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ABSTRACT

This paper studies the use of agent communication in ubiqg-
uitous computing. This application domain allows us to
investigate the efficient handling of large quantities of in-
formation in agent-based systems. We will present an ap-
proach to dynamically set up a communication network be-
tween agents which aims to minimize the communication
load. The approach is based on a formal ontological notion
of informativeness, on quantitative measures such as infor-
mation gain and on the proper use of interaction mechanisms
such as Publish/Subscribe. We also present experimental re-
sults which have been obtained using our prototyping tool
called Ubismart.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination;

C.2.4 [Computer-Communication Networks|: Distributed

Systems—distributed applications

General Terms

Design, Languages

Keywords

Ubiquitous computing, Agent communication, Ontologies

1. INTRODUCTION

Over the last decade, multi-agent systems (MAS’s) have
had a profound impact on many related research fields among
which ubiquitous computing [17]. In the early nineties, Mark
Weiser envisioned ubiquitous computing as hundreds of net-
worked computing devices and sensors working together and
assisting people in their everyday lives [21]. Since then,
much research has been conducted on this new computing
paradigm and many grand challenges have been identified,
such as preserving privacy, dealing with trust and obtaining
interoperability. In this paper we will be concerned with
the interoperability issues of ubiquitous computing, which
we will study from an agent perspective. The key challenge
is to achieve serendipitous interoperability [10], i.e. the abil-
ity of software systems to discover and utilize services they
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have not seen before, and that were not considered when the
systems were designed.

The difficulty of serendipitous interoperability is that it
excludes the possibility to fix in advance the communica-
tion network between the system components (which we
call agents from now on). It is impossible to specify at
design-time which agent communicates which information
to which other agent. Therefore, we only require the in-
formation needs of an agent to be specified at design-time
and let the agent find out at run-time how to obtain this in-
formation. The agents must have the right communicative
skills to set up a communication network between them-
selves which enables them to exchange sufficient informa-
tion. However, the agents should not exchange more in-
formation than necessary. This is because of three reasons.
Firstly, when vast amounts of data are available, information
overload becomes a serious issue due to limited storage and
computing resources. Secondly, because the system often
consists of mobile devices with limited energy supply, mo-
bile communications, which are heavy on power consump-
tion, should be minimized [8]. Thirdly, the system may also
contain humans which are even more easily prone to infor-
mation overload than computers. Thus, the problem we will
tackle in this paper can be summarized as follows: how can
agents dynamically set up a communication structure be-
tween themselves which allows them to exchange sufficient
information with as few messages as possible?

Our solution builds partly on related work from qualita-
tive AI. We will show that, by using a layered structure of
ontologies that are formalized in logic, the agents can ap-
ply ontological reasoning to derive what information they
can obtain from whom. Another part of our solution builds
on related work from quantitative Al, in particular decision
trees and probability theory. We will present three efficiency
measures which the agent can use to reduce the communi-
cation load in the system.

As a first measure, we will apply decision trees to deter-
mine the order in which the different pieces of information
should be acquired. Secondly, we will discuss an efficient
use of the Query and the Publish/Subscribe mechanisms.
Both of these interaction mechanisms are well known within
the MAS-community due to agent communication languages
such as KQML [4] and FIPA ACL [5]. Our application of
MAS’s to ubiquitous computing allows us to formulate com-
putational criteria for choosing between querying and sub-
scribing, which, to the best of our knowledge, is a novelty
in the literature. As a third efficiency measure, we will in-
troduce a special kind of subscription, i.e. the conditional



subscription by which an agent requests to be notified about
something when some condition is true.

To validate the ideas introduced in this paper, we have de-
veloped a prototyping tool, called Ubismart. This allows us
to easily perform agent-based ubiquitous computing simula-
tions and experiment with different communication strate-
gies and OWL ontologies [15]. We will present a simulation
experiment in the domain of crisis management. In this sys-
tem, information from different sensors must be combined to
inform a crisis worker via his or her PDA about the potential
risks of fire and traffic accidents. By comparing the differ-
ent communication loads that result from applying different
efficiency measures, we demonstrate that the techniques dis-
cussed in this paper are successful.

The paper is organized as follows. In Section 2 we will
introduce layered ontologies. In Section 3, we will discuss
the measures we propose in the communication mechanism
to reduce the information flow between the agents. Our
implementation and the results of the experiments are pre-
sented in Section 4. Section 5 concludes the paper and gives
directions for future research.

2. LAYERED ONTOLOGIES

A common ontology has been advocated as the key to
achieve mutual understanding between agents as it guaran-
tees that every agent uses the same terms to represent the
same meanings [7]. In ubiquitous computing, however, dif-
ferent components typically represent their information at
different levels of abstraction, i.e. they view the world dif-
ferently. These different world-views lead to heterogeneous
ontologies which could cause misunderstandings [19]. To
deal with this problem, we propose a system with layered
ontologies [20] where the agents only have parts of their on-
tologies in common. In this way, every agent maintains its
own ontology tailored to its task, and use the common parts
of their ontologies for communication.

As a running example throughout the paper we introduce
a simple system where a PDA notifies its user about the pres-
ence of a photo moment, i.e. a scenic sky. The PDA (Ag-6)
deals with the high-level concept photo moment. Other com-
ponents (Ag-4 and Ag-5) have less abstract information such
as rainbow and sunset, whereas the sensors (Ag-1, Ag-2 and
Ag-3) possess low-level information about light-conditions
or the presence of rain or sunshine. The ontologies of the
agents are shown in Figure 1.

An agent’s ontology is composed of several contexts, which
are related by mappings that specify translations between
them, analogous to a multi-context system [6]. Each concept
(e.g. c,d,e) is prefixed with a context-name (e.g. cl1,¢2,¢3) to
indicate to which context the concept belongs. For example,
the ontology of Ag-2 contains two concepts ¢ (rainy) and d
(sunny) which both belong to context c¢l. As indicated by
the incoming arrow, Ag-2 is a sensor that measures infor-
mation about concept cl:d (sunny). The ontology of Ag-4
contains concepts from three contexts cl, ¢2 and 3. Ag-4
relates contexts cl and ¢2 with ¢3 by a mapping, which is
indicated by a grey layer.

We assume that a mobile ad-hoc network exists which
allows agents to discover the presence of each other, to view
which contexts are contained in each other’s ontologies, and
to send data to each other. Communication in the system is
initiated by an agent aiming to resolve its information needs.
Suppose, for example, that Ag-6 has information need c¢5:j
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Figure 1: Example System

(photo moment). It starts by looking for other agents that
can provide valuable information for this concept. Because
no other agent in the system has ¢5 defined in its ontology,
Ag-6 translates concept c5:j to a lower level concept c4:i
(rainbow) and c¢3:h (sunset) using its mapping. ¢3:h can be
queried to Ag-4, as Ag-4 is familiar with context ¢3. This
query raises the information need c¢3:h for Ag-4, which it
tries to resolve using the same strategy, i.e. translating it to
the lower-level contexts c1 and ¢2 in order to pass the query
on to Ag-1, Ag-2 or Ag-3. Because these agents are sensors,
they can obtain their information directly from the world,
and the chain of queries ends there.

Crucial in this approach is that an agent must be capable
of translating a representation in a non-common context to
a representation in a common context to be understood by
the recipient. Before we explain this process in detail, we
briefly introduce the knowledge representation formalism.

2.1 Knowledge Representation Formalism

An agent’s knowledge base is formalized in description
logic and consists of a TBox and an ABox [2]. The TBox
of an agent implements its ontology and stores concepts and
their relations. The ABox stores sentences constructed using
these concepts. The ABox is assumed to be initially empty
and grows as the agent senses its environment or communi-
cates with other agents. In Figure 1, only the agents’ TBoxes
are shown.

Without going into the formal semantics of description
logic, we briefly discuss its constructs. Concepts are com-
posed using atomic concepts and concept constructors, i.e.
M (conjunction), LI (disjunction), = (negation). For example,
¢ M —d refers to the concept rainy and not sunny.

Concepts are interpreted as subsets of a domain of dis-
course, denoted by A. Because time plays an important role
in our application, we assume that A is a set of time points
{t1,...,tn}. For example, if the concept rainy is interpreted
as {t3,t5}, it means that it was rainy at time points ¢3 and
t5. We use a special variable NOW to denote the current time
point. This can be implemented by adopting one central
time reference for all agents which instantiates the agents’
NOW variables with the current time.

The TBox is specified as a number of inclusion axioms of
the form ¢ C d, meaning that the interpretation of ¢ is a
subset of the interpretation of d, i.e. all instances of ¢ are



also instances of d. For example, the TBox axiom in the
mapping of Ag-4, c2:eMcl:d C ¢3:h means that if there is
red light and it is sunny at some time point, then there is
a sunset at that time point. The ABox is specified as a
number of membership assertions of the form ¢(t) meaning
that ¢ is an instance of c¢. For example, the ABox assertion
Rainy(t4) means that it is rainy at time point ¢4. We will
write KB = to state that ”from the TBox and ABox follows
that”. We say that an agent has satisfied its information
need on a concept ¢, if KB = ¢(NOW) or KB = —¢(NOW).
For c(t) we sometimes simply write that c is true at time
t and analogously, for —¢(t) that c is false at time ¢. For
c¢(NOW), we sometimes simply write that ¢ is true.

3. COMMUNICATION MECHANISM

The central issue addressed in this section is how to resolve
an agent’s information need as efficiently as possible. Firstly,
we will define which concepts from other contexts qualify as
informative w.r.t. the agent’s information need. Then we
will discuss what is the best order to obtain information
about these concepts. Finally, we will argue by means of
which interaction mechanism this information can best be
obtained, i.e. by query, subscribe or conditional-subscribe.

3.1 Informative Concepts

The first feature we will introduce in our communica-
tion mechanism is intended to prevent queries from being
posed which are not informative for resolving the informa-
tion needs. This is also a very basic aspect of human com-
munication. For example, an investigator attempting to de-
termine the cause of a house fire, will likely inquire about
the presence of inflammable material or the smoking habits
of the occupants, rather than inquire about the color of the
walls. For communicating software agents, precise rules are
needed to implement this seemingly trivial property. In de-
scription logic, we can specify when a concept in one context
qualifies as informative for a concept in another context.

Clearly, a concept c¢;:c qualifies as informative for con-
cept ck:e if membership of concept c¢;:c either implies or pre-
cludes membership of concept ck:e. This is when ¢ C e, or
when ¢ C —e. Sometimes, membership of a concept can only
be decided by posing multiple queries to different agents, a
process known as query dissemination [11]. For example,
consider Ag-4 in Figure 1. Because c2:e M cl:d C ¢3:h, the
truthvalue of h can be decided by querying e to Ag-3 and d
to Ag-2. Therefore, a concept can also be qualified as infor-
mative if it can be regarded as part of what must be known
to exclude or conclude membership of the target concept.
Returning to our example with the fire investigator, it is
justified to ask about the smoking habits of the occupants,
because the answer, together with some other information,
can explain the cause of fire. Formally, this is defined as:

DEFINITION 1. Informative

Concept c;i:c is informative for concept cy:e iff there exists
cj:d for which

e (KBEcMNdCe or KBl=cMNdL —e), and
e (KB=dZ e and KBE=dZ —e)

This definition states that a concept c¢ is informative for
concept e, if two conditions hold. The first condition states
that, together with some other concept d which stems from
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any context, ¢ and d must imply e or —e. The second con-
dition states that membership of d alone should not imply e
or —e. Hence, the information about c is really necessary for
the conclusion. Note that, when concept ¢ by itself is suffi-
cient to imply e or —e, then ¢ also qualifies as informative.
This can be easily shown by taking for concept d, concept
T (which is defined as the superconcept of all concepts).
An agent that queries a concept ¢ does not know whether
the answer will provide information that c or that —c. There-
fore, if only one of the concepts c or —c is informative for the
agent’s information need, a query on concept c is allowed.

ExAMPLE 1. Consider Ag-4 with information need c3:h
in Figure 1

o Concepts —c2:e, c2:e, cl:d and c2:g are informative for
concept c3:h.

e Ag-4 may query c2:e, cl:d and c2:g. Ag-4 may not
query cl:c or c2:f.

The idea of querying informative concepts is similar to
backward chaining in expert systems [16]. To know the
truth-value of a consequent, all truth-values of the conjuncts
in the antecedent must be known. We would call all these
conjuncts informative. Having described which concepts are
suitable candidates for querying, we will now describe the
order in which these concepts should be queried.

3.2 Decision Trees

Not every answer resolves an agent’s information need.
For example, if Ag-4 queries the informative concept g to
Ag-3 and gets —g as a response, it can neither derive h, nor
—h leaving its information need unsatisfied. Therefore, it
is useful to anticipate on the expected answer when decid-
ing which of the informative concepts to query first. This is
also a common pattern in human communication. For exam-
ple, a fire investigator usually starts by examining the most
frequently occurring causes, such as smouldering cigarette
butts, and postpones investigating the rarer causes such as
lightening strike. To apply these ideas to our communica-
tion mechanism, we use a quantitative measure called infor-
mation gain [13] that indicates how much closer the agent
gets to satisfying its information need by querying a certain
concept.

Information gain is defined in terms of a measure from
information theory, i.e. information entropy. This measure
can be used to indicate how certain the agent is about the
truth-value of some concept. For example, consider Ag-4
with information need h. If Ag-4 has completely satisfied its
information need, it is certain that h(NOW) or it is certain
that —h(NOW), in which case the entropy is 0. If Ag-4 does
not have a clue about the truth value of h, the entropy is
1. In this case, the agent’s experience does not provide any
indication of the truth value of A, i.e. h has been true at
half of the time points and false at the other half. This is
formalized as:

DEFINITION 2. Information Entropy
Given an information need c, and a set time points A
Ent(A) = —plog, p — nlog, n, where
e p is the proportion of time points in A which are mem-
ber of c.

e n is the proportion of time points in A which are not
member of c.



Information gain is defined as the expected reduction in en-
tropy that results from obtaining the truth-value of a con-
cept. An agent that aims to satisfy its information needs
tries to get the entropy on 0 as fast as possible. It there-
fore chooses the concept with the highest information gain.
In the definition below, # is used to denote the number of
instances in a set.

DEFINITION 3. Information Gain
Given an information need ¢, and a set time points A

Gain(A,d) = Ent(A)—%Ent(Ad)—%Ent(Aﬁd), where

o A% s the set of domain individuals which are member
of concept d.

o A7 is the set of domain indiiduals which are not
member of concept d.

By repeatedly ordering the concepts according to their
information gain, a tree can be constructed which tells the
agent the order in which concepts must be queried. This
boils down to the ID3 algorithm for decision tree learning
[13], but used in an entirely different domain. Contrary to
ID3, we only use information gain for efficiency. The final
outcome is based on the logical rules, and not on the set of
training examples.

EXAMPLE 2. Consider Ag-4 in Figure 1 with information
need h. Consider the following ABox information (note that
Ag-4 does not know the columns of concepts i and j):

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15

el el Bes e Beo B B e s s s B RSN
R R R R s R R R R e R
e B B e T B e B B IS Tes T B~ st
NNTNTERTRETNSERNR
I IS TS e B s BieHies BeoHes s B B Bies |
s T Hes s Bes - Bes s BeHies BeoTes Bes es (R
TSNS TTE T TS Y S

T R B B B B s B e e B B B )

calculate the following:

S Ent(A°) — L Ent(A™¢)=

Using this information, we can

e Guain(A,e) = Ent(A) —
(_% log, % - % log, %) - %(_% log, % - 210g2 %)
—1=(—2log, 2 — Llog, I) = 0.567 —0.433 —0 = 0.134
o Gain(A,d) = Ent(A) — 2 Ent(A%) — 12 Ent(A™?)
= 0.567 — 0.24 — 0.312 = 0.015

o Gain(A, g) = Ent(A) — X Ent(A9) — & Ent(A™)
= 0.567 — 0 —0.367 = 0.2

Because the information gain of concept g is highest, this
concept will be queried first. In case g is false, concept d
or e must be queried. Because Gain(A™7,e) is greater than
Gain(A™9,d), concept e is queried first. Ordering the con-
cepts in this manner, the decision tree as depicted in Figure

816

[e3:h <2 [c3:h —T|

Figure 2: Decision tree for Ag-4

2 is obtained. In this figure, a circle around a concept means
that its truth-value must be found out; a box around a con-
cept means that the truth-value for the information need can
be derived.

We have now discussed in which order information must
be obtained. In the next section, we will discuss by which
means information can best be obtained.

3.3 Query vs Subscribe

By querying the truth value of a concept ¢, the agent
gets a response regardless of whether c is true or c is false.
Besides querying, a common interaction mechanism in ubiqg-
uitous computing and peer-to-peer systems is the Publish-
Subscribe protocol [14]. By subscribing to a concept ¢, the
agent requests to be notified whenever c is true. This reduces
the communication flow as information is only exchanged
when c is true. When no notification is received, the agent
can derive that —c is the case. In this way, subscriptions
introduce a local closed-world assumption in an open-world
knowledge base.

As an intuitive example of the subscribe mechanism, con-
sider a fire-department. Instead of repeatedly calling the
residents of its district to ask if help is needed, the fire de-
partment requests to be notified about this.

In order to decide whether to query or to subscribe to a
concept, it does not suffice to estimate the resulting com-
munication load for the current time point only. Because
subscriptions usually pay off after a number of time steps,
an agent should stick to one plan which is expected to be
most efficient for all future communications.

The costs of a plan indicate the expected number of sent
messages per time step that result from carrying out the
plan. This is calculated as follows. A plan is represented
using labels which cover the nodes in the decision tree. If
a node in the decision tree is covered, it means that the
agent has sufficient information to traverse through the tree
at that node. A label is either a Subscribe-label or a Query-
label and is introduced before it is used to cover nodes in the
tree. The two types of labels differ with respect to the costs
that are associated with introducing the label, and with re-
spect to the amount of nodes they can cover after they are
introduced. The costs of a label corresponds to the average
amount of sent messages that are caused by the introduction
of the label. An agent continues with introducing labels un-
til each (non-leaf) node in the decision tree is covered. The



costs associated with this labelling equals the total amount
of costs of introducing the labels.

By specifying which nodes a query label can cover and
what the associated costs are, Query-labels are characterized
as follows:

DEFINITION 4. Costs and covering of Query-labels
e A label QUERY(c) covers one node about concept c.

e The costs of a label QUERY(c) is the probability that the
node which it covers is reached.

Note that, when there are two nodes with ¢ in the decision
tree, the label Query(c) has to be introduced two times such
that costs of both labels are added to the total amount of
costs. This is not the case for Subscribe labels, which are
characterized as follows:

DEFINITION 5. Costs and covering of Subscribe-labels
e A label SUBSCRIBE(c) covers all nodes about concept c.

e The costs of a label SUBSCRIBE(c) is the probability that
c s true.

Note that the above definition also applies to negated con-
cepts, i.e. by calculating the costs of SUBSCRIBE(c) and
SUBSCRIBE(—c), the choice can be made whether to get no-
tified when c is true or when c is false.

Typically, the root node of the decision tree is a suitable
candidate for subscription. Because it is always necessary
for the agent to have information on this concept, the query-
costs would be 1, whereas the subscription costs would be
less than 1. The lower the node is situated in the tree, the
less likely it becomes that information about that concept
is needed and the less the query costs become. At the same
time, subscription costs remain the same. Thus, the nodes
at the bottom of the tree are typically labelled with query.

The ideas introduced in this section are illustrated in the
following example:

ExAMPLE 3. Consider Ag-4 in Figure 1 and the relevant
ABoz information from Ezxample 2. The costs of different
ways of obtaining information are listed below.

e Costs(QUERY(g)) =1

e Costs(SUBSCRIBE(g)) = Pr(g) = 1 = 0.6

o (Costs(SUBSCRIBE(—g)) = Pr(ﬁg) =L =04

e Costs(QUERY(e)) = Pr(—g) = 1+ =04

o Costs(SUBSCRIBE(e)) = Pr(e) = % =0.533

e Costs(SUBSCRIBE(—e)) = r(ﬁe) = & =0.467
e Costs(QUERY(d)) = Pr(—g,e) = = = 0.333

o Costs(SUBSCRIBE(d)) = Pr(d) = - = 0.333

Pr(ﬁd) — 10— 0.667

Using this information, the optimal labelling becomes as de-
picted in Figure 3

e Costs(SUBSCRIBE(—d)) =

In this section we have focussed on how information can
be efficiently obtained from one source. When information
must be obtained from multiple sources, the mutual relation
between these sources can be used to further reduce the
communication load, which is the topic of the next section.
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Q> SUBSCRIBE(—g)
@ QUERY(e)
<3> SUBSCRIBE(d)

[c3:h 2] [e3:h T

Figure 3: Labelled decision tree for Ag-4

3.4 Conditional Subscriptions

By using a conditional subscription, an agent requests
to receive notifications of something only if some condition
holds. This can be useful when the data that must be com-
bined to come to a conclusion is not probabilistically in-
dependent. For example, consider Ag-1, Ag-2 and Ag-5 in
Figure 1 and suppose that Ag-5 has information need 7 (rain-
bow). To satisfy its information need, Ag-5 must know the
truth values of ¢ (rainy) and d (sunny). rainy is frequently
true and sunny is frequently true, but they are very rarely
true at the same time. If Ag-5 would subscribe with Ag-1 for
c and with Ag-2 for d, it would receive a lot of notifications.
By using a conditional subscription on ¢ if d (written (c|d)),
Ag-5 requests Ag-1 to send notifications about ¢ only when
d is also true. Of course, this requires Ag-1 to have infor-
mation on d which it can obtain from Ag-2. The redirection
of the information flow is depicted in the following figure.

Sub-
scribe(d)

Conditional-

Subscribe (c) Ag-2 Subscribe (c|d)

Ag-2
Figure 4: Redirecting the information flow

To judge whether conditional subscriptions actually lead
to a reduction of the overall communication load, we must
calculate the costs of conditional-subscribe labels and state
precisely which nodes these labels can cover. An agent that
is conditionally subscribed to (c|d) receives a notification
when ¢ and d are both true. Therefore, this label covers
both nodes ¢ and d.

To calculate the costs of a conditional subscription on
(c|d), the subscribing agent (Ag-5 in Figure 4) should not
only compute the costs of receiving notifications on ¢ and
d (the arrow between Ag-5 and Ag-2), but also the costs
of acquiring information about d it burdens the other agent
with (the arrow between Ag-2 and Ag-1). An agent can es-
timate these costs by inquiring the other agent about it, or
by computing what it would cost if it would have to sub-
scribe to the concept itself. This is specified in the following
definition:



DEFINITION 6. Costs and covering of Conditional-subscribe

labels

e A label CONDITIONAL-SUBSCRIBE(c|d) covers the nodes
about ¢ and d.

e The costs of a label CONDITIONAL-SUBSCRIBE(c|d) is
equal to the probability that ¢ and d are true plus the
estimated minimal costs of acquiring information on d.

An illustrating example is given below.

ExXAMPLE 4. Consider Ag-5 in Figure 1 with information
need i and the relevant ABox information from Example 2.
The costs of different ways of obtaining information is:

e (Costs(CONDITIONAL-SUBSCRIBE(d|c)) Pr(dmne) +
Pr(-c) = & + £ = 0.33 (Note that Ag-5 has esti-
mated the minimal costs of obtaining information on c

as 1%, i.e. the costs of subscribing on —c)
e Costs(SUBSCRIBE(—c)) = Pr(—c) = ;& = 0.267

e Costs(SUBSCRIBE(d)) = Pr(d) = % = 0.333

e Costs(QUERY(d)) = Pr(c) = 1+ = 0.733
This reveals that the plan which uses a conditional subscrip-
tion on ¢ and d only costs 0.33. A plan which uses a sub-
scription on —c and a subscription on d would be more costly,

i.e. 0.267+0.333 = 0.6. Hence, the optimally labelled deci-
sion tree becomes as follows:

0@ @ CONDITIONAL-SUBSCRIBE(d|c)
F T

[c4:i =F | [c4:i =T ]

Figure 5: Conditional subscriptions

Note that, in case the agent does not receive a notification
when it is conditionally subscribed to (c|d), it does not know
which of the two concepts c or d is actually false. Therefore,
it does not know whether to follow the left edge below node
c or the left edge below node d (Figure 5). In this case,
the choice is irrelevant, because both edges lead to the same
result. However, if the subtree under the left edge of c is
different than the subtree under the left edge of d, problems
can arise. Therefore, we restrict the use of conditional sub-
scriptions on (c|d) to those situations where —¢ and —d have
the same consequences.

4. EXPERIMENTAL VALIDATION

We have implemented a test environment, called Ubi-
smart, which allows developers to easily prototype a ubig-
uitous computing system corresponding to the architecture
discussed in this paper. In this way, hands-on experience can
be obtained with the design of these types of systems. Fur-
thermore, simulation experiments can be performed to study
the information flow between the different components. We
will first describe the Ubismart environment in more detail.
Then we will discuss the implementation of Ubismart and
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argue how our conceptual framework introduced in the pre-
vious sections translates to technology. Finally, we will dis-
cuss the experiments we have performed to test the different
communication optimization techniques that are introduced
in this paper.

4.1 Ubismart

A Ubismart experiment starts with an empty model which
can be populated with agents of different types. Following
[3], we distinguish between Sensors, Interpreters and PDA’s
which characterize different roles an agent can play in a
system. A sensor obtains information by sensing its envi-
ronment, an interpreter acquires information from one or
more sensors and derives a higher-level interpretation from
this and a PDA presents information to the user. Figure 6
shows a screenshot of a Ubismart experiment. The camera
icon represents a sensor, the computer icon represents an
interpreter and the PDA icon a PDA.
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Figure 6: Screen shot of Ubismart experiment

By clicking on an icon, a window is opened which can be
used to configure the agent. Most importantly, the ontology
of the agent is selected here. For sensors, also the location
of its sensory input must be specified. For PDA’s, also the
information needs must be specified, i.e. which information
the PDA is supposed to present to the user.

4.2 Building on existing technology

Ubismart is programmed in Java and is built upon a num-
ber of technologies which are currently receiving a lot of at-
tention in the AI community. In this section, we will briefly
discuss each of them and the role they play within Ubismart.

The ontologies are specified in OWL-DL which is a specific
species of the OWL language [15], a language for specifying
ontologies developed by the semantic web community. OWL
contains a number of nice features which make it particularly
suitable for our purposes. Firstly, it has a formal semantics
that corresponds to description logic, which is the formalism
we have used in the specification of our approach. Secondly,
it allows one ontology to import another ontology which is
useful for implementing layered ontologies. For example, the
layered ontology of Ag-4 would be constructed by importing
the ontologies cl, ¢2 and ¢3 and specifying additional state-
ments for the mapping between them. Thirdly, as the lan-
guage is based on XML, it contains namespaces, i.e. unique
identifiers which are used as prefixes of concept names to
avoid name clashes. In our implementation, namespaces are



useful to specify the context in which a concept is defined.

Whereas OWL nicely conforms to all kinds of syntactic
standards, the language is not very well readable for humans.
Therefore, we have used Protégé [9], which is a graphical
ontology editor containing an open source Java library for
OWL. To understand complex ubiquitous systems involving
multiple ontologies, proper visualization of ontologies is cru-
cial. We have applied the Protégé-OWL API to deal with
OWL models in Java and to graphically represent the on-
tologies involved in the user interface.

The agents must also be capable of performing ontologi-
cal reasoning, for example to derive the list of informative
concepts (Definition 1). We use FaCT++ [18] as a descrip-
tion logic reasoner. Because description logics are designed
to have nice computational properties, all reasoning in Ubi-
smart proceeds in a timely fashion.

The data which enters the system through the sensors
is modelled using a Baysian network. In this way, we can
specify the probability measure of the sensor inputs as well
as the probabilistic dependencies between them. We have
used Hugin [12] as a tool to both create the Baysian network
as well as to generate data that conforms to this network.

4.3 Experiments

The research reported in this paper is performed as part
of the ICIS project [1], a large national research project on
distributed information systems for crisis management. The
experiments we describe in this section are tailored to the
usage scenario of this project, i.e. effective computer assis-
tance for a major traffic accident in a tunnel. A modern
tunnel contains a wealth of sensors to monitor the composi-
tion of air, the presence of smoke, the number of vehicles in
the tunnel, the average driving speed, etc. The Ubismart ap-
proach can help the crisis workers gain access these sources
of information via their PDA’s, which could help to improve
their safety and efficiency.

In this paper, however, we do not intend to model the
full system which is needed for effective crisis management.
Rather, we will assume a simple set-up of sensors and com-
puters which suffices to study those aspects we have dis-
cussed in this paper, i.e. the reduction of communication
load by using decision trees, subscriptions and conditional
subscriptions.

The system contains six sensors, two interpreters and one
PDA (see Figure 6). Twelve different ontologies are in-
volved, among which the ontologies used by interpreters that
specify how sensor data can be used to derive higher forms
of knowledge. For example, lower forms of information such
as infrared (which indicates the presence of flames), smoke,
temperature, and carbon dioxide are used to derive a po-
tential fire. The amount of incoming traffic combined with
the amount of outgoing traffic is used to derive a traffic jam
inside the tunnel (which could be the sign of an accident).
We modelled the sensor data in a way we believed to be re-
alistic. For example, infrared level is almost always low; the
smoke level gets high more often due to car exhausts; heavy
traffic frequently occurs, and a dependency exists between
the probability that heavy traffic is entering the tunnel and
that heavy traffic is leaving the tunnel.

To demonstrate that the efficiency measures we have dis-
cussed in Section 3 actually reduce the information flow in
the system, we define the following strategies:

e stl: Query all informative concepts in random order
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(see Definition 1) until the information needs are sat-
isfied.

e st2: Query all informative concepts ordered by infor-
mation gain (see Definition 3)

e st3: Query or Subscribe to the informative concepts
ordered by information gain taking into account the
costs (see Definition 4, 5)

e st4d: Query, Subscribe or Conditionally subscribe to
the informative concepts ordered by information gain
taking into account the costs (see Definition 4, 5, 6)

We have performed four experiments with each of the
different strategies. Each experiment lasted for 1000 time
steps. We measured the average amount of sent messages
that was needed per time step before every component’s in-
formation needs were satisfied. In order to enable the agents
to form a reliable estimation of the costs of a subscription
(in st3 and st4), agents only decided whether to query or to
(conditionally) subscribe after a short training period (ap-
proximately 60 time steps).

We assumed that the probability measure of the incoming
sensor data remained equal throughout the whole experi-
ment. However, the technique can be easily extended to a
scenario where the probability measures change such that an
agent must repeatedly reassess its decision which interaction
mechanism to follow.

4.4 Results

The results of the experiment are shown in Figure 7.
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Figure 7: Results

As appears from this graph, every efficiency measure we
have introduced in Section 3 leads to a significant reduction
of communication load in the system. The overall reduc-
tion in communication load (comparing stl to st4) is over
80%. Obviously all communication in st1 and st2 was due
to Queries. In st3, more than two third of the communica-
tions was caused by the subscribe mechanism. In st4, the
conditional subscribe mechanism, which formed 1% of the
total communication flow, replaced a significant part of the
communications of the subscribe mechanism.

Of course, the quantitative results are dependent on the
particular ontologies used in the system and on the Baysian
networks which feed the sensors. Hence, we cannot say that
for all ubiquitous systems the reduction in communication
load will be 80%. However, the amount of messages re-
quired to satisfy the agents’ information needs will never be



more using st4 than using st1. This is because the commu-
nications that are generated by stl are also allowed by st4
and the agents only apply the more advanced communica-
tion techniques if this leads to increased efficiency. In most
systems however, the sensor data has a certain underlying
probability distribution and not all combinations of sensory
inputs are relevant for each agent’s information needs. In
these systems, the techniques discussed in this paper are
successful.

5. CONCLUSION

Over the last two decades, the field of MAS has given
birth to many applied research areas. Not only has the MAS
paradigm shaped the landscape of these applied research
fields, also have these applied research areas frequently re-
turned valuable insights for the MAS paradigm as a whole.
In this way, we believe that our research on communication
in ubiquitous computing is a valuable contribution to the
field of communication in MAS’s, in particular for those do-
mains where information is abound but where information
exchange is not free of costs.

In the introduction we have described the ultimate goal
of achieving serendipitous interoperability between ubiqui-
tous computing devices. Of course, we cannot claim to have
fully achieved this goal. Whether two agents understand
each other depends on whether their developers have inde-
pendently decided to use the same parts of the ontology.
It is expected that, when building software with ontologies
becomes common practice, every domain will have its own
standard and widely used ontologies. Agent developers will
be eager to equip their agents with a popular ontology to
make them interoperable with as many other agents as pos-
sible. Of course, this remains to be verified by practice.

Nevertheless, our architecture remains useful also when a
less ambitious form of interoperability is assumed and some
prior alignment of the ontologies has been performed by the
system developers. Although some central coordination of
the ontology-types of the agents is assumed in this scenario,
we still do not make any demands about which components
are present at run-time.

The main challenge we faced in this paper was that of
reducing the communication load between agents. Whereas
this issue has been frequently addressed from a network-
level perspective, we have taken a semantic perspective. We
have shown how the information from the agent’s ontolo-
gies and ABoxes can be used to reduce the communication
load. Our experiments have revealed that the benefits may
be considerable. In our opinion, these benefits outweigh the
extra implementation efforts in many MAS applications, in
particular ubiquitous computing applications.

In the future, we intend to perform experiments in a vir-
tual environment to study the effects of our approach on
human decision making in crisis management.
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