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ABSTRACT
In this paper, we present ARF, our initial effort at solving task-
allocation problems where cooperative agents need to perform
tasks simultaneously. An example is multi-agent routing problems
where several agents need to visit targets simultaneously,for exam-
ple, to move obstacles out of the way cooperatively. First, we pro-
pose reaction functions as a novel way of characterizing thecosts
of agents in a distributed way. Second, we show how to approxi-
mate reaction functions so that their computation and communica-
tion times are polynomial. Third, we show how reaction functions
can be used by a central planner to allocate tasks to agents. Finally,
we show experimentally that the resulting task allocationsare better
than those of other greedy methods that do not use reaction func-
tions.

Categories and Subject Descriptors
1.2 [Artificial Intelligence ]: Problem Solving

General Terms
Algorithms
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1. INTRODUCTION
In recent years, several researchers have studied task-allocation

problems in a competitive setting where agents are self-interested
and try to maximize their own utilities [6, 9]. These task-allocation
problems are then often solved with techniques from game theory
[4, 1]. We are interested in general task-allocation problems in a
cooperative setting where the agents collaborate to minimize the
team cost (that is, maximize the team performance). In this pa-
per, our motivating problem is multi-agent routing becauseit is
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very visual. The tasks are to visit targets in the plane. The ter-
rain, the locations of all homogeneous agents and the locations of
all targets are known.1 We need to determine which targets each
agent should visit and when it should visit them so that the team
cost (for example, the amount of energy needed by the team or the
task-completion time) is as small as possible. Multi-agent rout-
ing is a standard problem for robot teams, for example, as part of
de-mining, search-and-rescue and taking rock probes on the moon.
Multi-agent routing where each target needs to be visited by exactly
one agent is currently a standard test domain for robot coordination
with auctions [3]. In this paper, we extend multi-agent routing to
the case where each target needs to be visited simultaneously by
a given number of agents, which can be different for each target.
Some targets need to be visited by only one agent. However, some
targets now need to be visited by several agents simultaneously.
For example, large fires can only be extinguished with several fire
engines, and heavy objects can only be moved with several robots.
Thus, the agents have to solve complex scheduling problems where
the cost of visiting a target depends not only on the target and the
agents that visit it but also on the visit time, which is different from
the assumptions made by existing approaches for task allocation
via coalition formation [7, 11]. We introduce our new approach,
called ARF, as follows: After describing multi-agent routing prob-
lems formally, we first propose reaction functions as a novel way
of characterizing the costs of agents in a distributed way. Second,
we show how one can approximate reaction functions so that their
computation and communication times are polynomial. Third, we
show how a central planner can use reaction functions to allocate
targets to agents and determine their visit times with a computation
time that is exponential in the largest coalition size and polynomial
in the number of agents and targets. Finally, we show experimen-
tally that the target allocations of ARF are better than those of other
greedy methods that do not use reaction functions.

2. MULTI-AGENT ROUTING
We now formalize multi-agent routing problems: The finite set

of agents isA. The finite set of targets isX. The number of dif-
ferent agents that need to visit targetx simultaneously, called its
coalition size, is d(x).2 We call a targetx simple if d(x) = 1

1One can solve multi-agent routing problems in unknown terrain
by making assumptions about the unknown terrain, such as the as-
sumption that it is traversable, making it in effect “known” and
thus solvable with our task-allocation algorithms. One then runs
the task-allocation algorithms again to re-allocate all unvisited tar-
gets to agents whenever this assumption turns out to be wrong and
thus needs to get revised.
2For any complex targetx with coalition sized(x), the central
planner needs to evaluate all possible coalitions ofd(x) different
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andcomplex otherwise. The set of simple targets and the set of
complex targets partition the set of all targets. We distinguish these
two kinds of targets because an agent can freely determine when to
visit simple targets but needs to agree with other agents on when
to visit complex targets. The set ofd(x) different agents that need
to visit complex targetx at some visit timet is called thecoali-
tion for the complex target. Each agent in the coalition thus has a
commitment to visit the complex targetx at visit timet, written
asx ← t. An allocation of agenta consists of a pair(Xa, Ca),
whereXa is the set of simple and complex targets assigned to it and
Ca is the set of its commitments for the complex targets. We say
that the multi-agent routing problem is one withdisjoint coalitions
if every agent can visit at most one complex target because coali-
tions then cannot overlap. Otherwise, we say that the multi-agent
routing problem is one with (potentially)overlapping coalitions.
Disjoint coalitions are important in the presence of capacity con-
straints. For example, a fire engine that has only enough water to
help extinguish one fire can visit only one complex target. How-
ever, it might be able to transport survivors to various hospitals and
thus visit several simple targets. Theagent costcagent

a (Xa, Ca)
is the smallest sum of travel and wait times needed for agenta to
visit all targetsXa assigned to it, where it can freely determine
when to visit each simple target subject to the restriction that it
has to visit all complex targets (if any) at the visit times recorded
in its commitment setCa. (The agent cost is infinity in case the
agent cannot satisfy this restriction.) Our objective is tofind a so-
lution with a small team cost, where a solution requires eachtarget
x to be assigned to exactlyd(x) different agents so that all agents
in the coalition have the same commitment for a complex target.
In addition, every agent can be assigned at most one complex tar-
get for multi-agent routing problems with disjoint coalitions. We
consider two different ways of defining the team cost. Theteam
cost is

P

a∈A
cagent
a (Xa, Ca) (roughly proportional to the energy

needed by the agents for moving and waiting) for theMiniSum
team objectiveandmaxa∈A cagent

a (Xa, Ca) (the task-completion
time) for theMiniMax team objective. We usecteam as a special
operator for either the sum or max operator, depending on theteam
objective, and writecteam

a∈A cagent
a (Xa, Ca) to make our notation in-

dependent of the team objective.

3. OUR APPROACH
Our approach to multi-agent routing consists of two stages.In

Stage 1, all simple targets are assigned to agents. In Stage 2, all
complex targets are assigned to agents. Stages 1 and 2 both con-
sist of multiple rounds, where one additional target is myopically
assigned to some agent (for simple targets) or a coalition ofagents
(for complex targets) during each round, namely under the assump-
tion that it is the last target to be assigned. In particular,one addi-
tional target is assigned to some agent or coalition of agents so that
the team cost after the assignment is smallest among all possible
assignments, resulting in a form of hill-climbing. Thus, weex-
pect the team cost of the resulting solution to be small. The simple
targets are assigned before the complex targets so that the agents
can manipulate the order in which they visit the simple targets as-
signed to them to accommodate the complex targets assigned to
them. (The opposite would not work since complex targets are
assigned to agents with a visit time that the agents need to obey
while simple targets are assigned to them without a visit time.) For
multi-agent routing problems with disjoint coalitions, anagent is

agents and there are an exponential number of them. To make the
central planner fast, we assume that the largest coalition size of all
complex targets is small. Fortunately, this assumption often holds
in practice.

 

a1 a2 x5 

x1 x2 

x3 x4 

2 1 

1 

1 

1 1 

1 

1 

Figure 1: Multi-Agent Routing Problem on a Graph

no longer assigned any targets once it has been assigned one com-
plex target.

3.1 Stage 1: Assigning Simple Targets
The central planner assigns one additional simple target tosome

agent during each round of Stage 1 until all simple targets have
been assigned. There are several methods in the literature for al-
locating simple targets to agents. We assign them to agents with
sequential single-item auctions [12] because we are able toreuse
the principle underlying sequential single-item auctionswhen as-
signing complex targets to agents in Stage 2. In the beginning of
Stage 1,Xa = ∅ and Ca = ∅ for all agentsa. Consider any
round of Stage 1. The central planner needs to assign one addi-
tional simple target to some agent so that the resulting teamcost
is smallest. Each agenta uses the Or-opt heuristic [8], as given
in the appendix, to approximate for each unassigned simple target
x (that is, simple target not assigned to any agent) its agent cost
Fx

a := cagent
a (Xa ∪ {x}, ∅) for visiting targetx and all (simple)

targets already assigned to it at the optimal visit times. Each agent
a then submits for each unassigned simple targetx the value

Vx
a :=



Fx
a − cagent

a (Xa, ∅) for MiniSum
Fx

a for MiniMax

to the central planner. LetXs be the set of unassigned
simple targets. The central planner determines(a, x) :=
arg mina∈A,x∈Xs

Vx
a and then assigns simple targetx to agenta

(which executesXa := Xa ∪ {x}), terminating the round. It has
been shown that this assignment results in the smallest teamcost
among all possible assignments of any unassigned simple target to
any agent [12], resulting in a form of hill-climbing. The procedure
then repeats until all simple targets have been assigned to agents.

Example: Consider the multi-agent routing problem shown in Figure 1
for the MiniMax team objective, where the agents and targetsare located
on a graph and the agents can only move along the edges of the graph.
x1, x2, x3 andx4 are simple targets.x5 is the only complex target with
d(x5) = 2. It takes four rounds to allocate the simple targets in Stage1. In
the first round,Fx1

a1 = Fx3
a1 = Fx2

a2 = Fx4
a2 = 1 andFx2

a1 = Fx4
a1 =

Fx1
a2 = Fx3

a2 = 4. The central planner can make one of the following four
allocations sinceVx

a = Fx
a for the MiniMax team objective:x1 to a1, x3

to a1, x2 to a2 or x4 to a2. Assume that the central planner always breaks
ties in favor of the target with the smallest index value and thus allocatesx1

to a1. Then, in the second roundFx2
a1

= Fx4
a1

= 6, Fx3
a2

= 4, Fx3
a1

= 2

andFx2
a2 = Fx4

a2 = 1. The central planner thus allocatesx2 to a2. In a
similar way, the central planner allocatesx3 to a1 in the third round andx4

to a2 in the fourth round, which terminates Stage 1.

3.2 Stage 2: Assigning Complex Targets
The central planner assigns one additional complex target to

some coalition of agents during each round of Stage 2 until all com-
plex targets have been assigned. The central planner proceeds for
Stage 2 in a way similar to Stage 1. In the beginning of Stage
2, Xa andCa are as they were at the end of Stage 1. Consider
any round of Stage 2. The central planner needs to assign one
additional complex target to some coalition of eligible agents and
determine its visit time so that the resulting team cost is small-
est. For multi-agent routing problems with disjoint coalitions, only
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Figure 2: Reaction Functions ofa1 (left) and a2 (right)

those agents areeligible to get targets assigned that have not yet
been assigned a complex target. For multi-agent routing problems
with overlapping coalitions, all agents are eligible to gettargets
assigned. Each eligible agenta determines for each unassigned
complex targetx (that is, complex target not assigned to any coali-
tion of agents) and each visit timet of target x its agent cost
Fx

a (t) := cagent
a (Xa ∪ {x}, Ca ∪ {x ← t}) for visiting target

x at visit timet, all simple targets already assigned to it at the op-
timal visit times and all complex targets already assigned to it at
the visit times recorded in its commitment set. We view theFx

a as
reaction functions that mapt toFx

a (t). Each eligible agenta then
submits for each unassigned complex targetx the function

Vx
a (t) :=



Fx
a (t)− cagent

a (Xa, Ca) for MiniSum
Fx

a (t) for MiniMax

to the central planner. LetP (n) be the set that contains all sets
of n different eligible agents andXc be the set of unassigned
complex targets. The central planner determines(P, x, t) :=
arg minP∈P (d(x)),x∈Xc,0≤t<∞ cteam

a∈P V
x
a (t) and then assigns com-

plex targetx to all agentsa ∈ P with visit time t (which execute
Xa := Xa ∪ {x} andCa := Ca ∪ {x ← t}), terminating the
round. The procedure then repeats until all complex targetshave
been assigned to coalitions of agents.

Theorem 1 Assigning complex targetx to all d(x) agentsa ∈ P
with visit timet (as determined by the central planner) results in
the smallest team cost among all possible assignments of anyunas-
signed complex targetx′ to anyd(x′) different eligible agents with
any visit time.

Proof: For the MiniSum team objective, cteam
a∈P Vx

a (t) =
P

a∈P (Fx
a (t) − c

agent
a (Xa, Ca)) is the increase in the sum of

the agent costs of the agents in the coalition. Thus, it is also the increase
in the sum of the agent costs of all agents since no other agentis assigned
a target. Letc be the sum of the agent costs of all agents before the
assignment. Then,cteam

a∈P Vx
a (t) + c is the sum of the agent costs of all

agents after the assignment. Minimizingcteam
a∈P Vx

a (t) thus also minimizes
the sum of the agent costs of all agents (= the team cost for theMiniSum
team objective) after the assignment. For the MiniMax team objective,
cteam
a∈P

Vx
a (t) = maxa∈P Fx

a (t) is the largest agent cost after the
assignment of the agents in the coalition. Letc be the largest agent cost
of any agent before the assignment. Since the assignment of atarget to an
agent cannot decrease its agent cost,max(cteam

a∈P Vx
a (t), c) is the largest

agent cost of any agent after the assignment. Minimizingcteam
a∈P

Vx
a (t) thus

also minimizes the largest agent cost of any agent (= the teamcost for the
MiniMax team objective) after the assignment.

Example: Consider again the multi-agent routing problem shown in Fig-
ure 1 for the MiniMax team objective. It takes one round to allocate com-
plex targetx5 in Stage 2. Figure 2 shows the reaction functions of both

1 
x1 a x2 

1 

Figure 3: Multi-Agent Routing Problem on a Graph
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Figure 4: Reaction Function ofa

agents for targetx5 in this round. We briefly discuss the reaction function
of agenta1 for targetx5: Agenta1 can visit targetx5 (and wait there for
the other agent to visit the target simultaneously) and thenboth of its sim-
ple targetsx1 andx3 (Order 1). Agenta1 can also visit one of its simple
targets, then targetx5 (and wait there for the other agent to visit the target
simultaneously) and finally its other simple target (Order 2). Agenta1 can
also visit both of its simple targets and thenx5 (and wait there for the other
agent to visit the target simultaneously). Lett be the visit time ofx5. First,
if t < 2, then agenta1 cannot visit targetx5. Thus the first segment of the
reaction function is a constant segment of infinite value starting at(0,∞).
More and more orders become available as the visit timet increases since
each available order remains available. Second, if2 ≤ t < 4, then the
agent can visit targetx5 only with Order 1. Its reaction function is the sum
of its travel time for Order 1 (= 6) plus its wait time at targetx5 (= t− 2) in
[2,4). Thus, the second segment of the reaction function is alinear segment
with slope one starting at(2, 6). Third, if 4 ≤ t < 5, then agenta1 can
visit targetx5 with both Orders 1 and 2. Order 2 results in the smallest sum
of travel and wait times. Its reaction function is the sum of its travel time
for Order 2 (= 7) plus its wait time at targetx5 (= t − 4) in [4, 5). Thus,
the third segment of the reaction function is a linear segment with slope one
starting at(4, 7). Finally, if 5 ≤ t, then agenta1 can visit targetx5 with
Orders 1, 2 and 3. Order 3 results in the smallest sum of traveland wait
times. Its reaction function is the sum of its travel time forOrder 3 (= 5)
plus its wait time at targetx5 (= t − 5) in [5,∞). Thus, the last segment
of the reaction function is linear segment with slope one starting at (5, 5).
The central planner allocates targetx5 to both agents with visit time 5 since
Vx

a (t) = Fx
a (t) for the MiniMax team objective, which terminates Stage

2.

4. APPROXIMATIONS
In general, the reaction function of agenta for complex target

x is a piecewise linear function with segments of three different
kinds:

• Type 1: constant segments of infinite value, modeling the
case where agenta cannot visit all complex targets already
assigned to it at the visit times recorded in its commitment
set if it visits targetx at the given visit times (since there
does not exist a solution);

• Type 2: constant segments of finite values, modeling the case
where the optimal solution is for agenta to visit at least one
complex target already assigned to it after targetx if it visits
targetx at the given visit times (since waiting at targetx then
does not increase its agent cost); and
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• Type 3: linear segments with slope one, modeling the case
where the optimal solution is for agenta to visit targetx
after all complex targets already assigned to it (if any) if it
visits targetx at the given visit times (since waiting at target
x then increases the agent cost by the wait time).

Example: Figure 3 presents part of a different multi-agent routing prob-
lem to illustrate the three kinds of segments, where the agents and targets
are located on a graph and the agents can only move along the edges of
the graph.x1 andx2 are complex targets. Assume that complex targetx1

has been assigned to agenta with visit time 5 in the first round of Stage
2. Figure 4 then shows the reaction function of agenta for targetx2 in
the second round of Stage 2. Lett be the visit time of targetx2. First, if
t < 1 then agenta cannot visit targetx2 since it needs a travel time of one
from its current location to targetx2. Thus, the first segment of the reaction
function is a constant segment of infinite value starting at(0,∞) (Type 1).
Second, if1 ≤ t ≤ 3 then the optimal solution is for agenta to visit target
x2 before targetx1. A wait time at targetx2 does not change the agent cost
of 5 since the agent visits targetx1 at visit time 5 and then stops. Thus,
the second segment of the reaction function is a constant segment of finite
value starting at(1, 5) (Type 2). Third, if3 < t < 7 then agenta cannot
visit targetx2 since it visits targetx1 at visit time 5 and needs a travel time
of two from targetx1 to targetx2. Thus, the third segment of the reaction
function is a constant segment of infinite value starting at(3,∞). (Type 1).
Finally, if 7 ≤ t then the optimal solution is for agenta to visit targetx1

before targetx2. A wait time at targetx2 increases the agent cost 7 by the
wait time since the agent reaches targetx2 at time 7, waits for other agents
to visit the target simultaneously and then stops. Thus, thelast segment of
the reaction function is a linear segment with slope one starting at (7, 7)

(Type 3).

Each eligible agenta has to solve an optimization problem for
each visit timet of each unassigned complex targetx to determine
its reaction function for the target because it needs to determine
the optimal way of visiting the simple targets so that it visits com-
plex targetx at visit timet and all complex targets already assigned
to it at the visit times recorded in its commitment set. The result-
ing reaction functions are complex, which makes their computation
and communication time-intensive. Therefore, we now present a
method that calculates approximate reaction functions, basically by
only considering a constant number of orders of the simple targets
instead of all of them.

4.1 Disjoint Coalitions
We discuss multi-agent routing problems with disjoint coalitions

first. In this case, the reaction function of agenta for complex tar-
getx is a piecewise linear function with segments of Types 1 and 3
only. Segments of Type 2 are ruled out (since they require theagent
to be assigned at least one complex target already), which simpli-
fies our method for the approximation of the reaction function. Our
method approximates the reaction functions in two different ways:
First, it discretizes the possible visit times of complex targetx into
time intervals. Second, it uses the Or-opt heuristic [8] to approxi-
mate the optimal solution for each time interval, that is, the solution
with the smallest agent cost where agenta visits complex targetx
in the time interval without waiting and all simple targets already
assigned to it at the optimal visit times. Let the visit time of target
x bet and the resulting agent cost bec. Our method then fixes the
resulting order of visiting all targets and increases the visit time of
targetx by making the agent wait at it for other agents to visit the
target simultaneously, resulting in aninterval function with a con-
stant segment of infinite value starting at(0,∞) and a linear seg-
ment with slope one starting at(t, c). Our method then calculates
the approximate reaction function as the minimum of all interval

functions. These approximate reaction functions have a constant
number of segments because our method considers only a constant
number of orders of visiting all targets, which is a simplification.
However, our method would calculate the true reaction functions if
it used an infinite number of time intervals and determined the truly
optimal solutions for all time intervals. We now give a step by step
explanation of our method:

• Step 1: Our method finds the smallest visit times of complex
targetx if agenta visits the complex target before all of its
simple targets. This visit time is equal to the travel time from
the current location of the agent to the complex target. Then,
our method uses the Or-opt heuristic [8] to approximate the
smallest visit timee of complex targetx if the agent visits
the complex target after all of its simple targets.

• Step 2: Our method divides the time interval[s, e] evenly into
k time intervals(si, ei] for a given discretization granularity
k and considers these time intervals together with the time
interval [0, s]. (Our method actually uses the time interval
(s0 = −ǫ, e0 = s] for a small positive constantǫ instead so
that all time intervals are open on the left and closed on the
right.)

• Step 3: For each0 ≤ i ≤ k, our method finds the agent
cost of agenta for visiting complex targetx in time inter-
val (si, ei] without waiting and all simple targets already as-
signed to it at the optimal visit times. This optimization prob-
lem is a special case of the NP-hard traveling salesperson
problem with time windows [2]. Our method uses a version
of the Or-opt heuristic [8], as given in the appendix, to solve
it approximately. Let the visit time of targetx beti ∈ (si, ei]
and the resulting agent cost beci. (It holds thatt0 = e0.)
Our method then defines the following interval function that
calculates the agent cost if all targets are visited in the given
order and the agent waitst− ti ≥ 0 time units at targetx for
other agents to visit the target simultaneously:

Fx
a,i(t) :=



∞ if 0 ≤ t < ti

ci + t− ti if ti ≤ t.

• Step 4: Our method determines the approximate reaction
function of agenta for complex targetx as the minimum
of the interval functionsFx

a,i for all 0 ≤ i ≤ k since each
interval function expresses the agent cost if agenta visits its
simple targets and the complex target in a particular order:

Fx
a (t) := min

0≤i≤k
Fx

a,i(t).

This minimization can be performed in polynomial time as
follows sincet0 < . . . < tk: Start a new constant segment
of the approximate reaction function with infinite value at
(0,∞) unlesst0 = 0. Sett = 0 andc = ∞. For eachi =
0 . . . k do: If c+ti−t ≤ ci then do nothing (since the current
segment goes through(ti, c + ti − t) and thus is no larger
than the linear segment with slope one starting at(ti, ci)) and
go on to the nexti. Otherwise, start a new linear segment of
the approximate reaction function with slope one starting at
(ti, ci). Set t = ti and c = ci and go on to the nexti.
The resulting approximate reaction function thus has at most
k + 2 segments (including the initial constant segment of
infinite value, if any) and can be represented with a constant
amount of memory and be communicated in constant time.
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Figure 5: Approximate Reaction Functions ofa1 (left) and a2

(right) for Discretization Granularity k = 3
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Figure 6: Approximate Reaction Functions ofa1 (left) and a2

(right) for Discretization Granularity k = 2

Example: Consider again the multi-agent routing problem shown in Fig-
ure 1. The approximate reaction functions of both agents in the only round
of Stage 2 are shown in Figure 5 for discretization granularity k = 3. They
consist of four segments each (including the initial constant segment of infi-
nite value) and are identical to the true reaction functions. The approximate
reaction functions of both agents in the only round of Stage 2are shown
in Figure 6 for for discretization granularityk = 2. They consist of three
segments each and are no longer identical to the true reaction functions.

4.2 Overlapping Coalitions
We now discuss multi-agent routing problems with overlapping

coalitions. In this case, the reaction function of agenta for complex
targetx is a piecewise linear function with segments of Types 1, 2
and 3. We thus need to generalize our method for the approxima-
tion of the reaction function from the previous section:

• Step 1: This step is identical to Step 1 for multi-agent rout-
ing problems with disjoint coalitions, except that our method
approximates the smallest visit timee of complex targetx if
the agent first visits all complex targets already assigned to
it at the visit times recorded in its commitment set, then all
simple targets, and finally targetx.

• Step 2: This step is identical to Step 2 for multi-agent routing
problems with disjoint coalitions.

• Step 3: For each0 ≤ i ≤ k, our method uses the Or-opt
heuristic [8] to approximate the agent cost of agenta for vis-
iting complex targetx in time interval(si, ei] without wait-
ing and all simple targets already assigned to it at the opti-
mal visit times. We call this order the calculated order. Our
method then defines the interval functionFx

a,i(t) as follows:

1. Start a constant segment of infinite value at(0,∞).
There are no constraints.

2. Consider the solution where the agent visits each sim-
ple target as early as possible so that it visits targetx
and the simple targets in the calculated order, it visits
the complex targets already assigned to it at the visit
times recorded in its commitment set, and it obeys all
constraints. (This can simply be done by maintaining
a Queue 1 that contains targetx and the simple targets
in the calculated order and a Queue 2 that contains the
complex targets in the calculated order. If the agent can
visit the first target in Queue 1 and then the first target
in Queue 2 at the visit time recorded in its commitment
set and there is no constraint that the agent needs to visit
the first target in Queue 1 after the first target in Queue
2, then let the agent visit the first target in Queue 1 next,
delete the target from Queue 1, and repeat. Otherwise,
let the agent visit the first target in Queue 2 next, delete
the target from Queue 2, and repeat.) Let the visit time
of targetx in this solution bet and the resulting agent
cost bec.

3. If the agent does not visit at least one complex target
already assigned to it at some point in time after target
x in the above solution, then start a linear segment with
slope one at(t, c) and stop.

4. Let the first complex target that the agent visits at some
point in time after targetx in the above solution bex′

and its visit time bet′. Let the travel time from target
x (possibly via simple targets) to targetx′ in the above
solution be∆t. Start a constant segment of finite value
at (t, c). Sett to t′ −∆t.

5. If the agent visits targetx directly before targetx′, then
start a constant segment of infinite value at(t,∞), add
the constraint that the agent needs to visit targetx at
some point in time after targetx′ and goto 2.

6. Otherwise, the agent visits a simple target directly be-
fore targetx′. Add the constraint that the agent needs to
visit this simple target at some point in time after target
x′ and goto 2.

The number of segments of the interval function is linear in
the number of iterations of the above algorithm since each
iteration adds only one or two segments to the interval func-
tion. The number of iterations is linear in the number of
constraints added since each iteration adds at most one con-
straint. Finally, the number of constraints added is at most
quadratic in the number of targets since the constraints are
of the form “visit a given simple target after a given com-
plex target.” Thus, the number of segments of each interval
function is at most quadratic in the number of targets. Only
the last segment of each interval function is a linear segment
with slope one.

• Step 4: Our method determines the approximate reaction
function of agenta for complex targetx as the minimum
of the interval functionsFx

a,i for all 0 ≤ i ≤ k:

Fx
a (t) := min

0≤i≤k
Fx

a,i(t).

This minimization can be performed in polynomial time as
follows: Sett to zero. Determine the segment of all inter-
val functions whose function value is smallest at time point

563



t, breaking ties in favor of constant segments with finite val-
ues. Start a new segment of the approximate reaction func-
tion of the same kind as this segment at the point given by
t and the function value of this segment. If this segment is
a constant segment of finite or infinite value, then advance
t to the smallest time point where a new segment starts for
any interval function, and repeat the procedure until no new
segment starts for any interval function. If this segment isa
linear segment with slope one, then determine the segment of
all interval functions whose function value is smallest at time
point t among all constant segments of finite value. Advance
t to the minimum of the intersection point and the smallest
time point where a new segment starts for any interval func-
tion, and repeat the procedure until no new segment starts for
any interval function.

The number of segments of each interval function is at most
quadratic in the number of targets. Thus, the number of seg-
ments of all interval functions is also quadratic in the number
of targets since there are only a constant number of interval
functions. The above algorithm can add additional segments,
possibly one for each intersection that a linear segment with
slope one has with some other segment. The number of lin-
ear segments with slope one is one for each interval func-
tion. Thus, their total number is constant and the number of
intersections that they have with other segments is at most
linear in the number of segments. The resulting approxi-
mate reaction function thus has a number of segments that
is at most quadratic in the number of targets and can thus
be represented with a polynomial amount of memory and be
communicated in polynomial time.

5. WINNER DETERMINATION
In Stage 1, each agent submits the valueVx

a for each unassigned
simple targetx to the central planner. The central planner deter-
mines (a, x) := arg mina∈A,x∈Xs

Vx
a with a computation time

that is linear in the product of the number of agents and the num-
ber of targets and then assigns simple targetx to agenta. In Stage
2, each eligible agent calculates its approximate reactionfunction
Fx

a (t) for each unassigned complex targetx and then submits the
function

Vx
a (t) :=



Fx
a (t)− cagent

a (Xa, Ca) for MiniSum
Fx

a (t) for MiniMax

to the central planner. The central planner determines(P, x, t) :=
arg minP∈P (d(x)),x∈Xc,0≤t<∞ cteam

a∈P V
x
a (t) and then assigns com-

plex targetx to all agentsa ∈ P with visit timet. The minimization
is over0 ≤ t < ∞. The following theorem, however, shows that
this is unnecessary.

Theorem 2 Let T (P,x) be the set of time points that correspond
to the starting points of all constant segments with finite values and
all linear segments with slope one of the functionsVx

a (t) for all
eligible agentsa ∈ P and unassigned complex targetsx. Then,

min
P∈P (d(x)),x∈Xc,0≤t<∞

cteam
a∈P V

x
a (t)

= min
P∈P (d(x)),x∈Xc,t∈T (P,x)

cteam
a∈P V

x
a (t).

Proof by contradiction: Assume that the equality does not hold and
consider any coalitionP ∈ P (d(x)) and targetx ∈ Xc. Let t 6∈ T (P, x)

be the time point that minimizes the left-hand side, which isthen strictly
smaller than the right hand side since it minimizes over a larger set of time
points.cteam

a∈P Vx
a (t) cannot increase when decreasingt by an infinitesimal

amount since none of the functionsVx
a can increase unlesst ∈ T (P, x).

Thus, one can decreaset until t ∈ T (P, x) ∪ {0} without increasing
cteam
a∈P Vx

a (t), which is a contradiction. Thus, one needs to minimize only
over t ∈ T (P, x) ∪ {0} rather than0 ≤ t < ∞. The team cost att = 0

is infinity unless0 ∈ T (P, x). Thus, one needs to minimize only over
t ∈ T (P, x) rather thant ∈ T (P, x) ∪ {0}. (This is also the reason why
the setT (P, x) of time points does not need to include the starting points
of all constant segments with infinite value.)

Example: Consider again the multi-agent routing problem shown in Fig-
ure 1. The central planner needs to minimize only over the time points 1, 2,
3, 4 and 5 in the only round of Stage 2 for discretization granularity k = 3.

The computation time of

min
P∈P (d(x)),x∈Xc,t∈T (P,x)

cteam
a∈P V

x
a (t)

and thus the computation time of the central planner in each round
of Stage 2 is linear in the product of the number of coalitionsof
d(x) different eligible agents (with an upper bound that is linear in
the number of agents to the power of the largest coalition size), the
number of unassigned complex targets (with an upper bound that
is linear in the number of targets) and the number of segmentsof
the functionsVx

a (t) (with an upper bound that is constant for multi-
agent routing problems with disjoint coalitions and quadratic in the
number of targets for multi-agent routing problems with overlap-
ping coalitions). Overall, the computation time of the central plan-
ner is linear in the product of the computation time in each round
and the number of rounds (with an upper bound that is linear inthe
number of targets) and thus exponential in the largest coalition size
and polynomial in the number of agents and targets.

6. EXPERIMENTAL RESULTS
We now evaluate our method, that we call ARF (= Approach

with Reaction Functions) in the following. There are no other task-
allocation methods for multi-agent routing with complex targets.
In order to demonstrate the benefits of reaction functions inour ap-
proach, we compare ARF against two other greedy task-allocation
methods that do not use reaction functions.

1. Greedy 1: Greedy 1 is similar to ARF except that it mixes
the allocation of simple and complex targets in one stage
and restricts agents to visit their targets in the order in
which they were assigned to them, similar to [10]. Greedy
1 consists of one stage with multiple rounds, where one
additional target (either a simple target or a complex target)
is assigned per round with a given visit time to some agent
until all targets have been assigned. Each additional target
is assigned to some agent with a given visit time so that
the team cost after the assignment is smallest among all
possible assignments under the restriction that agents visit
their targets at the agreed-on visit times. Consider any
round. LetXa be the set of targets already assigned to agent
a in previous rounds. Letca be its agent cost for visiting
all targets already assigned to it at the agreed-on visit times.
Each eligible agenta submits for each unassigned targetx
the valueVx

a to the central planner. For multi-agent routing
problems with disjoint coalitions, all agents are eligibleto
get targetx assigned ifx is a simple target but only those
agents are eligible to get targetx assigned that have not yet
been assigned a complex target ifx is a complex target. For
multi-agent routing problems with overlapping coalitions,
all agents are eligible to get targetx assigned. Vx

a is the
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MiniSum Team Objective MiniMax Team Objective
Number Number Greedy 1 Greedy 2 ARF Greedy 1 Greedy 2 ARF

of Simple of Complex Team Computa- Team Computa- Team Computa- Team Computa- Team Computa- Team Computa
Agents Targets Targets Cost tion Time Cost tion Time Cost tion Time Cost tion Time Cost tion Time Cost tion Time

4 8 2 417.6 0.60 417.2 0.10 359.8 1.33 130.9 0.90 139.5 0.40 129.5 0.67
4 18 2 558.3 3.80 555.2 7.70 457.1 13.40 161.3 3.20 170.9 2.50 156.4 3.80
4 28 2 656.2 7.60 668.2 6.59 519.0 103.20 185.3 6.50 190.3 19.00 174.6 24.00
6 7 3 434.8 1.10 436.1 0.60 401.9 1.20 109.2 0.50 113.4 0.10 108.5 0.20
6 17 3 575.4 3.00 572.9 3.40 495.7 5.40 134.2 2.60 134.8 1.40 126.8 3.60
6 27 3 658.1 6.90 654.4 25.20 565.8 43.30 151.4 7.60 150.4 8.90 142.9 12.90
8 6 4 455.9 0.60 457.9 0.20 438.1 0.90 102.0 0.80 103.1 0.30 102.0 0.90
8 16 4 582.9 4.40 589.7 1.80 537.3 6.20 123.8 4.10 120.1 1.00 118.4 5.67
8 26 4 680.6 9.20 674.8 15.60 603.9 30.10 133.8 8.50 136.8 6.00 129.7 8.10
10 5 5 471.0 0.60 473.6 0.60 459.6 1.00 95.3 1.20 94.8 0.40 94.4 1.33
10 15 5 596.1 3.60 601.8 2.60 544.6 5.90 112.5 3.80 112.8 1.50 110.6 5.20
10 25 5 696.1 9.50 694.1 11.00 621.1 19.10 123.5 10.70 124.5 6.10 118.1 16.67

Table 1: Experimental Results for Multi-Agent Routing Problems with Disjoint Coalitions

MiniSum Team Objective MiniMax Team Objective
Number Number Greedy 1 Greedy 2 ARF Greedy 1 Greedy 2 ARF

of Simple of Complex Team Computa- Team Computa- Team Computa- Team Computa- Team Computa- Team Computa
Agents Targets Targets Cost tion Time Cost tion Time Cost tion Time Cost tion Time Cost tion Time Cost tion Time

4 35 5 757.1 23.40 744.0 28.70 688.8 249.10 228.0 14.30 222.6 44.20 202.8 144.30
4 30 10 909.1 45.10 895.6 32.10 869.4 279.00 269.8 16.30 272.4 25.80 254.5 215.70
4 20 20 1053.3 15.70 1042.9 17.30 1021.7 155.40 306.9 17.20 319.6 12.80 298.7 167.60
4 0 40 1020.9 16.40 1020.9 11.10 1020.9 22.00 295.3 18.70 295.0 14.70 295.3 15.80
6 35 5 672.8 22.50 661.8 24.60 617.5 215.10 153.5 14.60 156.5 22.20 141.6 45.20
6 30 10 818.3 24.50 808.9 26.40 779.6 172.90 183.1 16.30 181.8 16.20 167.4 54.10
6 20 20 960.9 15.50 962.6 13.30 950.2 100.90 210.3 17.40 210.9 12.30 200.9 41.00
6 0 40 969.8 17.00 969.8 12.40 969.8 18.90 216.3 19.10 216.4 17.70 216.4 15.10
8 35 5 605.7 15.50 608.9 46.40 548.4 172.80 115.5 13.30 110.0 19.10 100.3 25.10
8 30 10 733.5 15.30 729.8 29.50 692.5 128.50 137.2 15.70 130.6 14.60 122.4 26.70
8 20 20 898.6 17.60 899.5 11.90 882.9 96.30 162.8 17.80 160.9 12.20 151.4 23.40
8 0 40 930.6 18.00 930.6 13.30 930.6 19.00 172.9 19.90 172.9 16.00 172.9 16.40
10 35 5 555.6 14.30 548.8 33.10 496.0 100.10 91.3 15.20 86.8 12.00 81.9 19.80
10 30 10 681.5 15.80 675.7 19.20 635.4 90.30 110.4 14.30 106.3 19.20 102.8 20.40
10 20 20 838.5 18.40 844.9 10.30 820.9 61.40 129.8 16.60 126.8 12.40 123.8 18.20
10 0 40 904.8 19.90 904.8 14.50 904.8 21.00 143.7 19.90 143.3 16.70 143.7 17.70

Table 2: Experimental Results for Multi-Agent Routing Problems with Overlapping Coalitions

agent cost of agenta for visiting all targets already assigned
to it at the agreed-on visit times and targetx last and without
waiting. Thus,Vx

a = ca + t(a, x), where t(x, a) is the
travel time from the location of agenta after it visited all
targets inXa at the agreed-on visit times to targetx. Let X ′

be the set of unassigned targets. The central planner deter-
mines (P, x) := arg minP∈P (d(x)),x∈X′ maxa∈P V

x
a

for the MiniMax team objective and(P, x) :=
arg minP∈P (d(x)),x∈X′

P

a∈P
(maxa′∈P V

x
a′ − ca)

for the MiniSum team objective, and then assigns targetx to
agent(s)a ∈ P with visit time maxa∈P V

x
a . The procedure

then repeats until all targets have been assigned to agents.

2. Greedy 2: Greedy 2 is a cross between Greedy 1 and ARF.
It consists of two stages with multiple rounds, where one ad-
ditional target is assigned per round to some agent. In Stage
1, all simple targets are assigned to agents in the same way
as done by ARF. In Stage 2, all complex targets are assigned
to agents in the same way as done by Greedy 1. That is, all
agents visits their complex targets (if any) last.

We evaluate ARF, Greedy 1 and Greedy 2 for multi-agent rout-
ing problems on known four-neighbor planar grids of size51× 51
with square cells that are either blocked or unblocked. The grids re-
semble office environments with randomly closed doors from [5].
All complex targetsx have coalition sized(x) = 2. ARF uses dis-
cretization granularityk := min(20, 2|Xa|), whereXa is the set
of simple targets assigned to agenta in Stage 1. We vary the num-
ber of agents from 4, 6, 8 to 10. For multi-agent routing problems
with disjoint coalitions, we vary the number of targets from10, 20
to 30 and set the number of complex targets to half the number of

agents, so that every agent visits exactly one complex target. For
multi-agent routing problems with overlapping coalitions, we fix
the number of targets at 40 and vary the number of complex targets
from 5, 10, 20 to 40. For each of these scenarios, we average over
100 runs with randomly generated cells for the agents and targets.
Table 1 presents the average computation times of the three task-
allocation methods (in milliseconds) and the resulting average team
costs for multi-agent routing problems with disjoint coalitions. Ta-
ble 2 presents the same results for multi-agent routing problems
with overlapping coalitions.

We make the following observations: While the computation
times of ARF are generally larger than those of Greedy 1 and
Greedy 2 in both tables, their order of magnitude is about thesame
(except for a small number of cases). In particular, ARF is able to
solve large multi-agent routing problems in real time. For multi-
agent routing problems with disjoint coalitions, the team costs of
Greedy 1 and Greedy 2 are about the same, while ARF reduces
the team cost significantly, namely by about 11-12 percent for the
MiniSum team objective and 3-5 percent for the MiniMax team ob-
jective. For multi-agent routing problems with overlapping coali-
tions, ARF also reduces the team cost significantly when the num-
ber of complex targets is small. However, the advantage of ARF
diminishes as the number of complex targets increases. In particu-
lar, when all 40 targets are complex ones, the team costs of ARF,
Greedy 1 and Greedy 2 are about the same because ARF allows
the agents to manipulate the order in which they visit the simple
targets assigned to them to accommodate the complex targetsas-
signed to them. If there are no simple targets, then ARF, Greedy
1 and Greedy 2 degenerate to the same method. We attempted to
find the smallest team costs for the multi-agent routing problems by
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formulating them as mixed integer programs, seeding the solutions
with the allocations obtained by ARF, and then solving the mixed
integer programs with CPLEX. However, CPLEX was unable to
improve on the team costs found by ARF within our time limit of
three hours.

7. CONCLUSIONS
In this paper, we extended multi-agent routing to the case where

targets need to get visited simultaneously by several agents. We
proposed ARF, that uses reaction functions as a novel way of char-
acterizing the costs of agents in a distributed way. We showed
how to approximate reaction functions so that their computation
and communication times are polynomial. We showed how reac-
tion functions can be used by a central planner to allocate targets to
agents and determine their visit times with a computation time that
is exponential in the largest coalition size and polynomialin the
number of agents and targets. It is future work to experimentwith
different approximation and hill-climbing schemes. For example,
our hill-climbing method assigns the complex targets from easy to
difficult, and we intend to experiment with the reverse order. It is
also future work to extend our approach to generalizations of multi-
agent routing problems. For example, reaction functions can also
be used if the agents are heterogeneous and the complex targets
need to be visited by different kinds of agents. In this case,each
agent calculates only the reaction functions for the complex targets
that it can visit, and the central planner evaluates only coalitions
of suitable agents for visiting complex targets. Finally, it is future
work to extend our approach to task-allocation problems other than
multi-agent routing.
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9. APPENDIX
We stated that our method uses a version of the Or-opt heuristic

[8] to approximately determine the agent costc of agenta and the
visit time t for visiting complex targetx in time interval(si, ei]
without waiting and all simple targets already assigned to it at the
optimal visit times. This version of the Or-opt heuristic isgiven
in the following. Evaluate(S) simply inserts complex targetx at
all positions intoS and calculates the travel time needed for agent
a to visit all targets in the given order, including complex targetx
(without waiting). It then returns the pair of the travel time and visit
time of complex targetx, minimized over all cases (if any) where
the visit time of complex targetx falls into time interval(si, ei]. If
there are no such cases, it returns infinity for the travel time. Let
S be a random permutation of the simple targetsx1 . . . xp already
assigned to agenta in Stage 1. The Or-opt heuristic then takes all
subsequences of lengths one top/2 + 1 of S and inserts them in
both their original and reserved order into all positions inS until
the travel time returned byEvaluate(S′′) for the resulting permu-
tationS′′ is smaller than the travel time returned byEvaluate(S).
It then setsS to the resulting permutation and repeats the process.

S := (xn(1) . . . xn(p)) (Randomly);1
(c, t) := Evaluate(S);2
for q := p/2 . . . 0 do3

for r := 1 . . . p − q do4
S′ := S;5
remove(xn(r) . . . xn(r+q)) from S′;6
for each positions in S′ do7

S′′ := insert(xn(r) . . . xn(r+q)) at positions into S′;8
(c′, t′) := Evaluate(S′′);9
if c′ < c then10

S := S′′; c := c′;11
break loops and go to line 4;12

end13
S′′ := insert(xn(r+q) . . . xn(r)) at positions into S′;14
(c′, t′) := Evaluate(S′′);15
if c′ < c then16

S := S′′; c := c′;17
break loops and go to line 4;18

end19
end20

end21
end22
(c, t) := Evaluate(S);23
return(c, t);24
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