
On K-optimal Distributed Constraint Optimization
Algorithms: New Bounds and Algorithms

Emma Bowring*, Jonathan P Pearce+, Christopher Portway+, Manish Jain+,
Milind Tambe+

*University of the Pacific, Stockton, CA 95211
+University of Southern California, Los Angeles, CA 90089

ebowring@pacific.edu
{jppearce,portway,manish.jain,tambe}@usc.edu

ABSTRACT
Distributed constraint optimization (DCOP) is a promising approach
to coordination, scheduling and task allocation in multi agent net-
works. In large-scale or low-bandwidth networks, finding the global
optimum is often impractical. K-optimality is a promising new ap-
proach: for the first time it provides us a set of locally optimal algo-
rithms with quality guarantees as a fraction of global optimum. Un-
fortunately, previous work in k-optimality did not address domains
where we may have prior knowledge of reward structure; and it
failed to provide quality guarantees or algorithms for domains with
hard constraints (such as agents’ local resource constraints). This
paper addresses these shortcomings with three key contributions.
It provides: (i) improved lower-bounds on k-optima quality incor-
porating available prior knowledge of reward structure; (ii) lower
bounds on k-optima quality for problems with hard constraints; and
(iii) k-optimal algorithms for solving DCOPs with hard constraints
and detailed experimental results on large-scale networks.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence;
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Design, Theory

Keywords
Constraint reasoning, DCOP, Multi Agent Systems, k-optimality

1. INTRODUCTION
Distributed Constraint Optimization(DCOP) [7, 6, 13] is a ma-

jor approach within cooperative multiagent systems for distributed
planning, scheduling and task allocation, and it has been applied to
multi-agent plan coordination[2] , sensor networks [13, 4] , meet-
ing scheduling [10] and RoboCup soccer [11]. In DCOP, teams
of agents coordinate their individual actions to achieve joint goals,
but the utility of an agent’s action depends on the action choices

Cite as: On K-optimal Distributed Constraint Optimization Algorithms:
New Bounds and Algorithms, Emma Bowring, Jonathan Pearce, Christo-
pher Portway, Manish Jain, Milind Tambe, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes,MüllerandParsons(eds.),May,12-16.,2008,Estoril,Portugal,
pp.607-614.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of a subset of the other agents. Traditionally, DCOP has focused
on obtaining a single, globally optimal solution through complete
algorithms like Adopt [7], OptAPO [6], and DPOP [10]. However,
DCOP has been shown to be NP-hard[7], so in large-scale domains,
complete algorithms incur tremendous computation and communi-
cation costs. In contrast, incomplete algorithms, in which agents
optimize locally, are easier to scale up [3, 12, 8, 9].

K-optimal algorithms are an important class of incomplete algo-
rithms[3, 12, 8, 9] where agents dynamically form local groups to
coordinate action choices. A k-optimum occurs when no group of k
or fewer agents can improve the solution. k-optimal algorithms are
the first set of incomplete algorithms that provide theoretical guar-
antees such as the worst-case solution quality and upper bounds on
the number of k-optima in a DCOP. These guarantees are impor-
tant: not only do they guarantee a solution quality as a fraction of
the global optimum when running a k-optimal algorithm, but they
can aid in algorithm selection and network structure selection in sit-
uations when coordination costs must be weighed against solution
quality. If increasing k will significantly increase the guaranteed
solution quality, the extra computation or communication cost in-
curred by the k-optimal algorithm with higher k may be justified.

Unfortunately, previous work in k-optimality suffers from three
key shortcomings which limits applicability to newer domains. First,
it did not address domains where we may have prior knowledge
of DCOP reward structure, and thus provided pessimistic quality
guarantees. Yet in many domains we may have some information
about the range of rewards that may be obtained. For example, in
sensor networks[13], we may know the maximum reward of ob-
serving a phenomenon and the minimum reward when we have
no observations. Second, previous work failed to provide quality
guarantees for domains with hard constraints. However, in many
domains, hard constraints exist, and solutions that violate a hard
constraint are not useful. For example, a schedule where two peo-
ple disagree on the time of their meeting with each other may be
considered useless, no matter how good the schedule is for other
people. Additionally, previous k-optimality work did not consider
multiply constrained DCOPs where the hard constraints represent
travel budgets[1]. Third, previous work failed to provide algo-
rithms for domains involving such hard resource constraints. This
paper addresses these shortcomings with three key contributions.
It provides: (i) lower-bounds on k-optima quality incorporating
available prior knowledge of reward structure; (ii) lower bounds
on k-optima quality for problems with hard constraints; and (iii) k-
optimal algorithms for solving DCOPs with hard constraints, along
with experimental results for networks of 1000 agents.

607

1 2 3

R
23

R
12

501

0100

10

1101

0200

10

Figure 1: DCOP example

2. BACKGROUND

2.1 DCOP
A DCOP is a set of variables (one per agent) N := {1, . . . , n}

and a set of domains A := {A1, . . . ,An}, where the ith variable
takes value ai ∈ Ai. We denote the joint action (or assignment)
of a subgroup of agents S ⊂ N by aS := ×i∈Sai ∈ AS where
AS := ×i∈SAi and the joint action of the multi-agent team by a =
[a1 · · · an]. (Since we assume each agent controls a single variable,
we will use the terms “agent" and “variable" interchangeably.)

Valued constraints exist on various subsets S ⊂ N of DCOP
variables. A constraint on S is expressed as a reward function
RS(aS). This function represents the reward to the team gen-
erated by the constraint on S when the agents take assignment
aS . We refer to these subsets S as “constraints" and the functions
RS(·) as “reward functions". A DCOP can be depicted graphically
with each node representing an agent and each edge representing
a constraint (or hyper-edge in the case of constraints on more than
two agents). Given that DCOPs are motivated by agents’ privacy
and communication overheads, non-neighboring agents in DCOPs
do not communicate with (or directly reveal their values to) each
other. The solution quality for a particular complete assignment a,
R(a), is the sum of the rewards for that assignment from all con-
straints (captured in the set denoted by θ) in the DCOP:R(a) =P
S∈θ RS(aS).
Example 1: Figure 1 shows a binary DCOP in which agents

choose actions from the domain {0, 1}, with rewards shown for the
two constraints S1,2 = {1, 2} and S2,3 = {2, 3}. If both agents 2
and 3 choose the value 1, the team gets a reward of 11. If agent 1
now chooses 1 as well, the total solution quality of this complete
assignment is 16.

2.2 Deviating Groups and k-optimality
For two assignments, a and ã, the deviating group D(a, ã) :=
{i ∈ N : ai 6= ãi}, is the set of agents whose assignment in ã
differs from in a. In Figure 1, for assignments [1 1 1] and [0 1 0],
the deviating group D([1 1 1], [0 1 0]) = {1, 3}. The distance
d(a, ã) is the cardinality of D(a, ã). The relative reward of a with
respect to ã is

∆(a, ã) := R(a)−R(ã) =
X

S∈θ:S∩D(a,ã)6=∅
[RS(aS)−RS(ãS)]

Here θ is the set of all constraints, S is a particular constraint, RS
is the reward for that constraint and R(a) is the total reward for
the assignment a. Only constraints involving deviating agents need
be considered, since the other rewards remain unchanged between
assignments.

An assignment a is k-optimal if ∆(a, ã) ≥ 0 ∀ãwhere d(a, ã) ≤
k. In a k-optimal, no subgroup of cardinality ≤ k can improve the
team reward by changing their assignment. In Figure 1, the as-
signment a = [1 1 1] has a reward of 16 and is 1-optimal because
deviation by any single agent reduces the team reward. If agent 1
changes value from 1 to 0, the reward on S1,2 decreases from 5 to
0. Similar decreases occur if agents 2 or 3 individually switch val-
ues. However, [1 1 1] is not 2-optimal because if {2, 3} switched to
[1 0 0], the team reward would increase from 16 to 20. The global
optimal, a∗ = [0 0 0] is k-optimal for all k.

3. QUALITY GUARANTEES
A key proven property of k-optimal solutions is the lower bound

on solution quality :- assuming no knowledge of reward structure
except for that they are non-negative and the lack of hard con-
straints, [8] provide bounds on the worst case quality of a k-optimal
solution as a fraction of the global optimal. For example, for a com-
pletely connected binary DCOP graph of 6 nodes, assuming non-
negative non-hard constraints, a 4-optimal solution (i.e. k = 4) is
guaranteed to provide a solution quality of within 3

7
of the global

optimal. It is now crucial to improve upon these bounds for appli-
cations in newer domains.

3.1 Assumptions on Reward Structure
Previous work on k-optimal quality guarantees failed to consider

the case where we may have some prior knowledge of the reward
structure. Yet in many domains we do have some such knowledge.
In particular, we may know a priori that the minimum reward on
any constraint is a certain fraction β of the maximum reward on any
constraint. For example, if we consider sensor agent networks[13],
we may know the maximum and minimum reward possible for
scanning any region covered by the network, and thus know that
the minimum reward is a fraction β of the maximum (β is the ratio
of the least minimum reward to the maximum reward). This prior
knowledge already allows us to conclude that any k-optimal assign-
ment is guaranteed to be at least a fraction β of the global optimal.
However, can we provide a guarantee for a k-optimal assignment
that is better than both β and the guarantee provided in [8]? The
following answers the question in the affirmative.

PROPOSITION 1. For any DCOP of n agents, with constraint
arity ofm, where all constraint rewards are non-negative, where a∗

is the globally optimal solution, and where β is the least minimum
reward to maximum reward ratio among all constraints, then, for
any k-optimal assignment a where m ≤ k < n,

R(a) ≥
`
n−m
k−m

´
+ β

Pm−1
i=1

`
m
i

´`
n−m
k−i

´`
n
k

´
−
`
n−m
k

´ R(a∗).

Proof: Given the k-optimal assignment a and the global opti-
mal a∗, let the set Âa,k contain all assignments â where exactly k
agents have switched from their values in a to their values in a∗.
Since a is k-optimal, R(a) ≥ R(â),∀â ∈ Âa,k.

For any assignment â ∈ Âa,k, the DCOP constraints θ can be
divided into three sets: θ1, θ2, θ3. The set θ1(a, â) contains con-
straints where all agents in â have deviated from their values in a;
θ2(a, â) contains constraints where no agents have deviated from
their values in a; and θ3(a, â) contains the remaining constraints.

• θ1(a, â) ⊂ θ s.t. ∀S ∈ θ1(a, â), S ⊂ D(a, â).

• θ2(a, â) ⊂ θ s.t. ∀S ∈ θ2(a, â), S ∩D(a, â) = ∅.

• θ3(a, â) ⊂ θ s.t. ∀S ∈ θ3(a, â), S /∈ θ1(a, â) ∪ θ2(a, â)

whereD(a, â) represents the deviating group between a and â. The
sum of rewards of all assignments â in Âa,k isX
â∈Âa,k

R(â) =
X

â∈Âa,k

X
S∈θ1(a,â)

RS(â) +
X

â∈Âa,k

X
S∈θ2(a,â)

RS(â)+

X
â∈Âa,k

X
S∈θ3(a,â)

RS(â) (1)

Since a is k-optimal, R(a) ≥ R(â) for any â where at most
k agents have deviated from the k-optimal assignment. Hence

608

R(a) ≥ R(â), ∀â ∈ Âa,k. Therefore,

|Âa,k|R(a) ≥
X

â∈Âa,k

R(â) (2)

Thus to obtain a bound on R(a), we will establish the value of
the right hand side of the Equation 2. In [8], the first two terms of
Equation 1 have been established to satisfy the inequalities:X

â∈Âa,k

X
S∈θ1(a,â)

RS(â) ≥
“d(a, a∗)−m

k −m

”
R(a∗) (3)

X
â∈Âa,k

X
S∈θ2(a,â)

RS(â) ≥
“d(a, a∗)−m

k

”
R(a) (4)

However, [8] assumed that the third term in the Equation 1 was
zero, i.e. no assumptions were made about reward structure yield-
ing a pessimistic bound.

Using β, we will now express the third term in Equation 1 in
terms ofR(a∗). Let Γa,i,k3 (S) denote the set of all â ∈ Âa,k where
m-ary constraint S ∈ θ3(a, â), and exactly i agents in S have
deviated from the k-optimal solution (note that 1 ≤ i ≤ m − 1,
else if i = 0, S ∈ θ2 and if i = m,S ∈ θ1). Thus the third term of
Equation 1 can be written asX

â∈Âa,k

X
S∈θ3(a,â)

RS(â) =
X
S∈θ

m−1X
i=1

X
â∈Γ

a,i,k
3 (S)

RS(âS) (5)

We now estimate the size of set Γa,i,k3 , so that we can computeP
â∈Γ

a,i,k
3

RS(âS). For any assignment â ∈ Γa,i,k3 (S), there are
exactly i agents deviating in S. We can choose the i deviating
agents within constraint S in

`
m
i

´
ways, because the arity of S is

known to be m. This means that we have now assigned a value to
all thesem agents of assignment â, with exactly i of them chosen to
deviate and rest m− i as to not deviate. However, in our DCOP of
n agents, there have to be k deviating agents because D(a, â) = k
by design. Therefore, n − m agents remain from which we have
to choose the remaining of the k − i deviating agents. This can
be done in

`
n−m
k−i

´
ways. Therefore, the number of assignments in

Γa,i,k3 (S) is
`
m
i

´`
n−m
k−i

´
. Therefore,

X
S∈θ

m−1X
i=1

X
S∈Γ

a,i,k
3

RS(âS) =
X
S∈θ

m−1X
i=1

“m
i

”“n−m
k − i

”
RS(âS)

Now, we know that for this constraint, RS(aS) ≥ βRS(a∗S).

X
S∈θ

m−1X
i=1

X
S∈Γ

a,i,k
3

RS(âS) ≥ β
X
S∈θ

m−1X
i=1

“m
i

”“n−m
k − i

”
RS(a∗S)

≥ β
m−1X
i=1

“m
i

”“n−m
k − i

”
R(a∗) [since

X
S∈θ

RS(a∗S) = R(a∗)] (6)

Substituting terms from Equations 1, 3, 4 and 6 in Equation 2,“d(a, a∗)

k

”
R(a) ≥

“d(a, a∗)−m
k −m

”
R(a∗) +

“d(a, a∗)−m
k

”
R(a)

+β

m−1X
i=1

“m
i

”“n−m
k − i

”
R(a∗)

which is minimized when d(a, a∗) = n, representing the case
when a has no agent assignments in common with a∗. Therefore,

R(a) ≥
`
n−m
k−m

´
R(a∗) +

`
n−m
k

´
R(a) + β

Pm−1
i=1

`
m
i

´`
n−m
k−i

´
R(a∗)`

n
k

´
(7)

which on solving proves the Proposition 1 �

Example 2: We focus on an example from [8] for illustration,
which considers a DCOP with five agents (n = 5) numbered 1
to 5, with domains of {0,1}. Suppose that this DCOP is a fully
connected binary DCOP (m = 2) with non-negative constraints
between every pair of agents. We are to look for guarantees for a 3-
optimum for this graph, and we are given a β = 0.5. In [8], which
does not take into account β, the 3-optimum is only guaranteed to
be 1/3 of the global optimal, i.e. R(a) ≥ 1

3
R(a∗). Only taking

into account β = 0.5, we can only guaranteeR(a) ≥ 1
2
R(a∗).We

now show the result of Proposition 1.
To illustrate how the proof of the Proposition 1 works, suppose

that a = [0 0 0 0 0] is a 3-optimum, and that a∗ = [1 1 1 1 1]
is the global optimum. Then d(a, a∗) = 5. We now consider
the set Âa,k discussed above. We can show that Âa,k contains`
d(a,a∗)

k

´
= 10 assignments, which are: [1 1 1 0 0], [1 1 0 1 0],

[1 1 0 0 1], [1 0 1 1 0], [1 0 1 0 1],[1 0 0 1 1], [0 1 1 1 0], [0 1 1 0 1],
[0 1 0 1 1], [0 0 1 1 1]. These are all the assignments that deviate
from a by 3 actions and take the value from the optimal solution
in those deviations. Given this |Âa,k|, from Equations 3 and 4 we
can conclude that the first two terms of Equation 1 are greater than`

5−2
3−2

´
R(a∗) and

`
5−2

3

´
R(a) respectively.

Now focus on the third term of Equation 1. Here we only fo-
cus on the constraints from θ3(a, â), and calculate the number of
assignments in the set Âa,k where exactly one agent in a particu-
lar constraint deviates from the k-optimal solution a, i.e. the size of
Γa,1,33 . For our binary DCOP this value is 2 ·

`
n−2
k−1

´
= 6. For exam-

ple, for S = {1, 2}, â1 = a∗1 = 1 and a2 = 0 for â = [1 0 1 1 0],
[1 0 1 0 1], and [1 0 0 1 1]. Similarly, a1 = 0 and â2 = a∗2 = 1 for
â = [0 1 1 1 0], [0 1 1 0 1], and [0 1 0 1 1]. Since we assume the
value of β to be 0.5, by combining these constraints in θ3(a, â), the
third term of Equation 1 ≥ 0.5 · 6R(a∗) = 3R(a∗)

Thus Equation 7 gives us 10 · R(a) ≥ 3 · R(a∗) + 1 · R(a) +
0.5·6·R(a∗), and henceR(a) ≥ 3+3

10−1
R(a∗) = 2

3
R(a∗).We have

thus improved upon the bound provided by either of the earlier two
methods. �

While Proposition 1 provides a lower bound on solution qual-
ity in constant time, it ignores the DCOP graph structure. To pro-
vide guarantees taking into account DCOP graph structure, we use
the linear fractional program (LFP) technique, earlier used in [8].
However, β changes the nature of this LFP. In particular, for each
m-ary constraint S in the DCOP, we have multiple variables in the
LFP. The first variable represents the reward on S in the k-optimal
solution, that is when there are no deviating agents in S. The next
set of m variables represents the reward on S when exactly one
agent in S deviates, and each variable corresponds to the deviation
of a different agent in S. The next

`
m
2

´
variables represent the re-

ward on S when exactly two agents in S deviate. Similary, we have
variables corresponding to the deviation of every proper subset of
agents in S. The final variable represents the reward on S in the
global optimal solution, i.e. considering the case when all agents
in S deviate. The objective of the LFP is to find the set of rewards
to bring about the worst possible k-optimal solution to get a lower
bound. Thus the objective function is to minimize

R(a)

R(a∗)
=

P
S∈θ RS(a)P
S∈θ RS(a∗)

subject to the LFP constraints that (i) ∀ã ∈ Ã, R(a) − R(ã) ≥ 0,
where Ã contains any assignment ã such that d(a, ã) ≤ k and
(ii) all rewards on S obey our β ratio Note that the reward on a∗, a
and ã can be decomposed into sum of a combination of variables
mentioned above.

We will now provide results for Proposition 1 and the LFP. Fig-

609

(a) Fully Connected Graph (b) Binary Tree

Figure 2: Quality guarantees for k-optima under Reward
Structure Assumptions

(a) Variation with β (b) Variation with m

Figure 3: Quality guarantees for m-ary graphs with variation
in β

ure 2 shows improved quality guarantees due to β i.e. what is the
worst case quality a k-optimal solution obtains given β, as a frac-
tion of the global optimum. Figure 2(a) shows the improvement
in bounds for fully connected binary DCOP graphs if we assume
β = 0.5 (i.e. the minimum reward for any constraint is at least
half the maximum reward on the corresponding constraint). The
bounds were calculated using Proposition 1. n refers to the num-
ber of agents in the DCOP graph. On the x-axis is the variation
in the value of k and on the y-axis is the percentage of optimal
determined by the proposition. The dashed lines show the bounds
achieved by Proposition 1 whereas the solid lines show the original
bounds as presented in [8]. For example, for k = 3 and n = 10,
the original bound was 12.5% whereas the new bound is 56.25%.
Similarly, Figure 2(b) shows the improvement of bounds for bi-
nary DCOP trees. The bounds were calculated using the LFP. On
the x-axis is the variation in k and on the y-axis is the percentage of
global optimal obtained. Again, the dashed lines show the bounds
achieved by Proposition 1 whereas the solid lines show the original
bounds as presented in [8]. Since we have assumed β to be 0.5, all
new bounds start from a minimum of 50% of the global optimal.
However, they don’t add 50% directly to the original bound. For
example, for k = 4 and n = 10, the original bound was 50.0%
whereas the new bound is 75.0%. From the graphs, we can con-
clude that the improvement observed is significant.

Figure 3(a) shows variation in the percentage of optimal with
variation and k and β for a fully connected binary DCOP graph
with 20 nodes. The x-axis represents the value of k where as the
y-axis represents the percentage of optimal. The graph shows that
we get better and better bounds as we increase the value of β, till
we reach β = 1 when the reward of the k-optimal reward is equal
to the reward of the globally optimal solution. For example, when
k=5 the solution quality is 11.76%, 33.82% and 77.94% when β
is 0, 0.25 and 0.75 respectively. Similarly, Figure 3(b) shows the

percentage of optimality for a fully connected graphs of 20 nodes
with β = 0.5 when the constraint arities are 2, 4 and 6. x-axis
represents the value of k and the y-axis represents the percentage
of optimal. For example, for k = 1, the k-optimal solution is
69.23% optimal in case of binary constraints and 53.59% optimal
for a constraint arity of 4.

3.2 DCOPs with Hard Constraints
Previous work[8] focussed exclusively on DCOPs with non-negative

rewards and presented quality guarantees for them. When we have
no hard constraints, by adding a sufficiently high positive number to
all rewards, DCOPs meet the requirement of non-negative rewards.
However, no guarantees are available for DCOPs with hard con-
straints yet and in many domains, hard constraints exist — these
are constraints where at least one combination of values incurs a
reward of −∞. For example, in meeting scheduling, if two users
disagree on their meeting time the reward is −∞.

This section presents quality guarantees in the presence of such
hard constraints. To obtain these guarantees we assume that there
exists a solution to the DCOP that does not violate any hard con-
straints (i.e. the globally optimal solution is feasible, else there can
be no guarantee). We also assume that we know a priori which con-
straints in the DCOP are hard constraints, but not which values sat-
isfy them. Finally, we wish to avoid problems where the k-optimal
is infeasible; that is, the k-optimal solution violates at least one
hard constraint, and any deviation of k or fewer agents also results
in an infeasible solution. This would again preclude our providing
any guarantees with respect to the global optimum. To avoid these
cases we will restrict our analysis to the following kind of DCOP:
Consider a subgraph H of the DCOP constraint graph that consists
all the hard constraints in the DCOP only. We will only consider
DCOPs where the largest connected subgraph of H contains k or
fewer agents (nodes). In such DCOPs, no k-optimum would be
infeasible (violating hard constraint). In the following we provide
an illustrative proof of quality guarantees with hard constraints on
specific graph structures followed by an LFP for guarantees for ar-
bitrary graphs.

PROPOSITION 2. For any binary DCOP of n agents with a star
graph structure, where all constraint rewards are non-negative ex-
cept for h hard constraints, and a∗ is the globally optimal solu-
tion, then, for any k-optimal assignment, a, where k < n and
0 < h < n− 1.

R(a) ≥ k − h− 1

n− h− 1
R(a∗).

Proof: We define as before the set Âa,k such that exactly k agents
deviate from the k-optimal solution but now require all the deviat-
ing agents to be connected. We will again define θ1, θ2 and θ3 as
defined in proof of Proposition 1. Now we will consider only the
subset of Âa,k in which ∀Shard, Shard ∈ θ1(Shard are the hard
constraints). Let us call this set Âa,h,k. Now,

R(a) ≥
P
â∈Âa,h,k R(â)

|Aa,h,k|
(8)

because R(a) ≥ R(â) ∀â ∈ Âa,h,k.
We will now try to establish the numerator and the denomina-

tor separately. Let us first consider the denominator. By defi-
nition of |Aa,h,k|, it is the total number of possible assignments
when exactly k agents are deviating and Shard ∈ θ1(a, â). Since
Shard ∈ θ1(a, â) and all constraints connect to the center agent
of the star graph, therefore we have already decided that the center
agent and the other h agents with hard-constraints are deviating.
Hence, we have to chose the rest of (k− (h+ 1)) deviating agents
from (n− (h+ 1)) remaining agents. Therefore,

610

|Âa,h,k| =
“n− h− 1

k − h− 1

”
(9)

Let us now consider the numerator of Equation 8. The global
reward of all assignments â ∈ Âa,h,k is:X
â∈Âa,h,k

R(â) =
X

â∈Âa,h,k

X
S∈θ1(a,â)

RS(â)+
X

â∈Âa,h,k

X
S∈θ2(a,â)

RS(â)

+
X

â∈Âa,h,k

X
S∈θ3(a,â)

RS(â). (10)

Now we will determine the bounds for each of these terms. Note
that in our definition of |Âa,h,k|, we have fixed the values of all
agents linked to hard constraints. Hence, when we choose any non-
hard constraint S, if S ∈ θ1(a, â), one more agent is set to deviate
and hence there are

`
n−h−2
k−h−2

´
possible assignments. Therefore,X

â∈Âa,h,k

X
S∈θ2(a,â)

RS(â) =
“n− h− 2

k − h− 2

”
R(a∗) (11)

No S can be part of θ2(a, â) because the center agent deviates, and
all constraints connect to the center agent. Therefore,X

â∈Âa,h,k

X
S∈θ2(a,â)

RS(â) = 0.R(a) (12)

Finally, since no hard constraint is a part of the set θ3,X
â∈Âa,h,k

X
S∈θ3(a,â)

RS(â) ≥ 0. (13)

Hence, following Equation 2,

R(a) ≥
`
n−h−2
k−h−2

´
R(a∗) + 0.R(a)`
n−h−1
k−h−1

´
which on solving proves Proposition 2. �

Example 3: Consider a star-shaped binary DCOP involving six
agents with one hard constraint. For a 4-optimal solution, the to-
tal number of assignments in Âa,h,k is

`
6−1−1
4−1−1

´
= 6 assignments

as given by Equation 9. Similarly, the sum of constrains defined by
the first term of Equation 10 is greater than or equal to

`
6−1−2
4−1−2

´
R(a∗) =

3R(a∗) as given by Equation 11. Thus, with Proposition 2, we
get that for this star graph, R(a) ≥ 3R(a∗)+0·R(a)

6
= 1

2
R(a∗).�

For other graph types, we modify the LFP mentioned earlier. The
LFP remains a minimization of R(a)

R(a∗)
such that ∀ã ∈ Ã, R(a) −

R(ã) ≥ 0, given Ã, where Ã contains any assignment ã such that
d(a, ã) ≤ k, however with key differences. Firstly, now the LFP
variables corresponding to violated hard constraints are allowed to
take infinitely large negative rewards, whereas previously they were
always non-negative. Also, the β conditions are removed.

Figure 5 shows quality guarantees in the presence of hard con-
straints for fully connected, ring and star DCOP graphs. These
experiments began with a DCOP containing all soft constraints and
no hard constraints, and gradually more and more soft constraints
were made into hard constraints. The left column shows the ef-
fect of one and two hard constraints in a DCOP of five agents, and
the right column shows the effect of two and four hard constraints
in a DCOP of 10 agents. The x-axis of the graph represents the
value of k where as the y-axis shows the ratio of the k-optimal to
the globally optimal solution. The constraints that were set as hard
constraints were, in order, {0,1}, {2,3}, {4,5}, and {6,7}. This
methodology was chosen so that no agent would be subject to more
than one hard constraint, and so that k-optimal solutions would al-
ways be feasible. For star graphs, the guarantee from Proposition 2
was used; while for the others, the LFP method was used. For ex-
ample, for star graphs with n = 5, for k = 4, and 2 hard constraints,
the R(a) to R(a∗) ratio is 0.5, where as for a ring graph with 10
agents, k = 5, and 4 hard constraints, it is 0.33.

Figure 4: Multiply Constrained DCOP example

Figure 5: Quality guarantees for k-optima in DCOPs contain-
ing hard constraints.

3.3 Guarantees in multiply constrained DCOP
These LFP guarantees for k-optima in standard DCOPs with

hard constraints also apply to multiply-constrained DCOPs (MC-
DCOP) where multiple agents are connected via a single constraint.
MC-DCOP extends DCOP to address hard resource constraints[1],
and is shown to be valuable in addressing domains where agents
may have resource constraints such as travel budgets or overtime
constraints. In MC-DCOP, the DCOP reward function remains
(henceforth referred to as “f”) and a new cost function gij is added
on a subset of agent i’s links along with a g-budget Gi which the
accumulated g-cost must not exceed. A g-constraint on an agent
with m − 1 neighbors is a shorthand expression for the more gen-
eral notion of a hard m-ary constraint between the agent and all its
neighbors (where any assignment where the g-budget is exceeded
is considered infeasible). While the agent has full knowledge of
this m-ary hard constraint, its neighbors may have no knowledge
of all the neighbors involved in the constraint. Figure 4 shows an
example MC-DCOP, with a g-budget of 3 on agent 1. Each link has
both a f-reward and a g-cost. When agents 1,2 and 3 take values
0,0 and 1 respectively, the assignment yields an optimal f-reward
4, but the g-cost is 4 which violates agent 1’s g-budget.

For a key illustration of application of LFP to MC-DCOPs, Fig-
ure 6 shows quality guarantees for a MC-DCOP with 30 agents, ar-
ranged in a ring structure. These experiments begin with a DCOP
containing no agents with g-constraints. The number of agents with
g-constraints was gradually increased by assigning a g-constraint to
every third agent, starting with agent 0, until there were 10 agents
with g-constraints. This methodology was chosen so that k-optimal
solutions would always be feasible. The LFP method was used to
calculate the guarantees. Figure 6 shows guarantees for up to 4
agents with g-constraints as k increases. On the x-axis of the graph
is the value of k where as the y-axis represents the percentage of
the optimal solution. For example, with 30 agents arranged in a
ring, k=6 and 3 g-constraints, the percentage of optimal guaran-

611

Figure 6: Quality guarantees for k-optima in a multiply-
constrained ring DCOP.

teed is 33.33%. For the cases of 5 to 10 agents with g-constraints
the guarantee was the same as for 4 agents with g-constraints.

4. HARD CONSTRAINT ALGORITHMS
Unfortunately, despite the importance of hard constraints and

in particular the importance of MC-DCOPs [1] in representing
resource constraints, current k-optimal algorithms fail to address
MC-DCOPs. Consider for example the k-optimal algorithms MGM-
1 or MGM-2 [13, 5]. In MGM-1, starting from an initial random as-
signment, each agent sends a message to all its neighbors indicating
the maximum reward gain it could accrue by changing values in the
current context. An agent changes values if its gain is larger than
those of its neighbors; agents keep changing values in this fashion
until convergence. However to apply MGM-1 to MC-DCOP, for an
agent withm−1 neighbors, we will need to add (m)-ary constraint
so agents can convey maximum gain messages to others taking
into account g-constraint violations. This approach fails however:
(i) sprouting large number of (m)-ary constraints adds significant
communication overheads; (ii) agents lose privacy by communicat-
ing with new neighbors hoisted upon them due to the new (m)-ary
constraints, e.g. this approach would force agent 2 and agent 3 in
Figure 4 to communicate values; (iii) parallelism degrades as only
one agent in a (m)-ary constraint can change value at a time. These
problems are exacerbated in algorithms with higher k.

Multiply-Constrained-MGM-k (MC-MGM-k) are a new set of
algorithm that do not add any explicit (m)-ary constraint; agents
only communicate with their neighbors avoiding problems of pri-
vacy violations or communication overheads. The key insight is to
maintain an invariant of g-constraint satisfaction. This invariant is
not guaranteed a priori before each agent proposes its change of
values; instead, an agent with g-budget heuristically blocks others
from making changes that violate its g-budget. MC-MGM-k algo-
rithms are designed to terminate in mc-k-optima, i.e. an assignment
where if k (or fewer) agents deviate they either violate g-constraints
or degrade (or do not improve) solution quality.

For MC-MGM-1, agents iteratively run the code shown in Al-
gorithm 1, proceeding in rounds of changes to values. Agents ini-
tialize at a dummy value (newly added to their domain) a′, which
has a g-cost = 0 to start at a satisfying assignment. Agents send
value messages to their neighbors informing them of their current
value and available-g: total g-budget minus that consumed by all
other neighbors (line 1 in Algorithm 1). Upon receipt, each agent
calculates its effective domain by removing any values that would
violate its neighbors’ available-g’s and computes the maximum lo-
cal reward in the effective domain (lines 3-4). It sends a message
to all neighbors proposing its move and listing the gain (lines 5-7).
Upon receipt of gain messages, agents check to see if its neigh-
bors’ proposed moves violate its g-constraint (line 8). An example
is shown in Figure 4, where if agent 1 has the value 0 and agent

Algorithm 1 MC-MGM-1 (allNeighbors, currentValue)
1: SendValueMessages(allNeighbors, currentValue, available-g-

budget)
2: currentContext = GetValueMessages(allNeighbors)
3: for newValue in EffectiveDomain(currentContext) do
4: [gain,newValue] = BestUnilateralGain(currentContext)
5: if gain > 0 then
6: SendGainMessage(allNeighbors,gain, newValue)
7: neighborGains = ReceiveGainMessages(allNeighbors, Neigh-

borValues)
8: if GConstraintViolated(newContext) then
9: n = SelectNeighborsToBlock()

10: SendBlockMessages(n)
11: if gain > max(neighborGains) and !ReceivedBlockMessage()

then
12: currentValue = newValue

2 and agent 3 propose taking on 1, neither move individually vio-
lates agent 1’s g-constraint but together they do. If this situation is
detected, an agent sends a blocking message to a subset of its neigh-
bors (lines 9-10). If an agent receives a block message, it will not
move in the current round. The agents with the highest gain who
don’t receive blocking messages move. The rounds repeat until no
agents propose moves.

MC-MGM-2 operates much like MC-MGM-1 but in addition
to individual moves, it allows joint moves(coordinated changes of
value) between pairs of agents using the same ideas of Effective-
Domain and blocking messages to avoid violation of g-constraints.
In particular, each round, MC-MGM-2 randomly decides which
agents will be offerers and which receivers. Each offerer chooses a
random neighbor and sends a message proposing joint moves that
yield a gain in the offerer’s local utility. Each receiver then calcu-
lates the joint utility gain for the proposed moves. If the joint gain is
positive, the receiver will send a message to the offerer committing
to the move; otherwise, neither agent is committed. Uncommitted
agents consider unilateral moves as in MC-MGM-1. The agent or
pair of agents with the highest local gain will move if not blocked.

In MC-MGM 1 and 2, different heuristics are available to select
which neighbor to block. We focus on three representative heuris-
tics: (i) Monotonic: agent i randomly selects one or more neighbors
to block and blocked neighbor does not change value; (ii) Random
Reset: agent i randomly selects one or more neighbors to block and
blocked neighbor reset its value to dummy value a′; (iii) Self Reset:
agent i sends no blocking messages and resets itself to a′.

We now prove MC-MGM 1 and 2 actually terminate in mc-1-
optima(mc-2-optima). Recall the notation from section 2. In ad-
dition, let us define a(n) as the assignment of values to agents in
the DCOP due to MC-MGM at the beginning of the nth round of
the algorithm. Let the global utility of this assignment be U(a(n)).
Define Gaini as the change in local utility of agent i due to a uni-
lateral change in its value from ai to âi, given fixed context a−i. In
computing Gaini, agent i only considers its EffectiveDomain, i.e.
values that do not violate its own g-constraint, or the available-g
sent by it’s neighbors.

PROPOSITION 3. When running MC-MGM-1 with the mono-
tonic heuristic, the global utility U(a(n)) never decreases.

Proof:There are two separate cases to handle. In the first case,
no block messages are issued (by using EffectiveDomain, agents
managed to avoid violating any other agent’s g-budget). Here, if
agent i intends to modify its value in round r, then (i) Gaini >
Gainj , ∀j ∈ Neighbors(i); and (ii) Gaini > 0. Hence agent i’s
neighbors will not modify their values in round r. So, when agent
i changes its value, Gaini will add to the global utility U(a(r)).

612

If multiple agents change values simultaneously, they must be non-
neighbors, and each of their gains adds to U(a(r)).

In the second case, despite using EffectiveDomain, a blocking
message was issued within a round r, which will block an agent i
from changing value, i.e. agent iwill realize a gain of 0, which does
not decrease U(a(r)). Furthermore, since MC-MGM maintains as
an invariant that no agents’ g-constraint is violated at the end of
any round of execution, U(a(r)) never decreases due to violation
of g-constraints. �

Figure 7: A Deadlock example for MC-MGM-1

We can similarly show monotonicity of MC-MGM-2. Given
that MC-MGM sends out blocking messages, a cycle of blocking
messages may create a deadlock. Figure 7 shows an example of
deadlock in MC-MGM-1. There are four agents, with domains, f
reward and g cost as shown (identical f and g functions exist be-
tween agent 1 and 2, and between agents 3 and 4). After all agents
are initialized to a dummy value 0, agent 1 and agent 3 switch from
0 to value R. Now, agents 2 and 4 propose switching to Y, which
gives them each a gain of 20. Also each of agent 2 and agent 4
individually perceive that the change to Y is under the available-
g of 2 of agent 1 and agent 3. However, if both agents 2 and 4
switched to the value Y, agent 1 and agent 3’s budgets would be vi-
olated; so they must send blocking messages. If agent 1 randomly
selected agent 2 to block and agent 3 randomly selected agent 4
neither agent 2 or 4 could change values, i.e. a deadlock situation.
Fortunately, since the agents being blocked are randomly selected
(in the monotonic heuristic), remaining in deadlock indefinitely is
impossible. Suppose agents can enter deadlock with probability p,
where p ∈ [0, 1). After n rounds of execution, the probability of
remaining in deadlock is pn. Since execution continues until there
are no longer any proposal messages being sent, n approaches∞
and pn approaches 0.

PROPOSITION 4. Given that deadlocks are resolved using ran-
domization, MC-MGM-k algorithms with the monotonic heuristic
will terminate at an mc-k-optimal solution.

Proof: Since by previous Proposition, MC-MGM-k monoton-
ically increases global utility U(a(n)), and there is finite globally
optimal solution, MC-MGM-k cannot keep increasingU(a(n)) for-
ever. Thus, assuming it eventually resolves any deadlocks it enters,
MC-MGM-k will terminate. Termination in MC-MGM-k occurs
when no k agents are able to propose a move where Gaini > 0
and no g-constraints are violated after the move. This situation is
the definition of an mc-k-optimal. �

5. EXPERIMENTAL RESULTS
We compare MC-MGM-1 and MC-MGM-2 for MC-DCOPs based

on solution quality measured by the sum of all f-constraints, and on
the runtime based on message cycles. A message cycle is one mes-
saging exchange between agents, and is the traditional metric in
DCOP literature for algorithmic efficiency [7, 6, 10]. In particular,
we ran four sets of experiments on randomly generated 1000-agent

Figure 8: Comparing MC-MGM-1 and 2 for |H| = 2

graph coloring problems; this contrasts with complete DCOP algo-
rithms [7, 6, 10] that can only handle 20-agent to 100-agent prob-
lems. Networks of agents with average link densities (number of
edges per agent) of 3 and 6 were generated, with randomly gener-
ated f- and g-constraints. In each case the g-budget assigned to all
agents was varied between 0 to 50, as shown on the x-axis. Results
were averaged over 30 runs of the algorithms.

The first experiment ran MC-MGM-1 and MC-MGM-2 using
the monotonic heuristic on DCOPs where all of the g-constraints in
the DCOP were only allowed on subgraphs of two agents i.e. the
largest connected subgraphs H of the DCOP constraint graph that
consisted of all the hard constraints were of size two (|H| = 2).
In Figure 8a, we vary the available g-budget per agent along the
x-axis, and show the run-time in cycles on a log-scale along the y-
axis. For example, when g-budget per agent is 10, DCOP problems
of constraint density 6 take an average of 30 message cycles to run
using MC-MGM-1, or 483 using MC-MGM-2. The key conclusion
is this: compared to 1000s of cycles taken by complete algorithms
attacking MC-DCOPs of 20-30 nodes[1], this is a 50-fold scale-up
in number of nodes running with a 10-fold speedup. There is a
loss in solution quality in incomplete algorithms, but if we cannot
run the complete algorithm at all, then this loss is moot. The re-
sults also demonstrate that MC-MGM-1 runs between 2.3 and 9.5
times faster than MC-MGM-2 on problems with a link density of
3, and 11.6 to 17.1 faster when the link density is 6. Figure 8b plots
the global utility of the final solution on the y-axis and shows that
global utility varied by less than 2% between the algorithms for
both densities. Finally, Figure 8c measures the number of agents
(on the y-axis) which never left the dummy value a′ due to block-
ing messages. The number of agents remaining at a′ was identical
for both algorithms below a g-budget of 30, however above that
budget, MC-MGM-2 was able to find a solution which satisfied all
agents, while MC-MGM-1 always left 2 agents unsatisfied.

The second and third experiments focused on DCOP graphs where
g-constraints applied to larger subgraphs with |H| ≤ 3, 4 and 5.
Figures 9 and 10 show that the same differences between MC-
MGM-1 and 2 are present and become more pronounced as |H|
increases. The utility of MC-MGM-2 is seen to be significantly
higher.

The fourth experiment compared the performance of three block-
ing heuristics: monotonic, random reset and self reset, again with

613

Figure 9: Comparing MC-MGM-1 and 2 for |H| ≤ 3

Figure 10: MC-MGM-1 and MC-MGM-2 for |H| ≤ 4 or 5

the same x-axis and y-axis used in the first experiment for graphs
in Figure 11 a and b. Figure 11a shows that random reset per-
formed poorly for both densities; it reached our 6000 cycle cut-off
point. The monotonic and self reset heuristics performed within
the same range. The monotonic heuristic was more efficient for
high g-budgets and self reset was more efficient for low ones. The
solution quality results are shown in Figure 11b. The monotonic
heuristic reaches a higher utility for higher g-budgets and self reset
does better on looser g-budgets.

6. CONCLUSION AND RELATED WORK
DCOP is a major paradigm within cooperative multiagent sys-

tems for coordination, scheduling and task allocation in domains
such as networks of sensors, unmanned air vehicles or software per-

Figure 11: Comparing blocking heuristics: MC-MGM-2 with
|H| ≤ 3

sonal assistants. K-optimal algorithms provide a unique advance in
locally optimal DCOP algorithms: these algorithms provide quality
guarantees. Improving upon these bounds is now crucial to apply
k-optimality to new domains. To that end, this paper provided:
(i) lower-bounds on k-optima quality incorporating available prior
knowledge of the ratio of minimum to maximum rewards on con-
straints; (ii) lower-bounds on k-optima quality for problems with
hard constraints; and (iii) new k-optimal algorithms for solving
multiply-constrained DCOPs, which provide resource bounds as
hard constraints, along with experimental results for networks of
more than 1000 agents with various connection densities.

We have already discussed related work, particularly weaknesses
in prior work on k-optimality, at length[8]. Among globally opti-
mal algorithms, [1] provide a complete MC-DCOP algorithm based
on Adopt[7]. Other complete algorithms, OptAPO [6] and DPOP[10]
have yet to be applied to MC-DCOPs, where agents face a global
objective as well as local resource constraints. We have empha-
sized incomplete algorithms and quality guarantees including for
MC-DCOPs. Nonetheless, research on complete and incomplete
algorithms is complementary, and advancing both is essential for
advancing multiagent systems.

ACKNOWLEDGEMENTS
This research was supported by DARPA STTR Contract W31P4Q-
06-C-0410 via a subcontract from Perceptronics Inc.

7. REFERENCES
[1] E. Bowring, M. Tambe, and M. Yakoo. Multiply constrained

distributed constraint optimization. In AAMAS, 2006.
[2] J. Cox, E. Durfee, and T. Bartold. A distributed framework

for solving the multiagent plan coordination problem. In
AAMAS, 2005.

[3] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. Kluwer, 2003.

[4] V. Lesser, C. Ortiz, and M. Tambe. Distributed sensor nets: A
multiagent perspective. Kluwer Academic Publishers, 2003.

[5] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for DCOP: A graphical-game-based approach. In
PDCS, 2004.

[6] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
AAMAS, 2004.

[7] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 2005.

[8] J. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization. In IJCAI,
2007.

[9] J. Pearce, M. Tambe, and R. Maheswaran. Solution sets for
dcops and graphical games. In AAMAS, 2006.

[10] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, 2005.

[11] N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for
multiagent decision making using coordination graphs. In
SMC, 2004.

[12] M. Yokoo and K. Hirayama. Distributed breakout algorithm
for solving distributed constraint satisfaction and
optimization problems. In ICMAS, 1996.

[13] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis
and application of distributed constraint satisfaction and
optimization algorithms in sensor networks. In AAMAS 2003.

614

