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ABSTRACT

We construct a novel agent-based model of prediction mar-
kets in which putative human qualities like learning, reason-
ing, and profit-seeking are absent. We show that the prices
which emerge from a market populated by a class of dis-
tinctly inhuman agents, Zero-Intelligence agents with diffuse
beliefs, replicate the findings of empirical market studies.
We use this result to argue against the prevailing descrip-
tive theories of price formation in prediction markets, which
have stressed the role of expert, rational participants.
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1. INTRODUCTION

Prediction markets represent a hybrid of asset markets
and sportsbooks, wedding the mechanism of the former with
the predictive power (and often dubious legality) of the lat-
ter. A prediction market serves to march buyers and sell-
ers of a share that trades on a future event — for instance,
the winner of an election, the film that will win the Os-
car for Best Picture, or the next World Series champion. If
the event in question occurs, the share expires at one dol-
lar, if not, the share expires worthless. Prediction markets
are small-scale, democratic, generally virtual exchanges. At
nearly two decades old the most venerable prediction mar-
ket, the Towa Electronic Markets (IEM), operates under a
no-action letter from the SEC which limits overall invest-
ments to 500 dollars per trader [7].

Because they involve real people who often make signifi-
cant mistakes in trading, (c.f. [6, 7, 3]), prediction markets
are the foremost testing ground for the so-called Hayek Hy-
pothesis: that markets can work efficiently despite general
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ignorance on the part of participants in the trading environ-
ment [14]. More than just an online sportsbook, prediction
markets represent a laboratory for theories of the efficiency
of free markets as a whole.

Current research into how prediction markets reach their
price predictions have centered around the Marginal Trader
Hypothesis [6, 12], which attributes efficiency to a small pool
of knowledgeable traders who are capable of setting prices
and acting without bias. This hypothesis posits an “expert”
approach to Hayek’s theory: that select, savvy individuals
drive markets toward efficiency. Remove these “perfect” in-
dividuals from the pool of traders and prediction markets
would irretrievably lose their accuracy. In this paper we ex-
plore an alternative explanation of the Hayek hypothesis,
a “general” approach, in which the action of the individ-
ual, imperfect trader drives price formation. We do this by
combining two modeling frameworks, an intuitive private-
value model of prediction markets first proposed by Man-
ski [11], and a model of Zero-Intelligence agents originally
used by Gode and Sunder [10] to study double auctions. By
synthesizing these structures, we produce a model of pre-
diction markets that does not rely on any “higher-order”
human characteristics such as utility maximization, follow-
ing trends, or learning. Previous studies of Zero-Intelligence
agents have relied on computational simulation; we solve for
a new way to calculate expected transaction prices mathe-
matically. We show that the prices which emerge from our
model closely resemble the results of empirical studies. We
conclude that the pricing behavior seen in prediction mar-
kets can be produced without the presence of “expert-level”
intelligence or reasoning, and state a case for abandoning
the Marginal Trader Hypothesis.

2. ZERO-INTELLIGENCE AGENTS

The agents that we refer to as Zero-Intelligence (ZI) are
derived from a concept first put forward by Gode and Sun-
der. In their description of a ZI agent, Gode and Sunder
write that “it has no intelligence, does not seek or maximize
profits, and does not observe, remember, or learn. It seems
appropriate to label it as a zero-intelligence trader”. Gode
and Sunder used these computer agents to simulate market
transactions in a double auction. They showed that a mar-
ket consisting of particular type of agent, a Zero-Intelligence
agent with a so-called “budget constraint”, produced re-
sults that closely mirrored the allocative efficiency of a si-
multaneous experimental human exchange. As the authors
concluded, “[the] primary cause of the high allocative effi-
ciency of double auctions is the market discipline imposed



on traders; learning, intelligence, or profit motivation is not
necessary”.

Gode and Sunder’s results, that efficiency can emerge from
a mass of irrational actions, were provocative and have drawn
scholarly attention from both the economic and computa-
tional sides of the agent-based community. In the fifteen
years since their work was published, this attention has given
the ZI concept notable baggage — criticisms that must be
addressed in order to justify their use. We address two of
the most potent critiques of ZI agents here. The first, from
Cliff and Bruten [4] argues that, though ZI agents are ir-
rational, Gode and Sunder’s setting essentially guarantees
convergence to prices that are close to efficiency. That is, the
“books are cooked” to ensure a successful result for ZI agents.
The second critique comes from Gjerstad and Shachat [9],
who argue that ZI agents actually have non-zero intelligence,
and that it is this intelligence which drives results towards
efficiency.

2.1 The Mathematical Properties of ZI Agents

Cliff and Bruten use a dismissal of ZI agents as motivation
for the creation of what they term “ZIP” (Zero-Intelligence
Plus) agents, which combine features of Zero-Intelligence
with basic learning mechanisms. Because of their simplic-
ity and flexibility, ZIP agents have been widely adopted in
situations in which adaptability is crucial, like evolutionary
mechanisms or competitions (c.f. [5, 16, 2]).

ZIP agents represent an important addition to the liter-
ature independent of their motivation. At the same time,
Cliff and Bruten’s analysis of the probabilities associated
with the behavior of ZI agents is flawed. After establish-
ing that supply and demand curves provide a way by which
to calculate the probability density functions (PDFs) of ask
and bid orders, the authors write that “the PDF for trans-
action prices will be determined by the intersection of the
PDFs of the offer prices and bid prices”. The authors pro-
vide no further justification for this statement, but use the
concept of intersecting density functions to solve for further
properties of a ZI exchange. In turn, the authors use this
analysis to argue that Gode and Sunder’s setting was biased
towards producing results close to efficiency.

By means of a worked counterexample, we show that the
distribution of transactions is not given by the intersection
method. Given a distribution over bid and ask orders, we
show how to solve for the correct distribution of transac-
tions, and we use this result to argue that Cliff and Bruten’s
more general point about ZI agents does not hold.

2.1.1 A Worked Counterexample

Imagine a large pool of an equal number of ZI buyers
and sellers engaged in a continuous double exchange. Each
agent, with value v;, is called to trade with uniform prob-
ability. If a buyer, the agent places a bid order uniformly
on [0,v;], and if a seller, the agent places an ask order uni-
formly on [v;,1]. A trade occurs when the highest-priced bid
exceeds the lowest-priced ask at the price of the order which
was placed first. As in Gode and Sunder, we restart the
market after each transaction and buyers and sellers never
switch roles.

Buyers and sellers each have three possible valuations in
the market. Those valuations and the fraction of agents
which possess them are given by the following table:
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Buyers’ Valuation | Fraction | Sellers’ Valuation
1 4/7 0
5 2/7 5
25 1/7 75

Based on ZI agent behavior, these valuations induce the
densities for bid and ask orders shown in Figure 1.
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Figure 1: Probability density functions of Bid and

Ask orders for the worked example. The shaded re-
gion represents the intersection of the two functions.

Were the argument in Cliff and Bruten correct, the den-
sity function for transactions would be proportional to the
intersection of the two pictured densities — the shaded re-
gion, i.e. constant on [0,1]. In fact, computational simula-
tion of more than 10 million trades shows that transactions
take place according to the following cumulative distribution
function:

Input || Cliff and Bruten | Actual cdf
.25 .25 2
.5 .5 )
.75 .75 .8

As is evident, the distribution of transactions does not
follow Cliff and Bruten’s method.

2.1.2  The Distribution of Transactions

If transactions are not distributed according to the inter-
section of bid and ask densities, then how are they actually
distributed? Let Fr, Fa and Fp represent the cumulative
distribution functions over transactions, asks, and bids, re-
spectively. By examining the results of millions of trades
run on dozens of separate inputs, we were able to determine
that:
= 1)

4+1—Fg

Figure 2 provides a two-dimensional map of the transac-
tion price cdf. As the plot evinces, the simple functional
form of the distribution belies the complex relation between
bids, asks, and transactions. The observant reader will note
the plot contains a “hole” in the upper-lefthand corner, where
Fa =0 and Fg = 1. This reflects the intuition that if the
highest bid order is placed lower than the lowest ask order,
no transactions will occur at all.

We can gain further intuition into Equation 1 by taking
its derivative, producing the probability density function for

Fr
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Figure 2: Heat map of Equation 1.

transactions. Let fa, fp, and fr represent the probabil-
ity density functions for asks, bids, and transactions respec-
tively. By the quotient rule:

fa(Fa+1-Fg)— Fa(fa— fB)
(Fa+1-—Fg)?
fBFa+ fa(l— FB)
(Fa+1—Fp)?

The numerator here represents the probability density of a
transaction taking place at a value - either a bid is placed
at that value and is crossed by a lower ask (i.e. fsFa), or
an ask is placed at that value and is crossed by a higher bid
(ie. fa(l— FB)).

2.1.3 Implications

As CIliff and Bruten demonstrated in several examples,
mean transaction prices in a ZI market can diverge sharply
from efficiency. Their argument is that Gode and Sunder’s
markets demonstrated prices close to efficiency by design;
they write that: “[QJualitatively at least, it would appear
that near-equilibrium transaction prices are expected be-
cause of the shape of the PDF for valid deals: this [Zero-
Intelligence] system is structured a priori to generate mean
transaction prices close to the theoretical equilibrium price”.

Our work shows that this argument can be rejected. The
“shape of the PDF for valid deals”; that is, the density of
transactions, is much more complex than Cliff and Bruten
had posited. Consequently, it is difficult to assert that a ZI
system is structured a priori to arrive at any specific con-
clusion. In Section 3.4 we give the equations involved in
the calculation of expected transaction prices in our predic-
tion market model; it is difficult to arrive at any conclusion
regarding the efficiency of those prices without numerical
inquiry.

2.2 The Fallacy of “Budget Constraint"

We now turn to a second distinct critique of Zero-Intelligence
agents. Gjerstad and Shachat have recently argued that ZI
agents do not quite square with their moniker.

fr =
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In particular, Gode and Sunder study two types of Zero-
Intelligence agents. The first are unconstrained agents, which
place orders arbitrarily, regardless of private valuations. The
results of simulations with these agents do not at all resem-
ble the results of human simulations - prices fluctuate wildly
and without response to different supply and demand curves.
The second type of agents are budget constrained: they are
not allowed to place an order with directly negative pro-
ceeds, that is, to sell below cost or buy above value. These
are the agents which produced allocative efficiency on par
with human experiments and were sensitive to shifts in sup-
ply and demand curves.

Gode and Sunder fold this budget constraint into their
market mechanism — it is the market’s imposition that
traders be able to settle accounts that forbids agents from
making a trade which will run them a loss. The authors
do not attribute this property to the agents themselves, and
they write “The difference between the performance of the
human markets and that of the ZI-C (i.e. budget constrained
agents) is attributable to systematic characteristics of hu-
man traders ... Traders have no intelligence in either the
ZI-U (i.e. the unconstrained agents) or the ZI-C market; the
ZI-C market prevents the traders from engaging in transac-
tions that they cannot settle”.

Yet as Gjerstad and Shachat show, the behavior of “bud-
get constrained” agents is ontically identical to the behavior
of agents which display individual rationality. An observer
watching the behavior of a budget-constrained agent would
be unable to assert that the agent was not individually ra-
tional. The budget-constrained agents do not place any or-
ders which directly result in a negative payoff, regardless of
whether they have “internalized” this constraint or whether
the market “imposes” this constraint upon them. When all
the structures in question, both in agent behavior and in
market restrictions, are not physical but are instead imple-
mented in software, this distinction becomes quite literally
immaterial.

It was the imposition of the budget constraint that made
ZI agents produce modeling results that were not just noise.
But this budget constraint is, for all intents and purposes,
equivalent to individual rationality. Thus, it can be regarded
as an imposition of intelligence on the agents. ZI agents
purport to be a model devoid of human qualities. Are ZI
agents still useful as a modeling tool?

We argue that they are. The “intelligence” given to these
agents is of a very prescribed sort, so restricted as to not
compromise them as being fundamentally different from hu-
man intelligence. No one could confuse the behavior of a ZI
agent with that of a human. Moreover, an important qual-
ity of ZI modeling is that we should expect human agents
to only act in ways that are restrictions of the behavior of
71 agents — for instance, maximizing profits, or learning
and tracking prices before participating. This is not the
case for more descriptive agent-based models — consider a
market model (as in [15]) in which agents are classified as
chartists (trend-followers) or fundamentalists. It is easy to
suggest plausible human behavior that this model does not
reflect — for instance, people which alternate between being
fundamentalists and chartists, or traders employing chart-
ing strategies which are not among the choices presented to
agents. In contrast, the restriction that ZI agents perform
no action which directly results in a negative payoff does not
limit our understanding of the way people behave.



3. MODELING PREDICTION MARKETS

Gode and Sunder’s work involved Zero-Intelligence agents
participating in double exchanges. Though prediction mar-
kets are also double exchanges, different notions of “correct”
prices are at play in the two modeling literatures. In a tra-
ditional double exchange, the equilibrium price is given by
the intersection of the supply and demand schedules. In a
prediction market, the objective price is thought of as the
mean of the distribution of agent beliefs over the probability
of the event occurring.

Our objective of this section is to build a ZI model that
can be used to generate price estimates. This model allows
us to answer questions like “If the objective probability of an
event occurring is 25 percent, what price should we expect in
a ZI market?”. We begin by giving an overview of prediction
market modeling, and then introduce our own ZI model.

In real prediction markets, the objective probability of an
event that trades at a price can be estimated by observing
many independent trials and averaging. In our ZI simula-
tion, the objective probability is given by the mean of the
distribution of agent beliefs. This makes the choice of belief
distributions a crucial component of the model. We select a
particular set of beta distributions as our belief distributions
and justify our choice. Finally, we conclude our model by
showing how to solve numerically for the expected transac-
tion prices in our ZI model.

3.1 Overview of Previous Models

In Manski’s model of prediction markets, each agent pos-
sesses a private belief that an event will occur. Prices are
taken as exogenous and agents are price-takers, making in-
vestment decisions to maximize utility based on those exoge-
nous prices and their individual beliefs over what the future
holds. For example, a risk-neutral agent with a belief that
an event will occur with probability one-half will wager their
entire endowment if the price of such an asset is 45 cents.

Manski’s model suggested an inherent structural ineffi-
ciency in prediction markets: equilibrium prices may not
align with their objective probabilities, which he took to be
the mean of the distribution of beliefs. In particular, Man-
ski suggested that prediction markets were susceptible to the
longshot bias, wherein unlikely events (longshots) are over-
priced, and likely events (favorites) are underpriced. Fur-
ther studies, by Gjerstad [8] and Wolfers and Zitzewitz [18],
showed that the longshot bias was a function of the risk-
neutrality of the participants. As participants became more
risk-averse, prices as a whole would become closer to objec-
tive probabilities. When participants had logarithmic util-
ity, prices would align precisely with objective probabilities,
and when traders were even more risk averse, prices would
demonstrate a reverse longshot bias — precisely the oppo-
site effect.

The longshot bias in prediction markets was demonstrated
empirically by Wolfers and Zitzewitz [17] by compiling years
of data from the Iowa Electronic Markets and determining
the relation between observed prices and expected payouts.
The authors tie their finding into the broad history of eco-
nomic work which has studied the longshot bias in sports-
books, dating back to Ali’s 1977 study of favorites and long-
shots at the racetrack [1].

From the point of view of a community interested in agents
and learning, however, this strictly economic work is not
particularly insightful. The studies do not yield any insight
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into the role of learning within markets and contain an in-
trinsic contradiction in the way agents use their intelligence.
On one hand, the private-value model places great weight in
the role of actors to be perfectly rational decision makers —
the ability to take optimal, utility-maximizing action when
faced with a price and a probability. On the other hand,
those same agents myopically assume that their valuation
is the correct one, even if market prices do not reflect this
belief.

One way to resolve this tension is to replace a private-
value model with a common-value model, where the value
an agent has for the share of an event is dependent on the
private signals received by all agents. Such a model was
recently discussed by Serrano-Padial [13] and looks promis-
ing, but complex. Our own model resolves this tension in
the opposite way, by abandoning the notion of utility maxi-
mization by agents.

Though our private-value model is adapted from previ-
ous work, our model differs in one very important respect,
that of the price formation mechanism. Because our model is
based around the behavior of agents, prices no longer need to
be set exogenously — they are formed through the direct ac-
tions of individuals. Previous, non-agent-based models have
relied on a Walrasian auctioneer or market-maker to adjust
prices to equilibrium levels. We feel this is a particularly
stringent requirement to impose on a model of prediction
markets, which are less structured than traditional markets
and generally do not have agents designated to determine
prices.

3.2 A ZIModel

As we concluded in Section 2.2, the only intelligence as-
sociated with ZI agents is that they cannot place an order
with directly negative consequences. In all other matters,
Gode and Sunder’s agents acted on the principle of unifor-
mity - given a choice between alternatives, they select ar-
bitrarily with equal probability to all actions. Additionally,
agents should approach the market as a blank slate: with
no knowledge of their past actions, no recognition of present
conditions, and no expectation over future outcomes. ZI
agents cannot learn, because they have no history. Given
these three guidelines, we can now create our own ZI agents
to function in a prediction market setting.

There exist a pool of homogenous agents, each of which
has a belief b; € [0, 1] that an event will occur. These beliefs
are drawn independently from a distribution with density
function f. Agents are called to market with uniform prob-
ability, where they decide to either place a buy (bid) or sell
(ask) order with equal probability. The agent then places a
bid order for one share of the event at a price ~ [0, b;], or
an ask order for one share at a price ~ [b;, 1]. Agents do not
observe current market prices, and do not react to any result
of their actions; they keep no record of previous orders or if
those orders resulted in trades.

3.3 Belief Distributions

As both Gode and Sunder’s as well as Manski’s studies re-
lied fundamentally on the distribution of agent valuations,
it should be no surprise that our study also hinges on the
distribution of private information, in our case, individual
beliefs. We produce four requirements for our belief distri-
butions, and show how we can use families of Beta distribu-
tions to meet these requirements.



For a given belief distribution over the probability that
an event will occur, we follow Manski’s convention that the
objective probability (and, therefore, the objective trading
price for risk-neutral agents) that the event occurs is given
by the expectation of that distribution. Our objective is
to produce a linkage between these objective probabilities
and the prices that emerge in a market of ZI agents with
the specified beliefs, so we will need to calculate expected
prices using a multiplicity of distributions, each with a dif-
ferent mean. We should thus favor distributions that are
simple and fast to work with numerically. Additionally, even
though the distributions we use with different means must
necessarily be different, they should ideally be related in an
intrinsic way.

We can add two further desiderata. Because events cannot
occur with probability less than zero or greater than one, our
belief distributions should be double-bounded. Finally, our
distributional choice should reflect the inherent symmetry
of prediction market shares — that a market for an event
occurring with probability p is identical to a market for an
event not occurring with probability 1 — p. To formalize
this requirement, let f, represent the probability density
function of our distribution with mean z. The symmetry we
require is that:

fz(x) = fiz(1— =)

Specific families of Beta distributions provide these prop-
erties for us. Recall that Beta distributions rely on two
parameters, « and 3, and have mean a/(a+ 3). Beta distri-
butions can also be parameterized by the sum > and mean
i, such that ¥ = a+ 8 and p = a/(a + B). Our scheme
for generating distributions of a specified mean is to use the
beta distribution that has the specified mean and whose pa-
rameters sum to a constant value.

Beta distributions are common and are implemented well
in major software packages. They possess our symmetric
property, and they are double-bounded. It is immediate
that they meet all of our desiderata except for the “innately
related” quality.

Why should we group together Beta distributions whose
parameters have the same sum? To answer this, consider
that the the Beta distribution is the conjugate prior for
observing Bernoulli trials. Imagine that we have current
beliefs that the probability an event occurs is uniform on
[0,1]. This is the Beta distribution with parameters o =
1, B8 = 1. After observing N Bernoulli trials and seeing s
successes and N — s failures, our beliefs over the likelihood
of the event are given by a Beta distribution with parame-
ters a =14s, =1+ N — s. Note that regardless of the
realized numbers of successes, the resulting Beta posterior
distribution will be given by parameters that always sum to
the same value. Beta distributions with the same parameter
sum therefore can be thought of as representing responses
to the same amount of information. As the sum gets larger,
the distributions become more specific.

We refer to families of belief distributions with the same
sum as belief regimes, and we explore three different regimes
in our computational study:

Belief Regime Sum of Parameters
Low Accuracy 5

Middle Accuracy 25
High Accuracy 100

Some graphical intuition for these regimes is given in Fig-
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ure 3, which depicts the distributions of the different belief
regimes at two means. As the figure shows, the low accu-
racy belief regime is diffuse, while the high accuracy belief
regime is quite tight around its mean. Note that we are not
suggesting that human agents in real markets have belief dis-
tributions corresponding to one of the regimes, instead, we
are using them as devices to gain perspective on what hap-
pens to market prices under different belief distributions.

Density
w

Illustration of the three different be-
lief regimes discussed in the text, at distributional
means .2 and .6.

Figure 3:

3.4 Solving for Expected Transaction Prices

Previous studies of ZI agents have generally involved com-
putational simulation. With our increased understanding of
how transactions are distributed, from Equation 1, we can
solve for expected prices accurately without simulating a
market in software and running thousands of trials. As a
result, we are able to calculate equilibria for many more
configurations than in previous studies.

Note that Equation 1 depends on only two terms: Fa(x)
and 1 — Fp(z). The latter of these is the probability of a bid
order being placed at a price greater than x, and the former
is the probability of placing an ask order at a price less than
z. By the continuous analog to exhaustive partitioning:

/Oz <51”:Z> F(b) db

1— Fp(z) :/: (b;x) F(b) db

If the belief distribution is relatively smooth then numerical
quadrature methods will have no problem evaluating these
integrals. Finally, we can calculate the expected transaction
price using the tail-sum theorem:

Fa(x)

1 s 1— Fg(x)
/Ol—FT(x)dx*/O Fa(z)+1— Fg(z)

Once again, numerical quadrature will be able to produce
solutions to this second level of integral. The fact that we are
chaining together two levels of numerical integration should
not be alarming, because the beta distributions we use are
suitably well-behaved.

dx

E(T)



4. RESULTS

Figure 4 (on the next page) shows the results of numer-
ically calculating the expected transaction price under the
three different belief regimes. All three regimes show the
longshot bias. Consider, for instance, when the distribu-
tional mean (which, we argue, is the objective probability
of the event) is .8, the expected prices for the high, middle,
and low accuracy belief regimes are .781, .766, and .742 re-
spectively. Similarly, when the objective probability of an
event is .2, prices will be .219, .234, and .258. Likely events
are underpriced, while unlikely events are overpriced.

It is intuitive that in the limit of accuracy ZI markets
would be unbiased: If all agents had identical b;, the only
price at which transactions could occur would be that value.
In Section 3.4, we solved for the equations corresponding
to the expected transaction prices. Given those complex
equations, it is not immediately evident that the amount of
bias in prices should increase with the diffuseness of beliefs.
Furthermore, it is not obvious that any difference between
objective prices and expected transaction prices should be
in the direction implied by longshot bias.

Figure 5 depicts the longshot bias as found by Wolfers
and Zitzewitz [17] in their study of prediction market data
from the IEM. To facilitate comparisons with our compu-
tational results, we have structured our plot on equivalent
axes. Observe the significant longshot bias for shares priced
around 25 cents, which virtually never pay off, and shares
priced around 75 cents, which pay off with near certainty.
By comparing the two plots, it is clear that the expected
transaction price of ZI traders under the low accuracy belief
regime closely matches the observed data from real predic-
tion markets populated by human traders.

S.  CONCLUSIONS

Agent-based modeling of the real world is necessarily du-
bious. Attempting to model the rich tapestry of human
behavior within economic structures — both the outstand-
ingly bad and the terrifically complex — is a futile task.
Worse, from the perspective of the modeler, is that descrip-
tive agent-based models of human behavior are perpetually
subject to the trenchant complaint: “That is not the way
people behave”.

Zero-Intelligence agents provide a way out of this trap.
The power of ZI agents is not that they serve to provide
an accurate or essentialist model of human behavior; they
do not. Instead, they play precisely the opposite role — ZI
agents represent players that are distinctly non-human. The
insight from ZI agents comes not from the results of their
simulation, but rather from the difference between those re-
sults and the results of actual, human, markets. This differ-
ence is a product of what is not in the ZI model: distinctly
human qualities — of reasoning, learning, strategizing.

In the case of prediction markets, our ZI model of agents
with diffuse beliefs produces results that closely match those
found in real markets. We can think of three explanations
for this phenomenon:

e The belief distributions of participants in a real market
are actually more diffuse than in our low accuracy be-
lief regime, indicating that human qualities drive mar-
kets further towards efficiency.

e The belief distributions of participants in a real mar-
ket are approximated well by our low accuracy belief
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regime, and so human qualities do not play a signifi-
cant role in price formation.

e The belief distributions of participants in a real market
are more exact than those of the low accuracy belief
regime. Thus, human qualities actually drive prices
away from efficiency.

Of these options, we feel that the first can be discarded.
The low accuracy belief regime was selected because it would
be difficult to imagine actual beliefs being any more diffuse.
As Figure 3 depicts, the beliefs in the low accuracy model are
quite spread out already, with significant density far away
from the mean. Furthermore, if human qualities like rea-
soning or learning are driving prices towards efficiency, then
why should they stop at an inefficient result? The fact that
empirical results from prediction markets shows the longshot
bias is a strong argument against this explanation.

Concluding that the wealth of qualities that separate hu-
man traders from ZI agents either have no effect or drive
markets towards inefficiency is quite provocative in and of
itself, but because of previous studies of prediction markets
it is almost heretical. The team of researchers responsible
for the Iowa Electronic Markets first put forth the Marginal
Trader Hypothesis in the context of the market run on the
1988 presidential election [6]. That market, even though
it was quite small, was a terrific success: it predicted the
outcome of the election remarkably well.

Yet it is important to note that the 1988 market oper-
ated on rules that were fundamentally different from the
rules that the prediction markets of today operate upon:
that market was a wvote-share market, where shares expire
at the share of the popular vote a candidate receives, rather
than a winner-take-all market in which shares of the winning
candidate expire at a dollar and losing shares expire worth-
less. Because they have universal interpretation outside of
elections, modern prediction markets are run virtually ex-
clusively as winner-take-all markets.

The difference in the outcome (and the interpretation of
that outcome) between the two market settings is profound.
In a winner-take-all market of the 1988 election, shares of
Michael Dukakis, the losing candidate, would have expired
worthless, but in the vote-share market they expired at more
than 45 cents on the dollar. Had the 1988 market been
winner-take-all, it would have only been a couple data points
— of a share trading at a price expiring at a dollar, for
instance. Instead, in a vote-share market, it became an in-
stance of a prediction market correctly guessing the result of
the popular vote far better than polls. This result prompted
the search for an explanation which culminated in the de-
velopment of the Marginal Trader Hypothesis.

Once one accepts that prediction markets are efficient and
that marginal traders are the cause of that efficiency, it is
easy to construct narratives that make the pair mutually re-
inforcing. For instance: prediction markets are efficient be-
cause the desire to profit motivates better-informed agents to
take advantage of the misjudgments of less-informed agents.
By the time enough data about prediction markets in the
winner-take-all context could be gathered to draw conclu-
sions, this narrative of efficiency had already been ensconced
for more than a decade. But the greatest proponent for a
hypothesis should not be inertia.
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5.1 Future Directions

We base our conclusions regarding the inefficiency on the
results of only a single study showing the bias in human
prediction markets. Wolfers and Zitzewitz analyzed more
than a dozen years of results from a well-respected predic-
tion market, and grounded their finding of inefficiency in
the much longer history of the longshot bias appearing in
racetrack betting and sportsbooks. It would be interesting,
however, to explore the longshot bias in other prediction
markets. InTrade, a Dublin-based exchange, operates polit-
ical, sports, and financial prediction markets. Do these data
sets also display the longshot bias? More or less, and why?

Another promising direction is to increase the level of
agent sophistication within the simulation. What kind of
transaction prices are observed in a market populated by
the simple learning ZIP agents? These more sophisticated
agents can also be used to model the time dimension of pre-
diction markets. Perhaps news shocks occur over time and
are received in different strengths by different agents. Will
a market with these simple learners over- or under-react to
these new pieces of knowledge?
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