
Heuristics

1. INTRODUCTION
The main contribution of this paper is the development

of a framework that speeds up the convergence of Multi-
Agent Reinforcement Learning (MARL) algorithms [2, 6] in
a network of agents. Each agent’s learning occurs in the con-
text of a limited set of agents. We call this set of agents the
agent’s neighborhood that is specified as an overlay network.

Cite as: Efficient Multi-Agent Reinforcement Learning through Auto-
mated Supervision (Short Paper), Chongjie Zhang, Sherief Abdallah, Vic-
tor Lesser, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: An organization structure for multi-level
supervision

The slowness of MARL convergence is due to the large policy
search space. Each agent’s policy not only includes its local
state and actions but also some characteristics of the states
and actions of its neighboring agents [2], or the state size of
each agent may be proportional to the size of the system [6].
Convergence is also affected by the non-stationarity of the
environment (other agents are simultaneously learning their
own policies).

Our framework consists of three main components: a multi-
level supervision organization (a meta-organization built on
top of the agents’ overlay network), a communication pro-
tocol for exchanging information between lower-level agents
and higher-level supervising agents, and a generic extension
to MARL algorithms that integrates supervisory informa-
tion into the learning process. The key idea of our frame-
work is as follows. Each level in the supervising organization
is an overlay network in itself. For example, Figure 1 shows
a three-level supervision organizational structure. The ab-
stracted states of lower-level agents travel upwards so that
higher-level supervising agents can generate a broader view
of the state of the network. This broader view comes from
not only information about the states of lower-level agents
but also information from neighboring supervising agents.
In turn, this broader view results in creating supervisory
information which is passed down the hierarchy. The su-
pervisory information guides agents in collectively exploring
their state-action spaces more efficiently, and consequently
results in faster convergence.

Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp. 1365-1368.

1365

2. RELATED WORK
Two paradigms have been studied to speed up the learning

process. The first paradigm is to reduce the policy search
space. For example, the TPOL-RL [10] reduced the state
space by mapping states onto a limited number of action-
dependent features. The hierarchical multi-agent reinforce-
ment learning [7] used the explicit task structure to restrict
the space of policies, where each agent learned joint abstract
action-values by communicating with each other only the
state of high-level subtasks. The second paradigm is to use
heuristics to guide the policy search. The work described
in [11] used both local and global heuristics to accelerate
the learning process in a decentralized multirobot system.
The local heuristic used only the local information and the
global heuristic used the information that was shared and
required to be exactly the same among robots. The Heuris-
tically Accelerated Minimax-Q (HAMMQ) [4] incorporated
heuristics into the Minimax-Q algorithm to speed up its con-
vergence rate, which shared the convergence property with
Minimax-Q. HAMMQ was intended for a two-agent configu-
ration and further the authors had no discussion about how
heuristics were constructed.

Our approach follows the second paradigm that uses heuris-
tics to guide the policy search. However, it differs from other
approaches in a key respect that it defines a decentralized
hierarchical supervision mechanism to automate the gener-
ation of heuristics and integrates heuristics into existing un-
supervised MARL algorithms (e.g., ReDVaLeR [3], WoLF-
GIGA [5], WPL [1], etc.) in a generic manner to speed up
their convergence.

3. ORGANIZATIONAL SUPERVISION
Supervision mechanisms commonly exist in human orga-

nizations (e.g., enterprises and governments), whose pur-
pose is to run an organization effectively and efficiently to
fulfill organizational goals. Supervision involves gathering
information, making decisions, and providing directions to
regulate and coordinate actions of organization members.
The practical effectiveness of the supervision in human or-
ganizations, especially in large organizations, inspired us to
introduce a similar mechanism into multi-agent systems to
improve the efficiency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay
structure, we adopt a multi-level, clustered organizational
structure. Agents in the original overlay network, called
workers, are clustered based on some measure (e.g., geo-
graphical distance). Each cluster is supervised by one agent,
called the supervisor, and its member agents are called sub-
ordinates. The supervisor role can be played by a dedicated
agent or one of the workers. If the number of supervisors
is large, higher-level supervisors can be added, and so on,
forming a multi-level supervision structure.

Two supervisors at the same level are adjacent if and only
if at least one subordinate of one supervisor is adjacent
to at least one subordinate of the other. Communication
links, which can be physical or logical, exist between ad-
jacent workers, adjacent supervisors, and subordinates and
their supervisors. Figure 1 shows a three-level organiza-
tional structure. The bottom level is the overlay network of
workers which forms 9 clusters. A shaded circle represents a
supervisor, which is responsible for a corresponding cluster.
Note that links between subordinates and their supervisors

are omitted in this figure.

4. COMMUNICATION PROTOCOL
Three types of communication messages, report, sugges-

tion, and rule, are used. A worker’s report passes its activ-
ity data upwards to provide its supervisor with a broader
view. A supervisor’s report aggregates the information of
reports from its subordinates. A supervisor sends its report
to its adjacent supervisors at the same level in addition to
its immediate supervisor (if any). The supervisor’s view is
based on not only the agents that it supervises (directly or
indirectly) but also its neighboring supervisors. This peer-
supervisor communication allows each supervisor to make
rational local decisions when directions from its immediate
supervisor are unavailable. To prevent supervisors from be-
ing overwhelmed and reduce the communication overhead in
the network, the information is summarized (abstracted) in
reports. Furthermore, reports are only sent periodically.

Based upon this information, a supervisor employs its ex-
pertise, integrates directions from its superordinate super-
visor, and provides supervisory information to its subordi-
nates. As in human organizations, rules and suggestions are
used to transmit supervisory information. A rule is defined
as a tuple 〈c, F 〉, where

• c: a condition specifying a set of satisfied states

• F : a set of forbidden actions for states specified by c

A suggestion is defined as a tuple 〈c, A, d〉, where

• c: a condition specifying a set of satisfied states.

• A: a set of actions

• d: the suggestion degree, whose range is [−1, 1].

A suggestion with a negative degree, called a negative sug-
gestion, urges a subordinate not to do the specified actions.
In contrast, a suggestion with a positive degree, called a pos-
itive suggestion, encourages a subordinate to do the speci-
fied action. The greater the absolute value of the suggestion
degree, the stronger the impact of the suggestion on the su-
pervised agent.

Each rule contains a condition specifying states where it
can be applied. Subordinates are required to obey rules from
their supervisors. Due to their imperativeness, correct rules
greatly improve the system efficiency, while incorrect rules
can lead to inefficient policies. In contrast, suggestions are
used to express a supervisor’s preference for subordinates’
behavior, which may not be completely correct. Therefore,
a subordinate does not rigidly adopt suggestions. The effect
of a suggestion on a subordinate’s local decision making may
vary, depending on its current policy and state. A supervisor
will refine or cancel rules and suggestions as new or updated
information from its subordinates become available.

A set of rules are in conflict if they forbid all possible
actions on some state(s). Two suggestions are in conflict if
one is positive and the other is negative and they share some
state(s) and action(s). A rule conflicts with a suggestion if a
state-action pair is forbidden by the rule but is encouraged
by the suggestion. In our supervision mechanism, we assume
each supervisor itself is rational and will not generate rules
and suggestions that are in conflict. However, in a multi-
level supervision structure, a supervisor’s local decision may

1366

conflict with its superordinate direction. Rules have higher
priority than suggestions. There are several strategies for re-
solving conflicts between rules or between suggestions, such
as always taking its superordinate or local rule, stochasti-
cally selecting a rule, or requesting additional information
to make a decision. The strategy choice depends on the
application domain. Note that it may not always be wise
to select the superordinate decision, because, although the
superordinate supervisor has a broader view, its decision is
based on abstracted information. Our strategy for resolving
conflicts picks the most constraining rule and combines sug-
gestions by summing the degrees of the strongest positive
suggestion and the strongest negative suggestion.

5. MARL UNDER SUPERVISION
Using MARL, each agent gradually improves its action

policy as it interacts with other agents and the environment.
A pure policy deterministically chooses one action for each
state. A mixed policy specifies a probability distribution
over the available actions for each state. Both can be repre-
sented as a function π(s, a), which specifies the probability
that an agent will execute action a at state s. As argued
in [9], mixed policies can work better than pure policies in
partially observable environments, if both are limited to act
based on the current percept. Due to partial observability,
most MARL algorithms are designed to learn mixed poli-
cies. The rest of this section shows how MARL algorithms
learning mixed policies can take advantage of higher-level
information specified by rules and suggestions to speed up
convergence.

A typical MARL algorithm contains two components: pol-
icy (or action-value function) updating and action choice
based on the learned policy. One common method to speed
up learning is to supply an agent with additional reward to
encourage some particular actions [8]. The use of the special
reward affects both policy updating and action choice. In
a multi-agent context, special rewards may generate a pol-
icy that is undesirable in that they may distract from the
main goal, which is supported by the normal reward. In
contrast, our approach directly biases the action selection
for exploration without changing the policy update process.
Hence its effect on the final learned policy is transient (can
be turned off at any time), while reward shaping has a per-
manent effect.

As described previously, a rule explicitly specifies undesir-
able actions for some states and is used to prune the state-
action space. Suggestions, on the other hand, are used to
bias agent exploration. The strategy adopted for integrating
suggestions into MARL is that the lower the probability of a
state-action pair, the greater the effect a positive suggestion
has on it and the less the effect a negative suggestion has
on it. The underlying idea is intuitive. If the agent’s local
policy already agrees with the supervisor’s suggestions, it is
going to change its local policy very little (if at all); oth-
erwise, the agent follows the supervisor’s suggestions and
make a more significant change to its local policy.

Let R and G be the rule set and suggestion set, respec-
tively, that a worker received and π be its policy. We define
R(s, a) = {r ∈ R| state s satisfies the condition r.c and
a ∈ r.F}1 and G(s, a) = {g ∈ G| state s satisfies the con-

1We use ”.” as a projection operator. For example, r.c re-
turns the rule condition of rule r.

dition g.c and a ∈ g.A}. Then a new function πAC for the
action choice is defined as:

πA(s, a) =

8>>><>>>:
0 if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

∗ deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a))

∗ η(s) ∗ deg(s, a) else if deg(s, a) > 0

where deg(s, a) and η(s) are defined as following.
The function deg(s, a) determines the impact of sugges-

tions. We define deg(s, a) = max({g.d > 0|g ∈ G(s, a)}) +
min({g.d < 0|g ∈ G(s, a)}).2 With this definition, a worker
only considers the strongest suggestion, either positive or
negative. This definition is also used to resolve conflict-
ing suggestions (in a multi-level supervision organization)
by summing the degrees of the strongest positive suggestion
and the strongest negative suggestion.

The function η(s) is state-dependent and ranges from [0, 1].
It determines the receptivity for suggestions and allows the
agent to selectively accept suggestions based on its current
state. For instance, if an agent becomes more confident in
the effectiveness of its local policy on state s because it has
more experience with it, then η(s) decreases as learning pro-
gresses. For example, we set η(s) = k/(k+ visits(s)) where
k is a constant and visits(s) returns the number of visits on
the state s.

To normalize πAC such that it sums to 1 for each state,
the limit function from GIGA [13] is applied with minor
modifications so that every action is explored with minimum
probability ε:

πAC = limit(πAC) = argminx:valid(x)|πAC − x|

i.e., limit(πAC) returns a valid policy that is closest to πAC .
We have tested our approach in a distributed task alloca-

tion problem. Experimental results show that our approach
incorporated with some simple domain knowledge not only
dramatically speeds up the convergence rate, but also in-
creases the likelihood of convergence when an unsupervised
MARL algorithm fails to converge. Due to the space limit,
we describe our experiments in the technical report [12].

6. CONCLUSIONS
This work presents a scalable and robust framework that

enables efficient learning in large-scale multi-agent systems.
In our framework, the automated supervision mechanism
fuses activity information of lower-level agents and generates
supervisory information that guides and coordinates agents’
learning process. This supervision mechanism continuously
interacts with the learning process to accelerate the conver-
gence.

7. REFERENCES
[1] S. Abdallah and V. Lesser. Learning the task

allocation game. In AAMAS’06, 2006.

[2] S. Abdallah and V. Lesser. Multiagent reinforcement
learning and self-organization in a network of agents.
In AAMAS’07, 2007.

[3] B. Banerjee and J. Peng. Performance bounded
reinforcement learning in strategic interactions. In
AAAI’04, pages 2–7, 2004.

2If G(s, a) is empty, then deg(s, a) = 0.

1367

[4] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R.
Costa. Heuristic selection of actions in multiagent
reinforcement learning. In IJCAI’07, Hyderabad,
India, 2007.

[5] M. Bowling. Convergence and no-regret in multiagent
learning. In NIPS’05, pages 209–216, 2005.

[6] J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement
learning approach. In NIPS’94, volume 6, pages
671–678, 1994.

[7] R. Makar, S. Mahadevan, and M. Ghavamzadeh.
Hierarchical multi-agent reinforcement learning. In
Autonomous Agents’01, pages 246–253, 2001.

[8] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: theory and application
to reward shaping. In ICML’99, pages 278–287, 1999.

[9] S. P. Singh, T. Jaakkola, M. L. Littman, and
C. Szepesvari. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287–308, 2000.

[10] P. Stone and M. Veloso. Team-partitioned,
opaque-transition reinforcement learning. In
Autonomous Agents’99, pages 206–212, 1999.

[11] P. Tangamchit, J. Dolan, and P. Khosla.
Learning-based task allocation in decentralized
multirobot systems. In DARS’00, pages 381–390, 2000.

[12] C. Zhang, S. Abdallah, and V. Lesser. Improving
multi-agent learning through automated supervisory
policy adaptation. In University of Massachusetts
Amherst Computer Science Technical Report #08-03,
2008.

[13] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML’03,
pages 928–936, 2003.

1368

	AAMAS08_0286.pdf
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Markov Decision Process
	2.2 Spectral Graph Theory

	3. THE TRANSFER METHOD
	4. EXPERIMENTS
	4.1 Scaling Domain Transfer
	4.2 Topological Domain Transfer

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

