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ABSTRACT

In this paper, we present ARF, our initial effort at solviragsk-
allocation problems where cooperative agents need to nperfo
tasks simultaneously. An example is multi-agent routingpbpgms
where several agents need to visit targets simultanedoskyxam-
ple, to move obstacles out of the way cooperatively. Firstpno-
pose reaction functions as a novel way of characterizingtsts
of agents in a distributed way. Second, we show how to approxi
mate reaction functions so that their computation and conicax
tion times are polynomial. Third, we show how reaction fimmcs
can be used by a central planner to allocate tasks to agenlyF
we show experimentally that the resulting task allocatemesbetter
than those of other greedy methods that do not use reactian fu
tions.

Categories and Subject Descriptors
1.2 [Artificial Intelligence ]: Problem Solving

General Terms
Algorithms
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1. INTRODUCTION

In recent years, several researchers have studied taslatdin
problems in a competitive setting where agents are sedfésted
and try to maximize their own utilities [6, 9]. These tasleahtion
problems are then often solved with techniques from gamaryhe
[4, 1]. We are interested in general task-allocation pnoisién a
cooperative setting where the agents collaborate to maeirttie
team cost (that is, maximize the team performance). In this p
per, our motivating problem is multi-agent routing becaiise
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very visual. The tasks are to visit targets in the plane. The ter-
rain, the locations of all homogeneous agents and the locations of
all targets are knowh. We need to determine which targets each
agent should visit and when it should visit them so that the team
cost (for example, the amount of energy needed by the team or the
task-completion time) is as small as possible. Multi-agent rout-
ing is a standard problem for robot teams, for example, as part of
de-mining, search-and-rescue and taking rock probes on the moon.
Multi-agent routing where each target needs to be visited by exactly
one agent is currently a standard test domain for robot coordination
with auctions [3]. In this paper, we extend multi-agent routing to
the case where each target needs to be visited simultaneously by
a given number of agents, which can be different for each target.
Some targets need to be visited by only one agent. However, some
targets now need to be visited by several agents simultaneously.
For example, large fires can only be extinguished with several fire
engines, and heavy objects can only be moved with several robots.
Thus, the agents have to solve complex scheduling problems where
the cost of visiting a target depends not only on the target and the
agents that visit it but also on the visit time, which is different from
the assumptions made by existing approaches for task allocation
via coalition formation [7, 11]. We introduce our new approach,
called ARF, as follows: After describing multi-agent routing prob-
lems formally, we first propose reaction functions as a novel way
of characterizing the costs of agents in a distributed way. Second,
we show how one can approximate reaction functions so that their
computation and communication times are polynomial. Third, we
show how a central planner can use reaction functions to allocate
targets to agents and determine their visit times with a computation
time that is exponential in the largest coalition size and polynomial
in the number of agents and targets. Finally, we show experimen-
tally that the target allocations of ARF are better than those of other
greedy methods that do not use reaction functions.

2. MULTI-AGENT ROUTING

We now formalize multi-agent routing problems: The finite set
of agents isA. The finite set of targets iX. The number of dif-
ferent agents that need to visit targesimultaneously, called its
coalition size is d(z).> We call a target: simple if d(z) = 1

'0One can solve multi-agent routing problems in unknown terrain
by making assumptions about the unknown terrain, such as the as-
sumption that it is traversable, making it in effect “known” and
thus solvable with our task-allocation algorithms. One then runs
the task-allocation algorithms again to re-allocate all unvisited tar-
gets to agents whenever this assumption turns out to be wrong and
thus needs to get revised.

2For any complex target with coalition sized(z), the central
planner needs to evaluate all possible coalitiong(of) different



and complex otherwise. The set of simple targets and the set of
complex targets partition the set of all targets. We distigly these
two kinds of targets because an agent can freely determiea teh
visit simple targets but needs to agree with other agents lmnw
to visit complex targets. The set dfx) different agents that need
to visit complex target: at some visit time is called thecoali-

tion for the complex target. Each agent in the coalition thus has a

commitment to visit the complex target at visit timet, written
asz — t. An allocation of agenta consists of a paif X, Ca),
whereX, is the set of simple and complex targets assigned to it and
C, is the set of its commitments for the complex targets. We say
that the multi-agent routing problem is one witisjoint coalitions

if every agent can visit at most one complex target becauak-co
tions then cannot overlap. Otherwise, we say that the ragkiat
routing problem is one with (potentiallyverlapping coalitions
Disjoint coalitions are important in the presence of cafyacon-
straints. For example, a fire engine that has only enoughruate
help extinguish one fire can visit only one complex targetwHo
ever, it might be able to transport survivors to various litagpand
thus visit several simple targets. Thgent costc2?*™(X,, Cy)

is the smallest sum of travel and wait times needed for ageat
visit all targetsX, assigned to it, where it can freely determine
when to visit each simple target subject to the restricthoat it
has to visit all complex targets (if any) at the visit timesorled

in its commitment seC,. (The agent cost is infinity in case the
agent cannot satisfy this restriction.) Our objective ifind a so-
lution with a small team cost, where a solution requires ¢afet

x to be assigned to exactli(z) different agents so that all agents
in the coalition have the same commitment for a complex targe
In addition, every agent can be assigned at most one comgalex t
get for multi-agent routing problems with disjoint coaditis. We
consider two different ways of defining the team cost. Tdmm
costis Y, .4 c29¢"(X,, C,) (roughly proportional to the energy
needed by the agents for moving and waiting) for Mi@iSum
team objectiveandmax,e 4 c29¢™ (X, C,) (the task-completion
time) for theMiniMax team objective. We usec’®®™ as a special
operator for either the sum or max operator, depending otetra
objective, and write’%}" c29°™ (X, C,) to make our notation in-
dependent of the team objective.

3. OUR APPROACH

Our approach to multi-agent routing consists of two stades.
Stage 1, all simple targets are assigned to agents. In Stagk 2
complex targets are assigned to agents. Stages 1 and 2 bwth co
sist of multiple rounds, where one additional target is nigaly
assigned to some agent (for simple targets) or a coaliti@yehts
(for complex targets) during each round, namely under therap-
tion that it is the last target to be assigned. In particudae addi-
tional target is assigned to some agent or coalition of agsmthat
the team cost after the assignment is smallest among aligi®ss
assignments, resulting in a form of hill-climbing. Thus, ae
pect the team cost of the resulting solution to be small. Tingle
targets are assigned before the complex targets so thag#msa
can manipulate the order in which they visit the simple terge-

X1 1 1 X2
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Figure 1: Multi-Agent Routing Problem on a Graph

no longer assigned any targets once it has been assignedmre c
plex target.

3.1 Stage 1: Assigning Simple Targets

The central planner assigns one additional simple targsdrite
agent during each round of Stage 1 until all simple target® ha
been assigned. There are several methods in the literatued-f
locating simple targets to agents. We assign them to agattis w
sequential single-item auctions [12] because we are ahleuse
the principle underlying sequential single-item auctiorten as-
sighing complex targets to agents in Stage 2. In the beginoin
Stage 1,X, = 0 andC, = 0 for all agentsa. Consider any
round of Stage 1. The central planner needs to assign one addi
tional simple target to some agent so that the resulting te@sh
is smallest. Each agent uses the Or-opt heuristic [8], as given
in the appendix, to approximate for each unassigned sirapjet
x (that is, simple target not assigned to any agent) its agastt ¢
FI = ct9emt (X, U {x},0) for visiting targetz and all (simple)
targets already assigned to it at the optimal visit timeshEgent
a then submits for each unassigned simple targibie value

o _ [ Fa -l (Xa, 0)
vie (T

to the central planner. LetX; be the set of unassigned
simple targets. The central planner determirlesz)
arg minge 4,zex, V, and then assigns simple targeto agenta
(which executesX, := X, U {z}), terminating the round. It has
been shown that this assignment results in the smallest ¢eam
among all possible assignments of any unassigned simgjet tiar
any agent [12], resulting in a form of hill-climbing. The pexure
then repeats until all simple targets have been assignegetas
Example: Consider the multi-agent routing problem shown in Figure 1
for the MiniMax team objective, where the agents and targetslocated
on a graph and the agents can only move along the edges ofdph.gr
1, x2, x3 andz4 are simple targetszs is the only complex target with
d(zs) = 2. It takes four rounds to allocate the simple targets in Slade
the first round,Fo} = Fob = Fa2 = Faif = landFg2 = Fait
]—'fle = ]—'523 = 4. The central planner can make one of the following four
allocations sinc&’? = F7 for the MiniMax team objectivex; to a1, 3
to a1, z2 t0 az Or x4 to az. Assume that the central planner always breaks
ties in favor of the target with the smallest index value dndtallocates:;
to a1. Then, in the second rounfiz2 = Fot = 6, Fof =4, Fo2 =2
andFq2 = Fq4 = 1. The central planner thus allocates to az. In a
similar way, the central planner allocates to a; in the third round and 4
to a2 in the fourth round, which terminates Stage i

for MiniSum
for MiniMax

3.2 Stage 2: Assigning Complex Targets

The central planner assigns one additional complex tamet t

signed to them to accommodate the complex targets assigned t
them. (The opposite would not work since complex targets are some coalition of agents during each round of Stage 2 uhtibat-
assigned to agents with a visit time that the agents needdp ob plex targets have been assigned. The central planner pioéee
while simple targets are assigned to them without a visiet)rfror Stage 2 in a way similar to Stage 1. In the beginning of Stage
multi-agent routing problems with disjoint coalitions, agent is 2, X, andC, are as they were at the end of Stage 1. Consider
h any round of Stage 2. The central planner needs to assign one

additional complex target to some coalition of eligible migeand

determine its visit time so that the resulting team cost iglbm

est. For multi-agent routing problems with disjoint caaliis, only

agents and there are an exponential number of them. To make t
central planner fast, we assume that the largest coalitienas all
complex targets is small. Fortunately, this assumptioaroftolds

in practice.
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Figure 2: Reaction Functions ofa; (left) and a2 (right)

those agents areligible to get targets assigned that have not yet
been assigned a complex target. For multi-agent routinglgnas
with overlapping coalitions, all agents are eligible to tggets
assigned. Each eligible agemtdetermines for each unassigned
complex target: (that is, complex target not assigned to any coali-
tion of agents) and each visit timeof targetx its agent cost
FE(t) = 29" (X, U {z},Cq U {z « t}) for visiting target

x at visit timet, all simple targets already assigned to it at the op-
timal visit times and all complex targets already assigreed &t

the visit times recorded in its commitment set. We view ffieas
reaction functionsthat mapt to 5 (¢). Each eligible agent then
submits for each unassigned complex tang#ie function

- FE(t) — 9™ (X,, Cy

to the central planner. LeP(n) be the set that contains all sets
of n different eligible agents and. be the set of unassigned
complex targets. The central planner determig&sz, t)
arg min pe p(d(z)),o€ Xo,0<t<oo ckeam v (t) and then assigns com-
plex targetr to all agentss € P with visit time ¢ (which execute
Xo = X, U {z}andC, := C, U {z « t}), terminating the
round. The procedure then repeats until all complex targate
been assigned to coalitions of agents.

for MiniSum
for MiniMax

Theorem 1 Assigning complex target to all d(x) agentsa € P
with visit timet (as determined by the central planner) results in
the smallest team cost among all possible assignments afreasy
signed complex target’ to anyd(z") different eligible agents with
any visit time.

Proof: ~ For the MiniSum team objective,c geglgnvw() =
Seep(FEEM) — ca?™(Xa,Ca)) is the increase in the sum of

the agent costs of the agents in the coalition. Thus, it is #is increase
in the sum of the agent costs of all agents since no other &eassigned

a target. Letc be the sum of the agent costs of all agents before the
assignment. Them;’“Z* VI (t) + c is the sum of the agent costs of all

agents after the assignment. Mmlmlzmg“mvz(t) thus also minimizes
the sum of the agent costs of all agents (= the team cost favithiSum
team objective) after the assignment. For the MiniMax tedjedive,
cleamyz(t) = max,cp FZ(t) is the largest agent cost after the
assignment of the agents in the coalition. Ldte the largest agent cost
of any agent before the assignment. Since the assignmentagjet to an
agent cannot decrease its agent caﬁx(cfjgglvx( ), ¢) is the largest
agent cost of any agent after the assignment. M|n|mizg‘§_g]§”1)§(t) thus
also minimizes the largest agent cost of any agent (= the testifor the

MiniMax team objective) after the assignmeri

Example: Consider again the multi-agent routing problem shown in Fig
ure 1 for the MiniMax team objective. It takes one round tocdke com-
plex targetzs in Stage 2. Figure 2 shows the reaction functions of both
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Figure 4: Reaction Function ofa

agents for targets in this round. We briefly discuss the reaction function
of agenta; for targetzs: Agenta; can visit targetes (and wait there for
the other agent to visit the target simultaneously) and thath of its sim-
ple targetsr; andxs (Order 1). Agenta; can also visit one of its simple
targets, then targets (and wait there for the other agent to visit the target
simultaneously) and finally its other simple target (OrderAgenta; can
also visit both of its simple targets and theg (and wait there for the other
agent to visit the target simultaneously). itdte the visit time ofrs. First,

if £ < 2, then agent; cannot visit targeks. Thus the first segment of the
reaction function is a constant segment of infinite valudisgat (0, co).
More and more orders become available as the visit tinmereases since
each available order remains available. Second, # ¢ < 4, then the
agent can visit targets only with Order 1. Its reaction function is the sum
of its travel time for Order 1 (= 6) plus its wait time at target (= ¢ — 2) in
[2,4). Thus, the second segment of the reaction functioriiear segment
with slope one starting &, 6). Third, if 4 < ¢ < 5, then agent; can
visit targetxs with both Orders 1 and 2. Order 2 results in the smallest sum
of travel and wait times. Its reaction function is the sumtsftiavel time
for Order 2 (= 7) plus its wait time at target (= ¢ — 4) in [4,5). Thus,
the third segment of the reaction function is a linear sedgmith slope one
starting at(4, 7). Finally, if 5 < ¢, then agent; can visit targetcs with
Orders 1, 2 and 3. Order 3 results in the smallest sum of teaveblwait
times. Its reaction function is the sum of its travel time @nder 3 (= 5)
plus its wait time at targets (= ¢ — 5) in [5, 00). Thus, the last segment
of the reaction function is linear segment with slope ondisat (5, 5).
The central planner allocates targsgtto both agents with visit time 5 since
VZ(t) = FZ(t) for the MiniMax team objective, which terminates Stage
2. m

4. APPROXIMATIONS

In general, the reaction function of agenfor complex target
x is a piecewise linear function with segments of three diifeer
kinds:

e Type 1: constant segments of infinite value, modeling the
case where agemt cannot visit all complex targets already
assigned to it at the visit times recorded in its commitment
set if it visits targetz at the given visit times (since there
does not exist a solution);

e Type 2: constant segments of finite values, modeling the case
where the optimal solution is for agemto visit at least one
complex target already assigned to it after targétit visits
targetz at the given visit times (since waiting at targethen
does not increase its agent cost); and



e Type 3: linear segments with slope one, modeling the case functions. These approximate reaction functions have ataoh

where the optimal solution is for agentto visit targetz
after all complex targets already assigned to it (if any} if i
visits targetr at the given visit times (since waiting at target
x then increases the agent cost by the wait time).

Example: Figure 3 presents part of a different multi-agent routingipr
lem to illustrate the three kinds of segments, where thetagem targets
are located on a graph and the agents can only move along ¢jes ed
the graph.z; andzs are complex targets. Assume that complex tasget
has been assigned to agentvith visit time 5 in the first round of Stage
2. Figure 4 then shows the reaction function of ageffior targetzs in
the second round of Stage 2. ltebe the visit time of targets. First, if
t < 1then agent: cannot visit target> since it needs a travel time of one
from its current location to target,. Thus, the first segment of the reaction
function is a constant segment of infinite value starting0ato) (Type 1).
Second, ifl <t < 3 then the optimal solution is for ageatto visit target
9 before targetr1. A wait time at targetro does not change the agent cost
of 5 since the agent visits target at visit time 5 and then stops. Thus,
the second segment of the reaction function is a constantesggpf finite
value starting af1, 5) (Type 2). Third, if3 < ¢ < 7 then agent: cannot
visit targetz2 since it visits target; at visit time 5 and needs a travel time
of two from targetz; to targetzo. Thus, the third segment of the reaction
function is a constant segment of infinite value startin(Bato). (Type 1).
Finally, if 7 < ¢ then the optimal solution is for ageatto visit targetz
before targetr2. A wait time at targetr2 increases the agent cost 7 by the
wait time since the agent reaches targefat time 7, waits for other agents
to visit the target simultaneously and then stops. Thuslaftesegment of
the reaction function is a linear segment with slope ondistaat (7, 7)
(Type 3). m

Each eligible agent has to solve an optimization problem for
each visit timef of each unassigned complex targetb determine
its reaction function for the target because it needs torate
the optimal way of visiting the simple targets so that it tdgiom-
plex targetr at visit timet and all complex targets already assigned
to it at the visit times recorded in its commitment set. Theule
ing reaction functions are complex, which makes their caapon
and communication time-intensive. Therefore, we now preae
method that calculates approximate reaction functiorsichly by
only considering a constant number of orders of the simpigeta
instead of all of them.

4.1 Disjoint Coalitions

We discuss multi-agent routing problems with disjoint @o@ts
first. In this case, the reaction function of agerfor complex tar-
getx is a piecewise linear function with segments of Types 1 and 3
only. Segments of Type 2 are ruled out (since they requiragleat
to be assigned at least one complex target already), whicplisi
fies our method for the approximation of the reaction functi©ur
method approximates the reaction functions in two diffevesys:
First, it discretizes the possible visit times of complexgéx into
time intervals. Second, it uses the Or-opt heuristic [8]fgpraxi-
mate the optimal solution for each time interval, that ig,$blution
with the smallest agent cost where ageniisits complex target:
in the time interval without waiting and all simple targetseady
assigned to it at the optimal visit times. Let the visit tinfearget
x bet and the resulting agent cost beOur method then fixes the
resulting order of visiting all targets and increases ttsit time of
targetz by making the agent wait at it for other agents to visit the
target simultaneously, resulting in arerval function with a con-
stant segment of infinite value starting(8t co) and a linear seg-
ment with slope one starting &, ¢). Our method then calculates
the approximate reaction function as the minimum of all rivaié
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number of segments because our method considers only anbnst
number of orders of visiting all targets, which is a simpéfion.
However, our method would calculate the true reaction fonstif

it used an infinite number of time intervals and determinedthly
optimal solutions for all time intervals. We now give a stgpsbep
explanation of our method:

e Step 1: Our method finds the smallest visit tisnaf complex
targetx if agenta visits the complex target before all of its
simple targets. This visit time is equal to the travel tinanir
the current location of the agent to the complex target. Then
our method uses the Or-opt heuristic [8] to approximate the
smallest visit timee of complex target: if the agent visits
the complex target after all of its simple targets.

e Step 2: Our method divides the time inter{ale] evenly into
k time intervals(s;, e;] for a given discretization granularity
k and considers these time intervals together with the time
interval [0, s]. (Our method actually uses the time interval

(so = —¢,e0 = s] for a small positive constantinstead so
that all time intervals are open on the left and closed on the
right.)

e Step 3: For eaclh < i < k, our method finds the agent
cost of agent: for visiting complex target: in time inter-
val (s;, e;] without waiting and all simple targets already as-
signed to it at the optimal visit times. This optimizatiomp¥
lem is a special case of the NP-hard traveling salesperson
problem with time windows [2]. Our method uses a version
of the Or-opt heuristic [8], as given in the appendix, to solv
itapproximately. Let the visit time of targetbet; € (si, ]
and the resulting agent cost bg (It holds thatty = eo.)
Our method then defines the following interval function that
calculates the agent cost if all targets are visited in thergi
order and the agent waits- t; > 0 time units at target: for
other agents to visit the target simultaneously:

Faatt)={

00
ci+t—1t;

fo<t<t,
if t; <t.

e Step 4: Our method determines the approximate reaction
function of agenta for complex targetr as the minimum
of the interval functionsFy ; for all 0 < i < k since each
interval function expresses the agent cost if agevisits its
simple targets and the complex target in a particular order:

Fa(t):

. ¢4
Orgnilgk Fai(t).

This minimization can be performed in polynomial time as
follows sincety < ... < t: Start a new constant segment
of the approximate reaction function with infinite value at
(0, 00) unlessty = 0. Sett = 0 andc = co. For eachi =
0...kdo: If c+t;—t < ¢; then do nothing (since the current
segment goes throudt;, c + ¢; — t) and thus is no larger
than the linear segment with slope one startingat; )) and

go on to the next. Otherwise, start a new linear segment of
the approximate reaction function with slope one starting a
(ti,c;). Sett = t; ande = ¢; and go on to the next
The resulting approximate reaction function thus has atmos
k + 2 segments (including the initial constant segment of
infinite value, if any) and can be represented with a constant
amount of memory and be communicated in constant time.
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Figure 5: Approximate Reaction Functions ofa; (left) and a2
(right) for Discretization Granularity k£ =3
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Figure 6: Approximate Reaction Functions ofa; (left) and a»
(right) for Discretization Granularity &k = 2

Example: Consider again the multi-agent routing problem shown in Fig
ure 1. The approximate reaction functions of both agentseronly round
of Stage 2 are shown in Figure 5 for discretization grantyldri= 3. They
consist of four segments each (including the initial comssagment of infi-
nite value) and are identical to the true reaction functidriee approximate
reaction functions of both agents in the only round of Stagee2shown
in Figure 6 for for discretization granularity = 2. They consist of three
segments each and are no longer identical to the true radatiations. B

4.2 Overlapping Coalitions

We now discuss multi-agent routing problems with overlagpi
coalitions. In this case, the reaction function of agefdr complex
targetz is a piecewise linear function with segments of Types 1, 2
and 3. We thus need to generalize our method for the apprexima
tion of the reaction function from the previous section:

e Step 1: This step is identical to Step 1 for multi-agent rout-
ing problems with disjoint coalitions, except that our nweth
approximates the smallest visit timeof complex target: if
the agent first visits all complex targets already assigoed t
it at the visit times recorded in its commitment set, then all
simple targets, and finally target

e Step 2: This step is identical to Step 2 for multi-agent mti
problems with disjoint coalitions.

e Step 3: For each < i < k, our method uses the Or-opt
heuristic [8] to approximate the agent cost of agefur vis-
iting complex target: in time interval(s;, e;] without wait-
ing and all simple targets already assigned to it at the opti-
mal visit times. We call this order the calculated order. Our
method then defines the interval functi®ij ;(¢) as follows:
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1. Start a constant segment of infinite value(@tco).
There are no constraints.

2. Consider the solution where the agent visits each sim-
ple target as early as possible so that it visits target
and the simple targets in the calculated order, it visits
the complex targets already assigned to it at the visit
times recorded in its commitment set, and it obeys all
constraints. (This can simply be done by maintaining
a Queue 1 that contains targetind the simple targets
in the calculated order and a Queue 2 that contains the
complex targets in the calculated order. If the agent can
visit the first target in Queue 1 and then the first target
in Queue 2 at the visit time recorded in its commitment
set and there is no constraint that the agent needs to visit
the first target in Queue 1 after the first target in Queue
2, then let the agent visit the first target in Queue 1 next,
delete the target from Queue 1, and repeat. Otherwise,
let the agent visit the first target in Queue 2 next, delete
the target from Queue 2, and repeat.) Let the visit time
of targetz in this solution be and the resulting agent
cost bec.

3. If the agent does not visit at least one complex target
already assigned to it at some point in time after target
x in the above solution, then start a linear segment with
slope one att, ¢) and stop.

4. Letthe first complex target that the agent visits at some
point in time after target in the above solution be’
and its visit time be’. Let the travel time from target
x (possibly via simple targets) to targetin the above
solution beAt. Start a constant segment of finite value
at(t,c). Setttot’ — At.

5. If the agent visits target directly before target’, then
start a constant segment of infinite valugato), add
the constraint that the agent needs to visit targett
some point in time after target and goto 2.

6. Otherwise, the agent visits a simple target directly be-
fore targetr’. Add the constraint that the agent needs to
visit this simple target at some point in time after target
2’ and goto 2.

The number of segments of the interval function is linear in
the number of iterations of the above algorithm since each
iteration adds only one or two segments to the interval func-
tion. The number of iterations is linear in the number of
constraints added since each iteration adds at most one con-
straint. Finally, the number of constraints added is at most
guadratic in the number of targets since the constraints are
of the form “visit a given simple target after a given com-
plex target.” Thus, the number of segments of each interval
function is at most quadratic in the number of targets. Only
the last segment of each interval function is a linear segmen
with slope one.

Step 4: Our method determines the approximate reaction
function of agents for complex targetr as the minimum
of the interval functionsF;; ; forall 0 < i < k:

F(t) = min F7 ().
This minimization can be performed in polynomial time as

follows: Sett to zero. Determine the segment of all inter-
val functions whose function value is smallest at time point



t, breaking ties in favor of constant segments with finite val-

ues. Start a new segment of the approximate reaction func-

tion of the same kind as this segment at the point given by
t and the function value of this segment. If this segment is

a constant segment of finite or infinite value, then advance
t to the smallest time point where a new segment starts for

any interval function, and repeat the procedure until no new
segment starts for any interval function. If this segmerat is

linear segment with slope one, then determine the segment of

all interval functions whose function value is smallesirait
point¢ among all constant segments of finite value. Advance
t to the minimum of the intersection point and the smallest
time point where a new segment starts for any interval func-
tion, and repeat the procedure until no new segment starts fo
any interval function.

The number of segments of each interval function is at most
guadratic in the number of targets. Thus, the number of seg-

ments of all interval functions is also quadratic in the nemb

amount since none of the functiodd’ can increase unlessc T'(P, x).
Thus, one can decreageuntil t € T(P,xz) U {0} without increasing
cteap vz (t), which is a contradiction. Thus, one needs to minimize only
overt € T(P,z) U {0} rather thar0 < t < oco. The team cost at = 0

is infinity unless0 € T'(P,z). Thus, one needs to minimize only over
t € T(P, z) rather thart € T (P, z) U {0}. (This is also the reason why
the setl'( P, z) of time points does not need to include the starting points

of all constant segments with infinite valuell

Example: Consider again the multi-agent routing problem shown in Fig
ure 1. The central planner needs to minimize only over the pwints 1, 2,
3,4 and 5 in the only round of Stage 2 for discretization glamity & = 3.

The computation time of

min CREBVE(t)
PeP(d(z)),2€XeteT(Px) “F ¢

and thus the computation time of the central planner in eachd

of targets since there are only a constant number of interval of Stage 2 is linear in the product of the number of coalitiohs

functions. The above algorithm can add additional segments
possibly one for each intersection that a linear segmeffit wit

slope one has with some other segment. The number of lin-
ear segments with slope one is one for each interval func-

tion. Thus, their total number is constant and the number of

intersections that they have with other segments is at most

linear in the number of segments. The resulting approxi-

mate reaction function thus has a number of segments tha
is at most quadratic in the number of targets and can thus

be represented with a polynomial amount of memory and be
communicated in polynomial time.

5. WINNER DETERMINATION

In Stage 1, each agent submits the valifefor each unassigned
simple targetr to the central planner. The central planner deter-
mines (a,z) = argminsea,zcx, VY, With a computation time
that is linear in the product of the number of agents and thm-nu
ber of targets and then assigns simple tasig&t agenta. In Stage
2, each eligible agent calculates its approximate readtination
Fs (t) for each unassigned complex targeand then submits the
function

Fa(t) -

vio={ 7]

to the central planner. The central planner determies:, ¢) :=
arg Minpe p(d(z)),z€ Xo,0<t<o0 Cuep Va (t) and then assigns com-
plex target: to all agents: € P with visit time¢. The minimization

is over0 < t < oo. The following theorem, however, shows that
this is unnecessary.

ngent (Xa7 Ca) for MiniSum
for MiniMax

Theorem 2 Let T'(P, z) be the set of time points that correspond
to the starting points of all constant segments with finitees and
all linear segments with slope one of the functiasig(t) for all
eligible agents: € P and unassigned complex targetsThen,
. teamyyx
t
PEP(d(z))IvrzHEan,Ogt<oo Cacp Va (1)
CLEFVEW).

= min
PeP(d(z)),x€Xc,teT(P,x)

Proof by contradiction: Assume that the equality does not hold and
consider any coalitiol? € P(d(x)) and targetr € X.. Lett € T'(P, x)
be the time point that minimizes the left-hand side, whickhin strictly
smaller than the right hand side since it minimizes overgelaset of time

points. c/*Z VX (t) cannot increase when decreasirigy an infinitesimal
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d(x) different eligible agents (with an upper bound that is linea
the number of agents to the power of the largest coalitios) sthe
number of unassigned complex targets (with an upper bouaid th
is linear in the number of targets) and the number of segrants
the functionsV; (¢) (with an upper bound that is constant for multi-
agent routing problems with disjoint coalitions and quédria the
number of targets for multi-agent routing problems with rtse-

tPing coalitions). Overall, the computation time of the cahplan-

ner is linear in the product of the computation time in eaalm
and the number of rounds (with an upper bound that is linedran
number of targets) and thus exponential in the largesttimatize

and polynomial in the number of agents and targets.

6. EXPERIMENTAL RESULTS

We now evaluate our method, that we call ARF (= Approach

with Reaction Functions) in the following. There are no otiask-
allocation methods for multi-agent routing with complexgets.

In order to demonstrate the benefits of reaction functiomsiirap-

proach, we compare ARF against two other greedy task-aitoca

methods that do not use reaction functions.

1. Greedy 1: Greedy 1 is similar to ARF except that it mixes
the allocation of simple and complex targets in one stage
and restricts agents to visit their targets in the order in
which they were assigned to them, similar to [10]. Greedy
1 consists of one stage with multiple rounds, where one
additional target (either a simple target or a complex trge
is assigned per round with a given visit time to some agent
until all targets have been assigned. Each additional targe
is assigned to some agent with a given visit time so that
the team cost after the assignment is smallest among all
possible assignments under the restriction that agenits vis
their targets at the agreed-on visit times. Consider any
round. LetX, be the set of targets already assigned to agent
a in previous rounds. Let, be its agent cost for visiting
all targets already assigned to it at the agreed-on visiggim
Each eligible agent submits for each unassigned target
the valueV; to the central planner. For multi-agent routing
problems with disjoint coalitions, all agents are eligibde
get targetr assigned ifz is a simple target but only those
agents are eligible to get targetassigned that have not yet
been assigned a complex targetifs a complex target. For
multi-agent routing problems with overlapping coalitions
all agents are eligible to get targetassigned. V; is the



MiniSum Team Objective MiniMax Team Objective
Number Number Greedy 1 Greedy 2 ARF Greedy 1 Greedy 2 ARF
of Simple | of Complex || Team Computa-| Team Computa-| Team Computa-|| Team Computa-| Team Computa-| Team Computa
Agents | Targets Targets Cost tionTime| Cost tionTime| Cost tionTime || Cost tionTime| Cost tionTime| Cost tion Time
4 8 2 417.6 0.60| 417.2 0.10| 359.8 1.33|| 130.9 0.90| 139.5 0.40| 129.5 0.67
4 18 2 558.3 3.80| 555.2 7.70| 457.1 13.40|| 161.3 3.20| 170.9 2.50| 156.4 3.80
4 28 2 656.2 7.60| 668.2 6.59| 519.0 103.20|| 185.3 6.50| 190.3 19.00| 174.6 24.00
6 7 3 434.8 1.10| 436.1 0.60| 401.9 1.20|| 109.2 0.50| 113.4 0.10| 108.5 0.20
6 17 3 575.4 3.00| 572.9 3.40| 495.7 5.40( 134.2 2.60| 134.8 1.40| 126.8 3.60
6 27 3 658.1 6.90| 654.4 25.20| 565.8 43.30|| 151.4 7.60| 150.4 8.90| 142.9 12.90
8 6 4 455.9 0.60| 457.9 0.20| 438.1 0.90(] 102.0 0.80[ 103.1 0.30| 102.0 0.90
8 16 4 582.9 4.40| 589.7 1.80| 537.3 6.20( 123.8 4.10( 120.1 1.00| 1184 5.67
8 26 4 680.6 9.20| 674.8 15.60| 603.9 30.10(| 133.8 8.50| 136.8 6.00| 129.7 8.10
10 5 5 471.0 0.60| 473.6 0.60[ 459.6 1.00]] 95.3 1.20[ 94.8 0.40] 94.4 1.33
10 15 5 596.1 3.60| 601.8 2.60| 544.6 5.90|| 112.5 3.80| 112.8 1.50| 110.6 5.20
10 25 5 696.1 9.50| 694.1 11.00| 621.1 19.10|| 123.5 10.70| 124.5 6.10| 118.1 16.67
Table 1: Experimental Results for Multi-Agent Routing Problems with Disjoint Coalitions
MiniSum Team Objective MiniMax Team Objective
Number Number Greedy 1 Greedy 2 ARF Greedy 1 Greedy 2 ARF
of Simple | of Complex || Team Computa-| Team Computa-| Team Computa-|| Team Computa-| Team Computa-| Team Computa
Agents | Targets Targets Cost tion Time | Cost tion Time | Cost tion Time || Cost tion Time | Cost tionTime| Cost tion Time

4 35 5 757.1 23.40( 744.0 28.70| 688.8 249.10(| 228.0 14.30| 222.6 44.20| 202.8 144.30
4 30 10 909.1 45.10| 895.6 32.10( 869.4 279.00(| 269.8 16.30| 272.4 25.80| 254.5 215.70
4 20 20 1053.3 15.70| 1042.9 17.30| 1021.7 155.40|| 306.9 17.20| 319.6 12.80| 298.7 167.60
4 0 40 1020.9 16.40| 1020.9 11.10| 1020.9 22.00|| 295.3 18.70| 295.0 14.70| 295.3 15.80
6 35 5 672.8 2250 661.8 24.60( 6175 215.10(| 153.5 14.60| 156.5 22.20( 141.6 45.20
6 30 10 818.3 24,50 808.9 26.40( 779.6 172.90|| 183.1 16.30| 181.8 16.20| 167.4 54.10
6 20 20 960.9 15.50| 962.6 13.30| 950.2 100.90|| 210.3 17.40| 210.9 12.30| 200.9 41.00
6 0 40 969.8 17.00| 969.8 12.40| 969.8 18.90|| 216.3 19.10| 216.4 17.70| 216.4 15.10
8 35 5 605.7 15.50| 608.9 46.40| 548.4 172.80|| 115.5 13.30| 110.0 19.10| 100.3 25.10
8 30 10 733.5 15.30| 729.8 29.50( 692.5 128.50|| 137.2 15.70| 130.6 14.60| 122.4 26.70
8 20 20 898.6 17.60| 899.5 11.90| 882.9 96.30|| 162.8 17.80| 160.9 12.20| 151.4 23.40
8 0 40 930.6 18.00| 930.6 13.30| 930.6 19.00|| 172.9 19.90| 172.9 16.00| 172.9 16.40
10 35 5 555.6 14.30| 548.8 33.10[ 496.0 100.10[] 91.3 15.20| 86.8 12.00 81.9 19.80
10 30 10 681.5 15.80| 675.7 19.20| 635.4 90.30(| 110.4 14.30| 106.3 19.20| 102.8 20.40
10 20 20 838.5 18.40| 844.9 10.30| 820.9 61.40(| 129.8 16.60| 126.8 12.40| 123.8 18.20
10 0 40 904.8 19.90| 904.8 14.50| 904.8 21.00(| 143.7 19.90| 143.3 16.70| 143.7 17.70

Table 2: Experimental Results for Multi-Agent Routing Problems with Overlapping Coalitions

agent cost of agent for visiting all targets already assigned
to it at the agreed-on visit times and targdast and without
waiting. Thus,V; = ¢, + t(a,x), wheret(x,a) is the

agents, so that every agent visits exactly one complexttafegm
multi-agent routing problems with overlapping coalitipnge fix

the number of targets at 40 and vary the number of complertsirg
travel time from the location of agemnt after it visited all from 5, 10, 20 to 40. For each of these scenarios, we average ov
targets inX, at the agreed-on visit times to targetLet X’ 100 runs with randomly generated cells for the agents ag@tsr

be the set of unassigned targets. The central planner deter-Table 1 presents the average computation times of the thske t
mines (P, z) arg minpe p(d(z)),zcx’ MaXaecP Vo allocation methods (in milliseconds) and the resultingage team

for the MiniMax team objective and(P,z) costs for multi-agent routing problems with disjoint ctialis. Ta-

arg minpe p(d(s)),ce X’ 2 qcp(MaXarcp Vor Ca) ble 2 presents the same results for multi-agent routingleno®d

for the MiniSum team objective, and then assigns target with overlapping coalitions.

agent(sy € P with visit time max.cp Vg . The procedure We make the following observations: While the computation
then repeats until all targets have been assigned to agents. times of ARF are generally larger than those of Greedy 1 and
Greedy 2 in both tables, their order of magnitude is abousémee

) X : (except for a small number of cases). In particular, ARF le &b
It_qon5|sts of tv_vo sta_ges with multiple rounds, where one ad- solve large multi-agent routing problems in real time. Fartin
ditional target is assigned per round to some agent. In Stage qeny routing problems with disjoint coalitions, the teamsts of

1, all simple targets are assigned to agents in the same Wayreedy 1 and Greedy 2 are about the same, while ARF reduces
as done by ARF. In Stage 2, all complex targets are assigned e yeam cost significantly, namely by about 11-12 percemthie

to agents in the same way as done by Greedy 1. That s, all \inisym team objective and 3-5 percent for the MiniMax tedm o
agents visits their complex targets (if any) last. jective. For multi-agent routing problems with overlappicoali-
tions, ARF also reduces the team cost significantly when time-n

ber of complex targets is small. However, the advantage df AR
diminishes as the number of complex targets increases.riicpa

lar, when all 40 targets are complex ones, the team costs & AR
Greedy 1 and Greedy 2 are about the same because ARF allows
the agents to manipulate the order in which they visit thepkm
targets assigned to them to accommodate the complex tagets
signed to them. If there are no simple targets, then ARF, @ree

1 and Greedy 2 degenerate to the same method. We attempted to
find the smallest team costs for the multi-agent routing jemls by

2. Greedy 2: Greedy 2 is a cross between Greedy 1 and ARF.

We evaluate ARF, Greedy 1 and Greedy 2 for multi-agent rout-
ing problems on known four-neighbor planar grids of sizex 51
with square cells that are either blocked or unblocked. Thisge-
semble office environments with randomly closed doors frém [
All complex targetse have coalition sizél(z) = 2. ARF uses dis-
cretization granularitys := min(20, 2|X,|), whereX, is the set
of simple targets assigned to agerih Stage 1. We vary the num-
ber of agents from 4, 6, 8 to 10. For multi-agent routing peats
with disjoint coalitions, we vary the number of targets fra6 20
to 30 and set the number of complex targets to half the numiber o
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formulating them as mixed integer programs, seeding théisak
with the allocations obtained by ARF, and then solving thzadi
integer programs with CPLEX. However, CPLEX was unable to
improve on the team costs found by ARF within our time limit of
three hours.

7. CONCLUSIONS

In this paper, we extended multi-agent routing to the caserevh
targets need to get visited simultaneously by several againe
proposed ARF, that uses reaction functions as a novel walyaof ¢
acterizing the costs of agents in a distributed way. We sHowe
how to approximate reaction functions so that their conmra
and communication times are polynomial. We showed how reac-
tion functions can be used by a central planner to allocatetsito
agents and determine their visit times with a computatiore tihat
is exponential in the largest coalition size and polynormathe
number of agents and targets. It is future work to experineétit
different approximation and hill-climbing schemes. Foamwple,
our hill-climbing method assigns the complex targets frasyeto
difficult, and we intend to experiment with the reverse orders
also future work to extend our approach to generalizatidnsuiti-
agent routing problems. For example, reaction functiomsatso
be used if the agents are heterogeneous and the complekstarge
need to be visited by different kinds of agents. In this caseh
agent calculates only the reaction functions for the comfalegets
that it can visit, and the central planner evaluates onlyitimas
of suitable agents for visiting complex targets. Finallysifuture
work to extend our approach to task-allocation problemerdtian
multi-agent routing.
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23 (c,t) := Evaluate(S);
h 24 return(c, t);




