
Anytime Local Search for Distributed Constraint
Optimization

(Short Paper)
Roie Zivan

Department of Industrial Engineering and Management
Ben-Gurion University of the Negev

Beer-Sheva, 84105, Israel
{zivanr}@bgu.ac.il

ABSTRACT
Most former studies of Distributed Constraint Optimization Prob-

lems (DisCOPs) search considered only complete search algorithms,
which are practical only for relatively small problems. Distributed
local search algorithms can be used for solving DisCOPs. How-
ever, because of the differences between the global evaluation of a
system’s state and the private evaluation of states by agents, agents
are unaware of the global best state which is explored by the algo-
rithm. Previous attempts to use local search algorithms for solving
DisCOPs reported the state held by the system at the termination of
the algorithm, which was not necessarily the best state explored.

A general framework for implementing distributed local search
algorithms for DisCOPs is proposed. The proposed framework
makes use of a BFS-tree in order to accumulate the costs of the
system’s state in its different steps and to propagate the detection
of a new best step when it is found. The resulting framework
enhances local search algorithms for DisCOPs with the anytime
property. The proposed framework does not require additional net-
work load. Agents are required to hold a small (linear) additional
space (beside the requirements of the algorithm in use). The pro-
posed framework preserves privacy at a higher level than complete
DisCOP algorithms which make use of a pseudo-tree (ADOPT ,
DPOP ).

1. INTRODUCTION
The Distributed Constraint Optimization Problem (DisCOP) is

a general model for distributed problem solving that has a wide
range of applications in Multi-Agent Systems and has generated
significant interest from researchers [4, 5, 6, 8].

A number of complete algorithms were proposed in the last few
years for solving DisCOPs [1, 5, 6]. While the completeness of
these algorithms is an advantage in the sense that they guarantee to
report the optimal solution, this is also a drawback since in order
to validate that an acquired solution is optimal they must traverse
the entire search space. This drawback limits the use of these algo-
rithms to relatively small problems.

In the case of centralized optimization problems, local search
techniques are used when the problems are too large to perform a
complete search. Traditionally, local search algorithms maintain a
complete assignment for the problem and use a goal function in or-

Cite as: Anytime Local Search for Distributed Constraint Optimization
(Short Paper), R. Zivan, Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp.1449-1452.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

der to evaluate this assignment. Different methods which balance
between exploration and exploitation are used to improve the cur-
rent assignment of the algorithm [7]. An important feature of most
local search algorithms is that they hold the best assignment that
was found throughout the search. This makes them anytime algo-
rithms, i.e., the quality of the solution can only increase or remain
the same if more iterations of the algorithm are performed [9]. This
feature cannot be applied in a distributed environment where agents
are only aware of the cost of their own assignment (and maybe their
neighbors too) but no one actually knows when a good global solu-
tion is obtained.

Several local search algorithms were proposed for Distributed
Constraints Satisfaction problems. Most of them apply a synchronous
framework which in each synchronous step of the algorithm agents
propagate their assignments to all their neighbors in the constraint
graph, collect all the assignments of their neighbors, and decide
whether to change their assignment [8].

Such local search algorithms are applicable for DisCOPs. How-
ever, they cannot report the best solution they traverse (i.e., they are
not anytime algorithms [9]). The reason is that in contrast to a sat-
isfaction scenario where in the global optimal state all agents are
also in a local (e.g., private) optimal state, in a distributed opti-
mization scenario agents might have a local (private) assignment to
their variables which is not optimal but the system is in an optimal
(global) state.

In [8], DSA and DBA are evaluated solving sensor network
DisCOPs. Apparently these algorithms perform well on this appli-
cation even without a pure anytime property. The algorithms were
compared by evaluating the state held by agents at the end of the
run. Such evaluation limits the chances of local search algorithms
which implement an exploring heuristic to be successful.

In order to implement local anytime search algorithms which fol-
low the same general structure of DSA and DBA for Distributed
Optimization problems, the global result of every synchronous it-
eration must be calculated and the best solution must be stored. A
trivial solution would be to centralize in every iteration the costs
calculated by all agents to a single agent which will inform the
other agents each time a solution which improves the results on all
previous solutions is obtained. However, this method has draw-
backs both in the increase in the number of messages and in the
violation of privacy caused from the need to inform a single agent
(not necessarily a neighbor of all agents) of the quality of all other
agents’ states in each of the iterations of the algorithm.

The present paper proposes a general framework for enhanc-
ing local search algorithms which follow the general synchronous
structure of DSA and DBA and solve DisCOPs with the anytime
property. In the proposed framework the quality of each state is



DSA
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Figure 1: Standard DSA.

accumulated via a Breadth First Search tree (BFS-tree) structure.
Agents receive the information about the quality of the recent states
of the algorithm from their sons in the BFS-tree, calculate the re-
sulting quality including their own contribution according to the
goal function, and pass it to their parents. The root agent makes
the final calculation of the cost for each state and propagates down
the tree the index number of the most successful state. When the
search is terminated, all agents hold the assignment of the best state
according to the global goal function.

In order to produce the best state out of m steps, the algorithm
must run m + (2 ∗ h) synchronous steps where h is the height of
the tree used. Since the only requirement of the tree is to maintain
a parent route from every agent to the root agent, the tree can be a
BFS-tree and its height h is expected to be small. The proposed
framework does not require agents to send any messages beside
the messages sent by the original algorithm. The space require-
ments for each agent are O(h). In terms of privacy, the proposed
framework preserves a higher level of privacy than state-of-the-art
algorithms for solving DisCOPs which use a pseudo-tree

2. LOCAL SEARCH FOR DISCOPS
1 The general design of local search algorithms for Distributed

Constraint Problems is synchronous. In each step of the algorithm
an agent sends its assignment to all its neighbors in the constraint
network and receives the assignment of all its neighbors. For lack
of space we only present one algorithm that applies to this gen-
eral framework, the Distributed Stochastic Algorithm (DSA). It is
presented following the recent version of [8]. 2

The basic idea of the DSA algorithm is simple. After an initial
step in which agents pick some value for their variable (random
according to [8]), agents perform a sequence of steps until some
termination condition is met. In each step, an agent sends its value
assignment to its neighbors in the constraints graph and receives
the assignments of its neighbors.3 After collecting the assignments
of all its neighbors, an agent decides whether to keep its value as-
signment or to change it using a stochastic strategy (see [8] for
details on the possible strategies and the difference in the resulting
performance). A sketch of DSA is presented in Figure 1.

3. ANYTIME FRAMEWORK
Local search algorithms combine exploration and exploitation

properties in order to converge to local minimas, and escape from
them in order to explore other parts of the search space. When a
centralized constraints optimization local search algorithm is per-
formed, the quality of the states of the algorithm are completely
1A detailed description of Distributed Constraint Optimization was
left out for lack of space. A detailed description can be found in [1].
We assume that agents are aware only of their own topology (con-
straints that they are involved in personally and privately hold).
2In our description we consider an improvement a decrease in the
number of violated constraints (as in Max-CSPs).
3In this paper we follow the general definition of a DisCOP and a
DisCSP which does not include a synchronization mechanism. If
such a mechanism exists, agents in DSA can send value messages
only in steps in which they change their assignments.

DSA_DisCOP
1. height← height in the BFS- tree
2. dist← distance from root
3. best← null
4. best_index← null
5. current_step← 0
6. if (root)
7. best_cost←∞
8. value_current← ChooseRandomValue()
9. while (current_step < (m + dist + height))
10. send value and cost_i to parent
11. send value to non tree neighbors
12. send value and best_index to sons
13. collect neighbors’ values
14. cost_i← CalculateStepCost(current_step− height)
15. if(root)
16. if(cost_i < best_cost)
17. best_cost← cost_i
18. best← value_i
19. best_index← i
20. if (message from parent includes a new best_index j)
21. best← value_j
22. best_index← j
23. if (ReplacementDecision())
24. select and assign the next value
25. delete value_(current_step− (2 ∗ dist))
26. delete cost of step (current_step− height)
27. current_step + +
28. for (1 to dist + height)
29. receive message from parent
30. if (message from parent includes a new best_index j)
31. best← value_j
32. best_index← j
33. send best_index to sons

Figure 2: DSA in the ALS_DisCOP framework.

known and therefore there is no difficulty in holding the best state
which was explored. In a distributed constraint optimization prob-
lem, agents are only aware of their own private state (the violated
constraints which they are involved in and their costs) and, thus, a
state which can seem to have high quality to a single agent might
be of low global quality and vise versa.

We propose a framework that will enhance DisCOP local search
algorithms with the anytime property. In the proposed Anytime
Local Search framework, ALS_DisCOP , a tree is used as in
ADOPT [5] and DPOP [6]. In contrast to ADOPT and DPOP
that require the use of a pseudo-tree, the only requirement in ALS_DisCOP
is that every agent has a parent route to the root agent. Thus, a
Breadth First Search (BFS) tree on the constraint graph can be
used. The BFS-tree structure is used in order to accumulate the
cost of agents in the different states during the execution of the al-
gorithm. Each agent calculates the cost of the sub-tree it is a root
of in the BFS-tree and passes it to its parents. The root agent cal-
culates the complete cost of each state and if it is found to be the
best state found so far, propagates its index to the rest of the agents.
Each agent Ai is required to hold its assignments in the last 2 ∗ di

steps where di is the length of the route of parents in the BFS-
tree from Ai to the root agent and is bounded by the height of the
BFS-tree (h).

In each step of the algorithm an agent collects from its sons in
the BFS-tree the calculation of the cost of the sub-tree of which
they are the root. When it receives the costs for a step j from all
its sons, it adds its own cost for the state in step j and sends the
result to its parent. When the root agent receives the calculations
of the cost of step i from all its sons, it calculates the global state
cost. If it is better than the best state found so far, in the next step
it will inform all its sons that the state in step j is the best state
found so far. Agents which are informed of the new best step store



their assignment in that step as the best assignment and pass the
information about the best index to their sons in the next step. After
every synchronous step the agents can delete the information stored
about any of the steps which were not the best and are not of the
last 2 ∗ d steps. When the algorithm is terminated, the agents must
perform another h steps (again, h is the height of the BFS-tree) in
which they do not replace their assignment to make sure that all the
agents are aware of the same index of the best step.

The structure of the framework is homogeneous for all algo-
rithms with a distributed synchronous local search general struc-
ture (such as DSA and DBA). It is interleaved in the algorithm
execution as follows:

1. In the initialization phase, besides choosing a random value
for the variable, agents initialize the parameters which are
used by the framework. The root initializes an extra integer
variable to hold the cost of the best step.

2. In order to get the best out of m steps of the algorithm, m+h
steps are performed (h is the height of the BFS-tree). This
is required so all the information needed for the root agent
to calculate the cost of the m steps will reach it (see Sec-
tion 4.1).

3. After values are exchanged, each agent calculates the cost of
the state according to its height. An agent with height hi cal-
culates the cost of the state in which its sub-tree was in hi

steps ago. The root agent checks if the cost it calculated is
smaller than the best cost found so far and if so saves its in-
formation. All other agents check if the best index received
from their parent is new. If so they save the information (in-
dex and assignment) of the step with the corresponding in-
dex.

4. Before the step is over, the agent deletes the information that
has become redundant. This includes the information on the
cost which it passed to its parent on this step and the assign-
ment of the step which its index should have been received
on this step in case it was found to be better than previous
steps by the root agent.

5. On the next step, the value message an agent sends to its
parent will include the cost calculation it had performed in
this step and the messages to its sons will include the index
of the best step it knows of.

6. When the termination condition of the algorithm is met, the
agents perform additional h steps in which only the best in-
dex is propagated down the tree. This way, if the last step cost
calculated by the root agent is found to be best, its propaga-
tion to all agents is completed. Furthermore, by performing
these steps, the possibility that different agents hold assign-
ments of their best steps which belong to different steps is
prevented (see Section 4.1).

The code for DSA in the ALS_DisCOP framework is pre-
sented in Figure 2 4.

4. PROPERTIES OF ALS_DISCOP
ALS_DisCOP is a framework for implementing local search

algorithms for DisCOPs. Regardless of the algorithm being used,
the ALS_DisCOP framework offers properties which ensure the
preservance of the algorithms’ behavior.

4We assume the existence of a BFS tree when the algorithm begins.

4.1 Anytime property
The main goal of the ALS_DisCOP framework is to enhance

a distributed local search algorithm with the anytime property (i.e.
that the cost of the solution held by the algorithm at the end of the
run would monotonically decrease if the algorithm is allowed to run
for additional iterations [9]). In order to prove that ALS_DisCOP
is an anytime framework for distributed local search algorithms, we
first prove the following Lemma:

LEMMA 1. When the algorithm terminates, all the assignments
of the best state held by all the agents in the system are assignments
they held in the same step (in other words the best_index of all
agents is equal).

proof: The proof for this Lemma derives directly from the last part
of the framework which includes h steps in which messages includ-
ing only the best_index are passed. Since no new best_index is
found by the root in these steps and h steps are enough for all the
agents in the BFS-tree to receive a new best_index, then even if
a best_index was found in the last (standard) step of the algorithm
its propagation is completed. �

Next, we prove that at the end of the run of m + h iterations
(synchronous steps of the algorithm in the framework), the index
of the step with the best state which was held by the system in the
m first steps of the algorithm is held by the root agent. To this end
we present the following Lemma (the simple proof was left out for
lack of space):

LEMMA 2. At the i+h step, the root agent holds all the needed
information for calculating the quality of state i.

The anytime property of the ALS_DisCOP framework derives
directly from the Lemmas 1 and 2. h steps after each step is per-
formed, the root agent holds the information needed to evaluate its
quality and can propagate its index to all other agents in case it is
the best. Since we require that agents hold the value assignments
of the last 2 ∗ dist (dist is the length in a rout of parents of an
agent from the root which is at most h, see Section 3) steps they
can get the update on the index of the best step before they delete
the relevant assignment and hold it until they receive another up-
date. Thus, after m + h steps, the root agent holds the index of the
step with the best state among the first m steps and according to
Lemma 1, at the end of the algorithm run, all agents hold the value
assignment of the step which was found by the root to be the best.
If the algorithm is run for k more steps (the termination condition
is met after m + k + h steps), in the k steps performed after the
first m steps, either a better solution is found or the same solution
which was found best in the first m steps is reported. �

4.2 Performance analysis
Distributed algorithms are commonly measured in terms of time

for completion and network load [3]. When considering a local
search algorithm for DisCOPs, since it is not complete and the
agents cannot determine that they are in an optimal state, there is no
point in measuring time. We note that in the proposed framework,
in order to get the best state among m steps the algorithm needs
to run for m + (2 ∗ h) steps. However, the tree which is used
by ALS_DisCOP has different requirements than the pseudo-
trees which are used by complete algorithms (like ADOPT and
DPOP ). In a pseudo-tree which is used in complete algorithms,
constrained agents must be on the same parent route (in every bi-
nary constraint, one of the constrained agents is an ancestor of the
other). This requirement makes the pseudo-tree less effective when
the constraint graph is dense. In contrast, the only requirement in
ALS_DisCOP is that every agent has a parent route to the root



agent. Thus, a Breadth First Search (BFS) tree can be used. Since
a BFS-tree includes the shortest route from each node to the root,
the height of the resulting tree (especially when the constraint graph
is dense) is expected to be small.

In terms of network load, the ALS_DisCOP framework does
not require any additional messages. In standard local search al-
gorithms (such as DSA and DBA), agents at each step send at
least one message to each of their neighbors. The ALS_DisCOP
framework does not require more. The additional information that
agents add to messages is constant (costs of steps or best indexes).

In terms of space, an agent i is required to hold the value assign-
ments of the last 2∗dist steps (again dist is the distance in tree arcs
of an agent from the root) and to hold the cost of the last height
states (where height is the height of the agent in the BFS-tree).
This results in an O(h) additional space requirement (linear in the
worst case) for each agent.

4.3 Privacy of ALS_DisCOP
When a complete algorithm is being performed, agents must

be able to announce that parts of the search space were already
scanned and do not include a better solution than the best solution
which was already found by the algorithm. This is done by declar-
ing lower bound costs on partial assignments (Nogoods). While
this report of costs of partial assignments is necessary for the al-
gorithm’s completeness, it is also a drawback when it comes to
privacy. In a naive algorithm like synchronous B&B, agents are
required to reveal their assignments to non-neighboring agents. In
the case of algorithms which exploit the structure of the constraint
network, such as ADOPT and DPOP , agents report costs with
respect to their contexts, which means, for example in ADOPT ,
that a parent of a leaf agent is informed not only of the lowest cost
of any of the leaf’s possible value assignments but of the assign-
ments of agents with which it is constrained and caused this cost.

In a local search algorithm, partial assignments can be revisited
and therefore a cost of a state must be reported, but the context
which caused this cost can remain concealed. The trade-off that is
commonly considered between complete search and local search is
time versus completeness. It turns out that there is another trade-
off to consider, which is the privacy loss required by a complete
algorithm which is not required in a local search algorithm.

In addition to the information which the local search algorithm
requires agents to exchange between them, ALS_DisCOP re-
quires that each agent will pass the cost of a state in the sub-tree
of which it is the root. As in other algorithms which use a tree (as
ADOPT and DPOP ), the main problem in ALS_DisCOP is
with the information passed by leafs in the tree to their parents [2].

When a non-leaf agent Aj passes the cost of its sub-tree to its
parent, the parent does not know how many sons Aj has and the
contribution of each of these agents to the reported cost. On the
other hand, when a leaf agent reports a cost, its parent knows that
it is the cost of a single agent (the leaf itself). However, agents
are not aware of the system’s topology except for their own neigh-
bors. So in fact, even though the parent of a leaf receives its cost
in every step of the algorithm, the parent does not know how many
neighbors of its leaf son has in the constraint network and which
constraints were violated, therefore the privacy violation is minor.

5. CONCLUSIONS
DisCOPs are hard optimization problems which require exhaus-

tive search. Therefore, complete search algorithms are limited for
solving relatively small problems.

Distributed local search algorithms were proposed for Distributed
CSPs and were applied for DisCOPs [8]. However, these algo-

rithms failed to report the best state traversed by the algorithm.
In order to enhance local search algorithms for DisCOPs with the

anytime property, a general framework for performing distributed
local search algorithms in DisCOPs was proposed in this paper. In
the proposed framework, agents use a BFS-tree structure in order
to accumulate the costs of a state of the system to the root agent
which compares the cost of each state with the cost of the best state
found so far and propagates the index of a new best state, once it is
found, to all other agents. At the end of the run, the agents hold the
best state which was traversed by the algorithm.

Apart from a small number of idle steps at the end of the run of
the algorithm (two times the height of the BFS-tree), the frame-
work does not require any additional slowdown in the performance
of the algorithm. In contrast to complete algorithms which use a
pseudo-tree, the tree used in ALS_DisCOP can be a Breadth
First Search (BFS) tree. Thus, the height of the tree is expected
to be small. In terms of network load, the only messages used in
the ALS_DisCOP framework are the algorithm’s messages (i.e.,
no additional messages are required by the framework). Agents are
required to use small (linear in the worst case) additional space. In
terms of privacy, ALS_DisCOP preserves a higher level of pri-
vacy than complete DisCOP algorithms which use a pseudo-tree,
since an agent is not required to reveal to its neighbor with which
of the other agents it is constrained (who are its other neighbors in
the constraints graph).

We hope that this paper will encourage studies of distributed lo-
cal search algorithms for DisCOPs which will combine stochas-
tic and systematic methods for exploration and exploit the special
properties of a distributed optimization problem.

6. REFERENCES
[1] A. Gershman, A. Meisels, and R. Zivan. Asynchronous

forward-bounding for distributed constraints optimization. In
Proc. ECAI-06, pages 103–107, August 2006.

[2] R. Greenstadt, B. J. Grosz, and M. D. Smith. Ssdpop:
Improving the privacy of dcop with secret sharing, distributed
constraint reasoning workshop (dcr), providence, rhode island,
september 2007. In Distributed Constraint Reasoning
Workshop (DCR), CP-07, Providence, RI, USA, September
2006.

[3] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
Series, 1997.

[4] R. Mailer and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In Proc.
AAMAS-2004, pages 438–445, July 2004.

[5] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraints optimization with quality
guarantees. Artificial Intelligence, 161:1-2:149–180, January
2005.

[6] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, pages 266–271, 2005.

[7] A. Schaerf. Local search techniques for large high-school
timetabling problems. IEEE Transactions on Systems, Man,
and Cybernetics— Part A: Systems and Humans,
29(4):368–377, 1999.

[8] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparishon and applications to constraints optimization
problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.

[9] S. Zilberstein. Using anytime algorithms in intelligent
systems. AI Magazine, 17(3):73–83, 1996.




