
Engineering Large-scale Distributed Auctions ∗

(Short Paper)
Peter Gradwell
University of Bath

Dept. of Computer Science
Claverton Down, Bath, UK

pjg@cs.bath.ac.uk

Michel Oey
Vrije Universiteit Amsterdam,
Dept. of Computer Science,

The Netherlands
michel@cs.vu.nl

Reinier Timmer
Vrije Universiteit Amsterdam,
Dept. of Computer Science,

The Netherlands
rjtimmer@cs.vu.nl

Frances Brazier
Vrije Universiteit Amsterdam,
Dept. of Computer Science,

The Netherlands
frances@cs.vu.nl

Julian Padget
University of Bath

Dept. of Computer Science
Claverton Down, Bath, UK

jap@cs.bath.ac.uk

ABSTRACT
The functional characteristics of market-based solutions are typi-
cally best observed through the medium of simulation, data-gather-
ing and subsequent visualization. We previously developed a simu-
lation of multiple distributed auctions to handle resource allocation
(in fact, bundles of unspecified goods) and in this paper we want to
deploy an equivalent system as a distributed application. There are
two notable problems with the simulation-first, application-second
approach: (i) the simulation cannot reasonably take account of net-
work effects, and (ii) how to recreate in a distributed application
the characteristics demonstrated by the mechanism in the simula-
tion. We describe: (i) the refactorings employed in the process
of transforming a uni-processor lock-step simulation into a multi-
processor asynchronous system, (ii) some preliminary performance
indicators, and (iii) some reflections on our experience which may
be useful in building MAS in general.

Categories and Subject Descriptors
C.4 [Performance of systems]: Performance attributes; I.2.11 [Dis-
tributed Artificial Intelligence]: Multi-agent systems; I.6.3 [Sim-
ulation and Modeling]: Applications

General Terms
Distributed systems, Refactoring, Performance

Keywords
Simulation, auctions, performance, distributed systems, multi-agent
systems, AgentScape, refactoring

∗This research is in part supported by the NLnet Foundation,
http://www.nlnet.nl.

Cite as: Engineering Large-scale Distributed Auctions (Short Paper),
Gradwell, Oey and Timmer, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
The combinatorial auction (CA) is capable of delivering the op-

timal solution to a resource allocation problem. Although the theo-
retical cost is high, in practice, even heuristically unsophisticated
solvers like CASS [5] can handle many problems quite rapidly,
while CombineNet [9] services can handle a very large class of
problems. However, there are circumstances that may make com-
binatorial auctions inappropriate: (i) if resources and bidders are
distributed, the centralization intrinsic to a combinatorial auction
may be problematic,(ii) under soft real-time constraints, an anytime
(sub-optimal) algorithm may be preferable to an optimal algorithm
with an unpredictable runtime—for example, [3] describe an any-
time polynomial algorithm guaranteed to be within a bound of the
optimal, and each step reduces the bound, (iii) the single-point-of-
failure intrinsic to combinatorial auctions may pose an unaccept-
able risk for system resilience.

In an earlier paper [4], we reported on the economic charac-
teristics and run-time performance of a market-based approach in
comparison with a CA, when both are applied to common, stan-
dard data sets [5]. In this paper we present the issues that have
arisen in refactoring a uni-processor agent-based simulation into a
distributed agent application (using the AgentScape platform), net-
work. There are two challenges in achieving this transition:

• Concurrency: how to introduce just enough concurrency to
give an advantage but not so much as might paralyze or lead
to significant numbers of delicate timing bugs. We refactor
the original synchronous simulation a step at a time in order
to constrain the available concurrency.

• Communication: distributed systems usually embody sig-
nificant communication overheads. Careful placement of pro-
cesses and resources helps to exploit locality. In addition,
we are able to determine the impact of additional messaging
overhead required to facilitate a distributed architecture.

The paper is structured as follows. The starting point is the sys-
tem requirements which are set out in section 2 along with an out-
line of the multiple distributed auction architecture and its realiza-
tion in AgentScape. We follow this with a summary of some pre-
liminary performance data (section 3). In section 4, we reflect on
what has been learnt so far and then conclude with a discussion and
identification of future directions.

Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,pp. 1311-
1314.

2. ARCHITECTURE
In [4] we contrast two resource allocation mechanisms:
(i) The CASS combinatorial auction solver system [5], where

the solver is given a set of m indivisible non-identical items
for sale and n bids and a winner determination algorithm [2]
computes (NP-hard) an allocation of m items across the n bids
that maximizes the total social welfare (sum of the buyer and
seller profit) in the system. CASS is a freely available uni-
processor application that implements the basic functionality
of a branch-and-bound search.

(ii) As set of single item (one for each type of good traded) con-
tinuous double auctions (CDAs), that taken together we call a
Multiple Distributed Auction (MDA). A MDA distributes the
bundling task between the market traders, whose job it is to
subscribe to multiple auctions to buy individual items and so
satisfy bundle requests. Consequently, MDA moves the sys-
tem objective from achieving the maximum valuation for the
sellers (the CA objective) to maximizing the number of ele-
ments traded and achieving the best price for the buyer. We
have developed a uni-processor simulation of MDA using the
Repast framework [4]

These two systems have been compared using the L2 data-set
from CATS [6] to produce a set of available bids and items. From
a random starting position, the MDA agents (implemented using
JASA [8]) then buy and sell the goods, through many rounds, until
the market stabilizes and the level of trade tends to zero, indicating
that none of the available items matches the bids being requested.
After checking that the market has stabilized by verifying all goods
have passed through the market once, the simulation then continues
for as many ticks again as have already passed before we close the
market.

2.1 MDA components
The Multiple Distributed Auctions system comprises:

Oracle: responsible for handing out bundles to traders on demand.
Varying the Oracle’s output defines the supply and demand
in the market. Bundles can be both requested from the Ora-
cle and returned to it (if they cannot be purchased/sold). All
transactions are reported to the Oracle, so it maintains infor-
mation and history about the market participants.

Trader: responsible for retrieving bundles from the Oracle and
trading them. Traders who fail to trade their bundle within a
given number of rounds must return them to the Oracle — en-
suring the market does not contain too many extra-marginal
traders.1 At any one time, traders can be buyers or sellers
depending on the type of bundle received from the Oracle.
Traders can switch state (from buying to selling) which might
happen, for example, if they decided that they could not com-
plete a bundle as they could then sell all the items they had
currently purchased.

CDA (continuous double auction): CDAs are the market places
where traders can trade a single type of resource. An MDA
is a collection of CDAs.

MDA Manager: responsible for telling the traders which CDAs
they can use to trade the resources in their bundles. The
MDA stores a reference to all CDAs and if a CDA is re-
quested for a good type that does not already exist the MDA
manager will instantiate it.

The Repast implementation of the MDA simulation uses a lock-
step model, in which at every step (or round) the following three

1Buyers who have paid less than the equilibrium price and sellers
who are selling for more than the equilibrium price.

sub-steps are performed sequentially:
(i) All traders are instructed to check the status of their current

bundle. If the bundle is still in progress, nothing is done. If
the bundle has been completed or has failed (the trader has
given up), they acquire a new bundle from the Oracle.

(ii) All auctions are instructed to perform one round. A round
consists of asking all participating traders to send a shout (a
bid or an ask). Any matches will be reported to the corre-
sponding traders.

(iii) All traders are instructed to get any trade results. At this point,
the statistics are updated with completed or failed bundles.

2.2 Distributed Architecture
As described above, the centralized MDA implementation runs

the simulation sequentially. A single thread of execution runs the
rounds of all auctions. However, in a distributed system, all pro-
cesses that have no direct effect on each other can often be exe-
cuted in parallel. In the case of the MDA simulation, each auction
could in principle run in parallel, which could lead to performance
improvements.

Unfortunately, in order for the results of the distributed MDA to
be comparable to the centralized one, the notion of rounds as de-
scribed above must still be kept. Within each round, we can utilize
parallelism to improve performance as, within a step, actions can
be executed in parallel. In other words, in step one, all traders can
check their progress simultaneously; in step two, all auctions can
run one round in parallel; and in step three, all traders can process
the trade results in parallel.

The distributed implementation uses AgentScape [7], a frame-
work for heterogeneous, mobile agents, as a base. In an agent sys-
tem, typically the work is divided among several agents, which all
perform a part of the work. Because AgentScape can distribute
agents over multiple hosts, this helps in spreading the load of an
application.

2.3 Refactoring MDA using AgentScape
The conversion of the sequential MDA simulation to one built on

AgentScape takes place in three phases:
(i) Refactoring for distribution: The application is split into

different components to be distributed by AgentScape. Prefer-
ably, each of the components should be able to function sep-
arately without requiring significant amounts of communica-
tion.

(ii) Load balancing: Distributing an application alone does not
change the sequential nature of the application. Operations
should be performed in parallel whenever this is possible, oth-
erwise most hosts are idle most of the time. Instead, the load
of each host should be maximized as much as possible, while
minimizing the amount of communication that is required.

(iii) Performance analysis: Once the application is running on
AgentScape, it is appropriate to analyze the performance, and
look for hot-spots that can be optimized.

Splitting up the centralized MDA simulation into different com-
ponents was straightforward, and in this case helped by the fact
that the original MDA already has a modular design. Both traders
and auctions (CDA) are mapped onto agents, as they can mostly
function independently of each other. Each trader receives bundles
of resources from the Oracle (which is also an agent) and creates
a sub-trader for each one of the resources in the bundle. The task
of a sub-trader is to sell/buy that particular resource in the auction
that is responsible for trading that specific resource. The sub-trader
uses the ZIP (Zero-Intelligence Plus) strategy [1] for bidding on the
resource. For each resource, there is exactly one auction where that

resource is traded. Once a sub-trader has finished (the resource is
traded or the bidding has timed out) the results are sent back to the
trader that created that sub-trader. A trader has succeeded in fulfill-
ing its bundle if all its sub-traders have succeeded in trading their
respective resources from the bundle.

After distributing the simulation it is necessary to parallelize it
(step (ii)). Originally, the MDA manager keeps track of the rounds
and asks all of the agents in turn to perform their work. However,
traders do not need to communicate with each other, and therefore,
they can work in parallel (see also section 2.2). Instead of asking
the traders one by one, the MDA manager can request all traders
to perform their work simultaneously (using a broadcast). Subse-
quently, the MDA manager waits for all the traders to complete and
then tells the auctions to perform their work. Similar to the traders,
the auctions can also run in parallel. So, the MDA can also set
the auctions running simultaneously. Once a round is finished, the
MDA model enters the next round.

2.4 Performance evaluation
The initial distributed implementation in AgentScape was about

2000 times slower than the sequential implementation. After anal-
ysis, two key performance issues were apparent:

(i) The high overhead of AgentScape messaging between nodes.
(ii) The inefficiency of the sequential processing model in Repast,

which meant that the truly parallel nature of AgentScape could
not be fully exploited.

2.4.1 Messaging Overhead
In order to enable a smooth transition from the existing appli-

cation to the distributed system, each object in the centralized ap-
plication is encapsulated by an agent that permit access to these
objects through remote method invocations. Consequently, these
objects can now be distributed over multiple computers, but may
still access each other by simply calling each other’s methods.

Even though these agents help to distribute the objects, it makes
the entire application significantly slower, because all method in-
vocations are now sent over messages. In the sequential MDA, the
cost of a method call was negligible, but for a distributed system,
a remote method invocation has a much higher latency, due to the
sending and receiving of messages. The more remote invocations,
the higher the cost.

Analyzing this message traffic provided information on which
agents communicated the most, and offered a first means to im-
prove performance. Two relatively simple optimizations were as
follows: (i) Cache method invocation results, whenever possible.
(ii) Group method invocations that are often called in sequence into
a single invocation, which saves multiple invocations. These opti-
mizations generally do not require restructuring of the application
and as such are easy to implement.

Other attempts at reducing the number of messages involved
more structural changes. For example, in the MDA simulation
some agents communicate only with a few others. For example,
each resource (sub) trader almost exclusively communicates with a
single auction object. Therefore, moving the resource trader to the
node where the auction runs so that it could perform its work local
to the auction saved a lot of remote messaging.

Another issue that involves a lot of messaging is polling. In the
sequential MDA, traders poll the auctions for the results of their
sub-traders on every round. A notification scheme, in which the
auction notifies the traders only when any results are available, fur-
ther decreased the number of messages.

2.4.2 Synchronization overhead
In order to ensure that the results of the centralized and decen-

tralized systems remain directly comparable, both use a single man-
ager for keeping track of rounds. On each round, every agent runs
its part of the round, after which it waits for the next round to be-
gin. As a consequence, in the distributed MDA a large amount of
time is spent waiting. Even though auctions can run in parallel,
they cannot continue working on a new round until all others are
finished with the previous round.

Having to synchronize is not problematic if the costs of doing so
are relatively small compared to the amount of work that has to be
done by the agents. In this application, however, the average time
for an auction to process shouts is less than the time it takes to send
and receive a message. For example, when running an auction with
a lot of traders, a message has to be sent to each one of these to get
them to send in a shout.

A larger grain size would reduce the impact of the messaging
overhead. This could be obtained by allowing traders and auctions
to perform multiple steps at once. However, in the current design
traders check the status of their bids in all of the auctions they par-
ticipate in on every round. This operation allows them to maintain
accurate control of funds, but it restricts the auctions and traders to
performing only a single round at a time.

If the amount of work done by each individual agent is what de-
mands the most of the processing time, then distribution would be
more successful. However, in the current MDA simulation the cost
comes from having to perform work for many individual agents.
All agents have to be coordinated, though each individual agent
performs relatively little work.

3. RESULTS AND TESTING

3.1 Testing Objectives
In our experiments, we varied two parameters. Firstly, we changed

the number of servers running the AgentScape environment, to test
the overheads of the inter-environment communication. Secondly,
we ran multiple data-sets on both the centralized and distributed en-
vironments, to determine the run-time performance of the systems
relative to each other.

Our objectives in testing were:
(i) to consider the impact of the overhead imposed by the com-

munication between nodes, which we can demonstrate by in-
creasing the number of nodes in the system and monitoring
run-times and market throughput (the total number of bids
traded in the market simulation). We would anticipate that
increasing the number of processor nodes would increase the
CPUs available for the system, but that adding more nodes
will distribute the problem more sparsely and hence increase
the amount of inter-node communication.

(ii) to run a number of simulations using the L2 data-set, to com-
pare both the overall run-times and market throughput of the
AgentScape and Repast simulations.

All our simulation experiments used a population of 400 agents.

3.2 Initial Results
Our AgentScape simulations were run on a single node and on

multiple nodes on a cluster computing system. When communicat-
ing locally, the inter-agent method calls pass directly between Java
objects. When the agent is remote, AgentScape uses the custom
remote method invocation mechanism to facilitate communication
between agents running on different AgentScape platforms.

Our experiments showed that all runs across any number of CPUs
produced similar market throughput. Additionally, all experiments

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
to

 c
om

pl
et

e
(s

ec
on

ds
*1

00
0)

 (l
og

ar
ith

m
ic)

data instance ordered by runtime

MDA and MDA-AS Run Times (ticks adjusted into seconds, ordered by runtime)

MDA run MDA-AS run

Figure 1: Run-times - MDA and MDA-AS

run to completion within a similar number of “ticks” (clock cycles).
Therefore, we are reassured that our system produces identical out-
put regardless of the number of processors used.

The major—and expected—difference between all our runs is
that the run-time in AgentScape is much greater than the Repast
run-time, and that the AgentScape run-time rises as the number of
processors increases (as shown by the error bars in Figure 1 which
give the minimum and maximum run time values, with 1 CPU be-
ing fastest and 64 CPUs being slowest). Figure 1 reproduces a
graph from [4], displaying the run-time (solid line) for the differ-
ent data-sets of L2, ordered by run-time, for solution by the MDA
running in Repast. Above this, each error-bar shows the range and
the median for solving data-sets 100, 200, 300 and 400 (as ordered
by run-time) from L2 using 1, 2, 4, 8, 16, 32 and 64 processors.
Predictably, the bottom of the error-bar corresponds to 1 processor
and the top to 64.

4. EVALUATION AND DISCUSSION
MAS software development is characteristically evolutionary and

a common starting point is a proof-of-concept system running on
a single machine utilizing an agent platform or even a simulation
framework. The software engineering challenge lies in how to scale
that demonstrator up into a system comprising many more agents
running over multiple machines. A large-budget solution might
throw away the demonstrator and rewrite from the ground up, but
there are many risks with this approach as well as high costs. An
alternative approach, that is the subject of this paper, is to refactor
the demonstrator into a large-scale system, taking advantage of the
incremental nature of the changes applied and regression testing to
create confidence in the process and the outcome.

We have pursued this approach and have transformed a central-
ized Repast simulation of a Multiple Distributed Auction (MDA)
into a multi-agent system, supporting large numbers of agents par-
ticipating in large numbers of auctions on distributed machines.
The AgentScape mobile agent platform was used to distribute the
entities in the MDA over multiple hosts and to provide the nec-
essary communication between these entities. Unfortunately, the
empirical evidence from the experiments show that the communi-
cation overhead of the distributed market is quite large compared
to the benefit of gaining more computing resources.

As discussed, the large communication overhead is mainly due to
encapsulating all the messaging in an RMI data-exchange mecha-
nism. In fact, the grain-size of the work that can be done in parallel

is relatively small compared to the communication overhead. In
addition, the problem size (1000 goods, 256 bids, 400 agents) or
“payload” is sufficiently small to be computable on a single high
performance CPU.

However, the choice to constrain the asynchronous nature of the
distributed simulation by keeping the notion of rounds, did make it
possible to compare the results with the centralized simulation. Un-
fortunately, this choice also meant much synchronization between
traders and auctions, which lowered overall performance. A fully
asynchronous simulation would probably show better performance,
and this is the objective of the next stage of our work.

In conclusion, it has proved to be difficult to optimize the speed
of the MDA market simulation by distributing over multiple hosts,
while still respecting the synchronization constraints from the orig-
inal Repast simulation. Synchronizing agents is very time consum-
ing due to the amount of messaging involved. However, the barrier
synchronization can be removed, at the cost of a more complex
refactoring of the original code, and at the cost of producing simi-
lar but not identical results to the original code. Thus, the process
reported here has been a tedious but necessary step to demonstrate
functional equivalence before we move on to a situation in which
we must define and demonstrate functional similarity.

5. REFERENCES
[1] D. Cliff. Minimal-intelligence agents for bargaining behaviors

in market-based environments. Technical Report HP–97–91,
Hewlett Packard Laboratories, Bristol, England, 1997.

[2] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2005. ISBN:
0-262-03342-9.

[3] V. D. Dang and N. R. Jennings. Optimal clearing algorithms
for multi-unit single-item and multi-unit combinatorial
auctions with demand/supply function bidding. In ICEC ’03:
Proceedings of the 5th international conference on Electronic
commerce, pages 25–30. ACM Press, 2003.

[4] P. Gradwell and J. Padget. A comparison of distributed and
centralised agent based bundling systems. In ICEC ’07:
Proceedings of the ninth international conference on
Electronic commerce, pages 25–34, New York, NY, USA,
2007. ACM Press.

[5] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical
Hardness Models for Combinatorial Auctions, chapter 19.
MIT Press, 2006.

[6] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a
universal test suite for combinatorial auction algorithms. In
ACM Conference on Electronic Commerce, 2000.

[7] B. J. Overeinder and F. M. T. Brazier. Scalable middleware
environment for agent-based Internet applications. In Applied
Parallel Computing, volume 3732 of Lecture Notes in
Computer Science, pages 675–679. Springer, Berlin, 2006.

[8] S. Phelps, M. Marcinkiewicz, and S. Parsons. A novel method
for automatic strategy acquisition in n-player non-zero-sum
games. In AAMAS ’06: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent
systems, pages 705–712, New York, NY, USA, 2006. ACM
Press.

[9] T. Sandholm. Expressive commerce and its application to
sourcing: how we conducted $35 billion of generalized
combinatorial auctions. In ICEC ’07: Proceedings of the ninth
international conference on Electronic commerce, pages
349–350, New York, NY, USA, 2007. ACM Press.

