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ABSTRACT
Recent advances in technology allow multi-agent systems to be de-
ployed in cooperation with or as a service for humans. Typically,
those systems are designed assuming individually rational agents,
according to the principles of classical game theory. However, re-
search in the field of behavioral economics has shown that humans
are not purely self-interested: they strongly care about fairness.
Therefore, multi-agent systems that fail to take fairness into ac-
count, may not be sufficiently aligned with human expectations and
may not reach intended goals. In this paper, we present a computa-
tional model for achieving fairness in adaptive multi-agent systems.
The model uses a combination of Continuous Action Learning Au-
tomata and the Homo Egualis utility function. The novel contribu-
tion of our work is that this function is used in an explicit, compu-
tational manner. We show that results obtained by agents using this
model are compatible with experimental and analytical results on
human fairness, obtained in the field of behavioral economics.

Categories and Subject Descriptors
I.2.6 [Learning]; I.2.11 [Distributed Artificial Intelligence]; J.4
[Social and Behavioral Sciences]

General Terms
Algorithms, Design, Human Factors

Keywords
Fairness, Homo Egualis, Reinforcement Learning

1. INTRODUCTION
Modeling agents for a multi-agent system requires a thorough

understanding of the type and form of interactions with the environ-
ment and other agents in the system, including any humans. Since
many multi-agent systems are designed to interact with humans or
to operate on behalf of them, for instance in bargaining [12, 36],
resource distribution [10] and aircraft deicing [24], agents’ behav-
ior should often be aligned with human expectations. Otherwise,
agents may fail to reach their goals.

Usually, multi-agent systems are designed according to the prin-
ciples of a standard game-theoretical model, i.e., assuming individ-
ual rationality. However, recently, this strong assumption has been
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relaxed in various ways, for instance by including well-known con-
cepts such as bounded rationality [42] and social welfare [7, 8].
Research in the field of behavioral economics shows us that hu-
mans are not purely rational and self-interested; their decisions are
often based on considerations about others [4, 17, 18]. Therefore,
multi-agent systems using only standard game-theoretical princi-
ples risk being insufficiently aligned with human expectations and
may not obtain satisfactory payoffs. Prime examples known from
(evolutionary) game theory include games such as the Ultimatum
Game [17], in which purely rational players usually obtain a very
low payoff, and games such as the Public Goods Game [17, 41] or
the Traveler’s Dilemma [2], in which humans can actually obtain a
higher payoff by failing to find the rational solution, i.e., the Nash
equilibrium. More generally speaking, fairness may be important
in any problem domain in which the allocation of limited resources
plays an important role [7], as in the examples mentioned above.

Thus, designers of a variety of multi-agent systems should take
the human conception of fairness into account. If the motivations
behind human fairness are sufficiently understood and modeled, the
same motivations can be transferred to multi-agent systems. More
precisely, descriptive models of human fairness may be used as
a basis for prescriptive or computational models, used to control
agents in multi-agent systems in a way that guarantees alignment
with human expectations. This interesting track of research ties
in with the descriptive agenda formulated by Shoham [40] and the
objectives of evolutionary game theory [18, 44].

In this paper, we show that it is possible for multi-agent systems
to explicitly represent and utilize human fairness. We use a de-
scriptive model of human fairness called Homo Egualis [17] and
introduce this model into an adaptive multi-agent system driven by
Continuous Action Learning Automata. In contrast to earlier work
[46], in which agents were inspired by the Homo Egualis model to
obtain a fair distribution of limited resources, we use the model in
a direct, computational manner, to obtain the best possible align-
ment with human behavior. We study the concrete behavior of our
computational model in two game settings (more precisely, the Ul-
timatum and Nash Bargaining Game, extended for more players),
both of which represent common bargaining situations. We then
determine whether we can find and maintain solutions as calcu-
lated by behavioral economists – i.e., fair solutions that tie in with
human behavior.

In the remainder of this paper, we first discuss work in the area
of descriptive models of human fairness. Then, we look at compu-
tational or prescriptive modeling of fairness, first outlining existing
work in this area, then discussing the games we are looking at in
more detail, and finally presenting our own methodology. The pa-
per continues with a set of experiments, after which we discuss
results elaborately and conclude.
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2. MODELING HUMAN FAIRNESS
Already in the 1950’s people started investigating fairness, for

instance in the Nash Bargaining Game [27]. Recently, research in
behavioral economics and evolutionary game theory has examined
human behavior in various games, such as the Ultimatum Game
and the Public Goods Game (e.g., [3, 17]). In comparison to the
fair outcomes reached by human players, standard game-theoretical
models predict a very selfish (and suboptimal) outcome in these
games. The current state of the art describes and models three main
motivations for human fairness.

Inequity aversion. In [17], this is defined as follows: “Inequity
aversion means that people resist inequitable outcomes; i.e., they
are willing to give up some material payoff to move in the direction
of more equitable outcomes”. To model inequity aversion, an ex-
tension of the classical game theoretic actor is introduced, named
Homo Egualis [17, 18]. Homo Egualis agents are driven by the
following utility function:

ui = xi −
αi

n− 1

∑
xj>xi

(xj − xi)−
βi

n− 1

∑
xi>xj

(xi − xj) (1)

Here, ui is the utility of agent i ∈ {1, 2, . . . , n}. This utility is
calculated based on agent i’s own payoff, xi, and two terms related
to considerations on how this payoff compares to the payoffs xj
of other agents j: every agent i experiences a negative influence
on its utility for other agents j that have a higher payoff as well as
other agents that have a lower payoff. Thus, given its own payoff
xi, agent i obtains a maximum utility ui if ∀j : xj = xi.

Research with human subjects provides strong evidence that hu-
mans care more about inequity when doing worse than when doing
better in society [17]. Thus, in general, αi > βi is chosen. More-
over, the βi-parameter must be in the interval [0, 1]: for βi < 0,
agents would be striving for inequity, and for βi > 1, they would be
willing to “burn” some of their payoff in order to reduce inequity,
since simply reducing their payoff (without giving it to someone
else) already increases their utility value.

The Homo Egualis utility function has been shown to adequately
describe human behavior in various games, including the Ultima-
tum Game [17] and the Public Goods Game [9]. However, it should
be noted that there are also experiments in which human behavior
is not adequately captured by a utility model that is exclusively
based on inequity aversion and material interest [6]. Subjects may
also be motivated by additional information they may have about
each other, and by reciprocity: they become less cooperative in the
presence of defectors and sometimes punish unfair behavior. This
leads to two other models, viz. priority awareness and reciprocal
fairness, which will be outlined below.

Priority awareness. In [11], the relation between priorities and
fairness is studied. Experiments with human subjects show that
priorities matter strongly. For instance, priority mail is more expen-
sive than regular mail and should therefore be delivered sooner. To
examine the human response in such situations, an additional pa-
rameter is introduced in the two-player Ultimatum Game, denoting
the fact that one of the players is substantially more wealthy than
the other one – i.e., one player has a higher priority in receiving the
money at stake. It turns out that humans tend to give less money
to more wealthy opponents and accept less money from poor op-
ponents, and the other way around.This behavior is modeled in a
descriptive model called priority awareness.

Reciprocal fairness. The most important limitation of the inequity-
averse and priority-aware models is that they do not explicitly ex-

plain how fair behavior evolves with repeated interactions between
agents [17]. For instance, a group of people repeatedly playing the
same game may start by playing in an individually rational man-
ner, but for some reason may end up playing in a fair, coopera-
tive manner. Reciprocal fairness models aim at providing an an-
swer to the questions why and how this happens. The main idea
is that humans cooperate because of direct and indirect reciprocity
– here, direct means that a person is nice to someone else because
he expects something in return from this other person, and indirect
means that an agent is nice to someone else because he expects to
obtain something from a third person. It turns out that the opposite,
i.e., punishing someone who is nasty, has an even greater effect on
cooperation [41]. However, being nasty may be costly, and thus,
it would be individually rational to punish when we are sure to en-
counter the object of punishment again. Once again, humans do not
select the individually rational solution: even in one-shot interac-
tions, they consistently apply punishment if this is allowed. Since
this is clearly not of direct benefit to the punisher, this phenomenon
is referred to as altruistic punishment (see, e.g., [15, 16, 47]). In-
terestingly, the question thus seems to shift from ‘why do people
cooperate?’ to ‘why do people perform costly punishment?’. Var-
ious explanations have been analyzed from the perspective of evo-
lutionary game theory [18]. For instance, many researchers argue
that altruistic punishment only pays off when the reputation of the
players somehow becomes known to everyone [14, 25]. There are
also alternative explanations such as volunteering [20, 21], fair in-
tentions [13] or the topology of the network of interaction [38].

Although reciprocal fairness and priority awareness are interest-
ing descriptive models, our current work focuses on constructing a
computational model based on inequity aversion, since this model
can already explain many aspects of human behavior in bargaining
situations, our main topic of interest [9, 17].

3. COMPUTATIONAL FAIRNESS
In this section, we first discuss related work in computational

modeling of fairness. Then, we describe the games under study
and analyze their rational and fair solutions. Finally, we outline the
methodology for the design of our learning agents.

3.1 Related work
Here we discuss some contributions to prescriptive modeling of

human fairness. Many of these contributions were originally in-
tended to be descriptive, but were immediately verified in adaptive
agent systems and are thus also computational.

Cooperation in multi-agent games. Various researchers study
fairness using multi-agent games and claim that fairness (or, al-
ternatively, altruistic punishment) is achieved using internal agent
mechanisms such as reputation. To support this claim, the behav-
ior of agents driven by such systems is analyzed, mostly from the
perspective of evolutionary game theory [18]. In many papers, it
is shown that reputation can indeed increase cooperation [13, 14,
29, 32]. In addition to studies being performed on internal mecha-
nisms of agents, there are also studies focusing on external factors
that may lead to fairness. Most notably, researchers argue that hu-
mans do not interact on a random basis, as traditionally assumed by
population dynamics; instead, human interactions, like many other
natural phenomena, seem to be organized in scale-free or small-
world networks [38]. Moreover, humans are able to adjust their
social ties: in case they interact with a person they turn out not to
like, they may refuse to interact with this person again [37]. Indeed,
both ideas increase cooperation in adaptive multi-agent systems.
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Figure 1: Homo Egualis in the two-agent Ultimatum Game.
We illustrate the functional mapping between the payoff agent
1 keeps to himself (x1) and the utility experienced by this
agent (u1). Agent 2 can reject in case of a negative utility,
i.e., if the payoff agent 1 keeps to himself exceeds a threshold
t = α2

1+2α2
R. In this case, both agents receive 0.

Mechanism design. Economy-based collaboration mechanisms
are very popular in multi-agent research. Mechanism design [33]
studies the art of designing the rules of a game such that a spe-
cific outcome is achieved. As in the research outlined in this paper,
mechanism design assumes that players’ individually rational ac-
tions may not lead to a desired global outcome. Thus, designers set
up a structure in which each player has an incentive to behave as
intended. For a comprehensive overview, see [23].

From a computational point of view, some specific issues arise
in mechanism design. To start with, unlike with game theoretic
assumptions, software agents do not possess unbounded compu-
tational power to calculate equilibrium strategies. Theory focuses
on centralized mechanisms, but the infrastructure might be unable
to compute the outcome because the problem might be intractable.
Furthermore, communication between the agents is not necessarily
cost- or error-free and the system might be dynamic, with agents
entering or leaving the system over time. Current state-of-the-
art research in computational mechanism design addresses one or
more of these added computational issues [33].

Computational social choice. Another area in which fairness is
extensively studied in a computational manner is that of compu-
tational social choice (see [7, 8] for a comprehensive overview).
This area encompasses many interesting problems at the interface
of social choice theory and computer science, for instance fair divi-
sion in resource allocation [7]. In this case, fairness conditions and
mechanisms relate to the well-being of society as a whole. This
well-being can be measured in various ways, such as utilitarian
social welfare (i.e., maximized average payoff), egalitarian social
welfare (i.e., maximized minimal payoff), or Pareto-optimality. We
argue that another measure for the well-being of society as a whole
should be introduced, i.e., a definition of fairness that is backed up
by numerous well-documented experiments with human subjects.

Institutional and social norms. As a final contribution in this sec-
tion, we mention research in the area of norms and institutions [34,
45, 1]. There are interesting parallels between this research and the
research described in the previous sections. More precisely, norms
can be used as an environment-driven coordination mechanism, and
are an alternative to classical, agent-centered coordination. Espe-
cially in open multi-agent systems, i.e., systems in which agents

may be heterogeneous or designed by different parties, one cannot
assume that all agents pursue the same goal or have the same inter-
nal procedures. In fact, the goal of certain agents may be to disrupt
the system or to exploit the other agents in the system. In situations
such as these, norms may help, since they allow agents to make pre-
dictions about others and to direct their own actions toward desir-
able behavior. Enforcing norms is a complex problem, since norms
are usually represented in formalisms that have a declarative nature,
but should be translated to an operational implementation [45].

In natural societies, norms and associated punishments emerge
over time, either spontaneously or deliberately. Societies use so-
cial constraints (norms) to regulate relations among their members,
such as customs, traditions, regulations or laws. In addition to be-
ing institutional (i.e., enforced by the environment), norms may
also be appointed between individual agents; in this case, they are
referred to as social norms. Fairness may be reflected in both types
of norms. Studying the emergence of social norms in agent systems
is recognized as an important research track, since it may improve
coordination and functioning of the agent system [39].

3.2 Game analysis
In this work, we aim at computationally obtaining fair solutions

in two abstract games, modelling common bargaining situations.
More precisely, the games under study are the Ultimatum Game
and Nash Bargaining Game, extended for more players. Fair solu-
tions in our case are solutions that, according to research, are gen-
erally considered good (or fair) by humans. We will now present a
brief analysis of these two games.

Ultimatum Game. The Ultimatum Game [19] is a simple bargain-
ing game, played by two agents. The first agent proposes how to
divide a (rather small, e.g., $10) rewardR with the second agent. If
the second agent accepts this division, the first gets his demanded
payoff and the second gets the rest. If however the second agent
rejects, neither gets anything. The game is played only once, and
it is assumed that the agents have not previously communicated,
i.e., they did not have the opportunity to negotiate with or learn
from eachother. The individually rational solution (i.e., the Nash
equilibrium) to the Ultimatum Game is for the first agent to leave
the smallest positive payoff to the other agent. After all, the other
agent can then choose between receiving this payoff by agreeing,
or receiving nothing by rejecting. Clearly, a small positive payoff
is rationally preferable over no payoff at all.

However, research with human subjects indicates that humans
usually do not choose the individually rational solution. Hardly
any first agent proposes offers that lead to large differences in pay-
off between the agents, and hardly any second agent accepts such
proposals. In [31], many available experiments with humans are
analyzed. It is indicated that the average proposal in the two-agent
Ultimatum Game is about 40%, with 16% of the proposals being
rejected by the other agent. Our own experiments confirm this [11].
Cross-cultural studies of small cultures have shown that these num-
bers are not universal. However, independent of culture, the indi-
vidually rational solution is hardly ever observed [22].

Using the Homo Egualis utility function with two agents, [17]
calculates that the optimal payoff for agent 1 depends on two fac-
tors, viz. β1 and α2. More precisely, in the two-agent game, we
have n = 2 and x2 = R − x1. Thus, the Egualis function can be
rewritten for both agents as:

ui = xi − αi max (R− 2xi, 0)− βi max (2xi −R, 0) (2)

If β1 > 0.5, agent 1’s utility u1 will decrease with values of x1 >
0.5R, since 2x1 − R > 0. This implies that agent 1 will give
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0.5R to agent 2 if β1 > 0.5. If β1 < 0.5, agent 1’s utility is
not decreased by increasing his payoff x1. The agent would like
to keep everything to himself. However, he must ensure agent 2
receives a payoff that is not rejected. Agent 2 will reject iff x2 −
α2 (R− 2x2) ≤ 0. Equivalently, we obtain:

x2 ≥
α2

1 + 2α2
·R→ agent 2 accepts (3)

Note that limα2→∞ = 0.5R. Thus, agent 2 can expect to obtain at
most half of the total reward. For additional clarity, the functional
mapping between x1 and u1 is illustrated in Figure 1. From this fig-
ure, it is clear that the utility function for agent 1 is not continuous:
there is a discontinuity immediately after the maximum.

Multi-agent Ultimatum Game. Usually, the Ultimatum Game is
played with only two agents. As we are interested in a multi-agent
perspective, we also analyze the role of inequity aversion in Ulti-
matum Games with more than two agents. There are various ex-
tensions of the Ultimatum Game to more agents, e.g., introducing
proposer competition or responder competition. We propose a dif-
ferent extension. More precisely, we define a game in which n− 1
agents one by one take a portion of the rewardR. The last agent, n,
receives what is left. In this case, we can calculate that the worst-
performing agent i will not reject as long as:

xi ≥
αi

αin+ n− 1
·R (4)

Moreover, given that ∀j : i 6= j → xi < xj , and assuming that
∀j : αj > βi, we can calculate in a straightforward manner that the
utility value ui of the worst-performing agent i will always be the
lowest one. Thus, if agent i does not reject, neither will any other
agent. For instance, with three agents and α3 = 0.6, we obtain
that the last agent (which can be assumed to perform worst of all
in the Ultimatum Game) needs to obtain at least 0.1578R in order
to accept the deal at hand. As long as the other agents obtain more,
they will accept any deal.

Nash Bargaining Game. The Nash Bargaining Game [28] is tra-
ditionally played by two agents, but can easily be extended to more
agents. In this game, all agents simultaneously determine how
much payoff xi they are going to claim from a common reward
R. If

∑
i xi > R, everyone receives 0. Otherwise, everyone re-

ceives what they have asked for. Note that payoffs may not sum up
to R, i.e., a Pareto-optimal solution is not guaranteed. The game
has many Nash equilibria, including one where all agents request
the whole R. The common human solution to this game is an even
split [30, 35]. Inequity aversion may increase the ability of agents
to find such a fair solution. Thus, we give agents an additional ac-
tion, i.e., even if the payoff distribution was successful, agents may
compare their payoff with that of others. Then, if their payoff is
too small, they may reject, once again leading to all agents obtain-
ing a payoff of 0. To decide whether their payoff is satisfactory,
agents use the Homo Egualis utility function, as in the Ultimatum
Game. Thus, we can perform the same analysis as in the Ultimatum
Game and obtain that any solution for which every agent obtains at
least αi

αin+n−1
· R is not rejected. For example, with n = 2 and

α1 = α2 = 0.6, every agent should obtain at least 0.27R.

3.3 Methodology
In our approach, we aim at simple, learning agents that are suffi-

ciently modelled after humans. To this end, we use a combination
of the Homo Egualis utility function (in short, Egualis) and Contin-
uous Action Learning Automata (CALA). As has been mentioned
above, Egualis provides the necessary connection between the ar-

tificial agents and the human way of thinking in games such as the
Ultimatum Game. CALA facilitate the learning process, based on
repeated interactions with a specific environment (e.g., a game).
We will now briefly discuss the components of our agents.

Learning Automata. Originally, learning automata were devel-
oped for learning optimal policies in single-state problems with dis-
crete action spaces [26]. An automaton is assumed to be situated in
an environment, in which it executes a certain action x from its non-
infinite set of possible actions A. This action x is observed by the
environment and leads to a feedback β (x) to the automaton. The
automaton uses this feedback to update the probability that action x
will be chosen again. Thus, a learning automaton is a simple rein-
forcement learner. With multiple (i.e., n) learning automata, every
automaton i receives feedback βi (x̄), resulting from the joint ac-
tion x̄ = (x1, . . . , xn), but is not informed about the actions of the
other automata. Nonetheless, with certain update schemes, learn-
ing automata have been shown to converge to an equilibrium point,
e.g., a Nash equilibrium.

Continuous Action Learning Automata. CALA [43] are learning
automata developed for problems with continuous action spaces.
CALA are essentially function optimizers; for every action a from
their continuous, one-dimensional action space A, they receive a
feedback β (x) – the goal is to optimize this feedback. CALA have
a proven convergence to (local) optima, given that the feedback
function β (x) is sufficiently smooth. The advantage of CALA over
other reinforcement techniques, is that it is not necessary to dis-
cretize continuous action spaces; actions are simply real numbers.
Moreover, they are much less complicated to implement and an-
alyze than various other multi-agent reinforcement techniques for
continuous action spaces [44].

Essentially, CALA maintain a Gaussian distribution from which
actions are pulled. In contrast to standard learning automata, CALA
require feedback on two actions, being the action corresponding to
the mean µ of the Gaussian distribution, and the action correspond-
ing to a sample x, taken from this distribution. These actions lead
to a feedback β (µ) and β (x), respectively, and in turn, this feed-
back is used to update the probability distribution’s µ and σ. More
precisely, the update formula for CALA can be written as:

µ = µ+ λ
β (x)− β (µ)

Φ (σ)

x− µ
Φ (σ)

(5)

σ = σ+λ
β (x)− β (µ)

Φ (σ)

[(
x− µ
Φ (σ)

)2

− 1

]
−λK (σ − σL) (6)

In this equation, λ represents the learning rate, set to 0.05 in our
case; K represents a large constant driving down σ, which in our
case is set to 0.1. The variance σ is kept above a threshold σL (set
to 10−5 in our case), to keep calculations tractable even in case of
(near-)convergence. This is implemented using the function:

Φ (σ) = max (σ, σL) (7)

The intuition behind the update formula is quite straightforward.
First, if the signs of β (x) − β (µ) and x − µ match, µ is in-
creased, otherwise it is decreased. This makes sense, given a suf-
ficiently smooth feedback function: for instance, if x > µ but
β (x) < β (µ), we can expect that the optimum is located below
the current µ. Second, the variance is adapted depending on how
far x is from µ. The term ( x−µ

Φ(σ)
)2 − 1 becomes positive iff x is

more than a standard deviation away from µ. In this case, if x is a
better action than µ, σ is increased to make the automaton more ex-
plorative. Otherwise, σ is decreased to decrease the probability that
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the automaton will select x again. If x is not more than a standard
deviation away from µ, this behavior is reversed: a ‘bad’ action x
close to µ indicates that the automaton might need to explore more,
whereas a ‘good’ action x close to µ indicates that the optimum
might be near. Using this update function, CALA rather quickly
converge to a (local) optimum. With multiple (e.g., n) learning
automata, every automaton i receives feedback with respect to the
joint actions, respectively βi (µ̄) and βi (x̄). In this case, there still
is convergence to a (local) optimum [43].

Homo Egualis. As mentioned above, we aim at creating agents
that can learn ‘human’ behavior. The Homo Egualis utility func-
tion is a satisfactory model of human behavior in various games,
including the games we are letting our agents play, i.e., the Ultima-
tum Game and the Nash Bargaining Game. Therefore, we use this
utility function in our learning agents. More precisely, we use a
four-step process. First, every agent i is equiped with a Continuous
Action Learning Automaton. This automaton selects its actions µi
and xi, indicating how much payoff the agent requests. Second,
the environment evaluates the joint actions µ̄ and x̄ and gives feed-
back βi (µ̄) and βi (x̄), using the rules of the game at hand. In
the Ultimatum Game, every agent receives what it has asked for,
unless there is not enough reward remaining due to the actions of
preceding agents. In this case, the agent receives what is remain-
ing. In the Nash Bargaining Game, everyone receives what they
have asked for, unless the sum of their requests exceeds R. In that
case, everyone receives 0. Third, the environment’s feedback is
mapped to utility values ui (µ̄) and ui (x̄), using the Egualis func-
tion, possibly including punishment (i.e., if any agent experiences
a negative utility, all utilities are set to 0). Finally, the utility values
are reported to the learning automata, which subsequently update
their strategies. Note that the n-player Ultimatum Game requires
n − 1 automata, whereas the n-player Nash Bargaining Game re-
quires n automata. In the Ultimatum Game, the last agent’s behav-
ior is static: he simply rejects if his utility drops below 0. In the
Nash Bargaining Game, all agents are the same.

We use the same parameters for the Homo Egualis function (i.e.,
αi and βi) for all agents participating. This makes the analysis
and verification of outcomes easier, especially with many agents.
Results obtained by giving each agent i private αi- and βi-values
will be highly similar to our results, but calculating an expected or
optimal solution to compare these results with, is more difficult and
requires various constraints on the parameters.

Extensions to the learning rule. CALA have a proven conver-
gence to a local optimum in the case of smooth and continuous
feedback functions [43]. However, as is clearly visible in Figure 1,
the feedback function we use (i.e., Egualis) displays a discontinu-
ity: maximum feedback is obtained at a certain value, after which
the feedback immediately drops to 0 (if punishment is possible).
This leads to two problems, both of which need to be addressed
without affecting the convergence of CALA.

The first problem arises when the automaton is near the opti-
mum, and either its x-action or its µ-action is slightly too high. As
can be seen from Figure 1, one of the actions will then receive (al-
most) optimal feedback, whereas the other action receives a feed-
back of 0. Due to the CALA update function, the µ of the under-
lying Gaussian will therefore shift drastically (e.g., we observed
values of−106). As this is a highly undesirable effect, we chose to
limit the terms of the update function. More precisely, we limit the
term β (x)− β (µ) to the interval [−Φ (σ),Φ (σ)]. In essence, this
addition has the same effect as a variable learning rate, which is not
uncommon in literature (e.g., [5]). In normal cases, i.e., when the

automaton is not near the discontinuity, the limit is hardly, if ever,
exceeded. Near the discontinuity, it prevents drastic shifts. This
addition to the learning rule therefore does not affect convergence.

The second problem arises when both the µ-action and the x-
action of the automaton yield a feedback of 0 – i.e., the automaton
receives no useful feedback at all. In this case, due to the CALA up-
date function, the underlying Gaussian’s µ and σ are not changed.
Therefore, in the next learning round, there is a high probability
that the automaton again receives a feedback of 0 for both actions.
In other words, if this happens, the automaton is very likely to get
stuck. We address this issue by including the knowledge that, if
both µ and x yield a feedback of 0, the lowest action was nonethe-
less the best one. Therefore, we set β (x) = max (β (x) , µ− x),
essentially driving the automaton’s µ downward. Once again, in
normal cases, the update function remains unchanged. In cases
where the automaton receives no useful feedback, it can still up-
date the parameters of the underlying Gaussian.

4. EXPERIMENTS AND RESULTS
We performed a set of experiments, which are summarized in Ta-

ble 1. The agents used CALA for learning and the Homo Egualis
utility function was applied to the feedback from the environment.
The CALA parameters were set as outlined above. In addition, the
agents started from an initial solution of equal sharing, i.e., µ for all
n agents’ CALA was set to R · 1

n
(σ = 0.1µ). In the experiments,

we used R = 100. All experiments lasted for 10000 rounds, were
run 1000 times, and the Egualis parameters were set to α = 0.6
and β = 0.3.1 The number of agents varied between 2, 3, 4, 10 and
100, as denoted under ‘Agents’. Whether or not punishment could
be used by the agents is indicated in the ‘Pun’ column (i.e., with
punishment enabled, agents could reject a solution for which they
obtained a negative utility). The analytically determined solution,
i.e., the solution resulting from playing optimally, which depends
on the aforementioned columns, is indicated in the ‘Solution’ col-
umn (either the exact solution or the conditions that a solution must
satisfy, if any). Whether or not the extended learning rule was used
in the CALA, is indicated under ‘Ext. LR.’.

Next, we show experimental results (average payoff and stan-
dard deviation; the values are separated per agent by a ‘/’). In every
case, we also measure how many times a valid solution was found
and subsequently maintained over the full 10000 rounds (results
are displayed under ‘Maint.’). Finally, we indicate whether the ex-
periment can be considered a success; more precisely, we consider
the experiment to be successful (+) if a valid solution was found
and maintained in all experimental runs. An experiment is a fail-
ure (-) if a solution was not found and/or maintained in any run.
Otherwise, i.e., a solution was found but not always maintained, an
experiment was neither a success, nor a failure (◦).

5. DISCUSSION
In this section, we discuss our results more elaborately. More-

over, we assess whether starting with a different initial solution than
an equal split makes a difference. Due to the architecture used, it is
not possible to start with a truly random initial solution; if any of the
agents already rejects the initial solution, there is no information on
which the learning process can be based. Thus, the CALA remain
in this invalid initial solution, or, with the learning rule extensions,
they all learn to request a payoff of 0. Therefore, we generate ran-
dom, but valid initial solutions to determine how these affect the
1In the ‘Game’ column, we indicate experiments where different
settings were used (1: β=0.7; 2: 200 experimental runs and λ and
σL lowered by a factor 10).
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Games with 2 agents (a)

Game Agents Pun. Solution Ext. LR. Average St. Dev. Maint. Result

UG1 2 no 50.0/50.0 no 50.1/49.9 0.2/0.2 100% +
UG 2 no 100.0/0.0 no 100.0/0.0 0.0/0.0 100% +
UG 2 yes 72.7/27.2 no 72.3/27.7 5.5/5.5 100% +
NBG 2 yes/no all≥27.2 no 46.5/46.6 2.9/2.7 0% -
NBG 2 yes/no all≥27.2 yes 48.2/48.2 2.4/2.4 100% +

Games with 3 to 10 agents (b)

Game Agents Pun. Solution Ext. LR. Average St. Dev. Maint. Result
UG 3 yes all≥15.8 yes 41.0/41.0/18.0 1.6/1.5/1.7 100% +
UG 4 yes all≥11.1 yes 29.0/29.0/29.0/13.0 1.5/1.5/1.5/1.6 100% +
UG 10 yes all≥4.0 yes 10.5/10.5/.../6.7 1.1/1.1/.../2.0 100% +
NBG 3 yes all≥15.8 yes 33.2/33.1/33.3 1.7/1.7/1.7 100% +
NBG 4 yes all≥11.1 yes 24.5/24.5/24.5/24.5 1.6/1.6/1.6/1.6 100% +
NBG 10 yes all≥4.0 yes 9.8/9.8/.../9.8 1.2/1.2/.../1.2 100% +
NBG 3 no any yes 33.2/33.1/33.1 1.9/1.9/1.9 93% ◦
NBG 4 no any yes 25.0/25.0/25.0/25.0 1.1/1.1/1.1/1.1 93% ◦
NBG 10 no any yes 10.0/10.0/.../10.0 0.9/0.9/.../0.9 100% +

Games with 100 agents (c)

Game Agents Pun. Solution Ext. LR. Average St. Dev. Maint. Result

UG2 100 yes all≥0.4 yes 0.98/0.98/.../2.2 0.3/0.4/.../1.7 100% +
NBG2 100 yes all≥0.4 yes 0.96/0.92/.../1.0 0.3/0.4/.../0.4 100% +
NBG2 100 no any yes 0.92/0.96/.../0.9 0.3/0.3/.../0.3 100% +

Table 1: Results of our experiments in the Ultimatum Game (UG) and Nash Bargaining Game (NBG).

learning process. Since generating such a solution essentially en-
tails solving a constraint satisfaction problem, we did this only for
2, 3, 4 and 10 agents.

Two-agent Ultimatum Game. In the two-agent Ultimatum Game,
we use only one learning automaton; the last agent’s behavior is
static. Results are summarized in Table 1(a). In the first experi-
ment, we set β = 0.7 and α = 0.6. The first setting theoretically
ensures that agent 1 gives 50% to agent 2, even in the absence of
punishment. Initially, we therefore disable the punishment option.
The automaton maintains to offer 50%, without any enforcement
(i.e., punishment); with punishment, exactly the same happens (and
punishment is never needed). When a different starting point is
chosen than the 50-50 split, the automaton also converges to this
solution. In the second experiment, we use β = 0.3 and α = 0.6
and disable the punishment option. In the absence of punishment,
the first agent can simply take the whole reward for himself, as pre-
dicted also by [17]. In the third experiment, we therefore use the
same settings, but with punishment enabled, i.e., if the second agent
obtains a utility value below 0, he rejects, leading to a payoff of 0
for both agents. With β = 0.3 and α = 0.6, [17] predicts a payoff
fraction of 0.6

1+2×0.6
≈ 0.27 being given to the second agent. The

learning process turns out to be robust with respect to the parame-
ters used. As long as the initial setting is a valid solution, the same
final solution is found. Thus, we see that our agents are capable of
learning to play the two-player Ultimatum Game in a ‘human’ way.

Two-agent Nash Bargaining Game. In the two-player case, we
need two learning agents and therefore also two CALA. Whenever
the joint action of the CALA results in a summed payoff higher
than R, both agents receive 0. Whenever the summed payoff is at
most R, the Egualis function is applied to determine whether each

agent considers their respective payoff to be fair. If not, they can
choose to give both themselves and the other agent a payoff of 0.
Results are summarized in Table 1(a). In the first experiment, we
use β = 0.3 and α = 0.6, enabling punishment. Clearly, any so-
lution yielding a payoff of at least 27 for both agents is acceptable
using the Egualis function. As can be seen in Table 1, the CALA
do not learn a solution now. Therefore, in the second experiment,
we introduce the extended learning rule, as outlined in Section 3.3.
Typical results obtained using this extended rule are displayed in
Figure 2. This time, the CALA find and maintain the correct solu-
tion; note that the solution is nearly Pareto-optimal as well as close
to a 50-50 split, as predicted in literature. We observed that pun-
ishment was never used by the agents, even though it was possible.
Choosing a valid starting point different than the equal split has no
significant effect on outcomes. Thus, with the extended learning
rule, a ‘human’ solution to the two-player Nash Bargaining Game
can be learned.

Multi-agent Ultimatum Game. As has been outlined before, in
the Ultimatum Game, agents take turns in taking some of the re-
ward R for themselves. The last agent in the row gets what is left.
Results are summarized in Table 1(b). As with the Nash Bargain-
ing Game, using the standard settings of CALA for the multi-agent
Ultimatum Game turns out to lead to invalid solutions. For this
reason, we introduce the extended learning rule. In this case, the
CALA can indeed learn to obtain and maintain a valid solution.
Typical results for a three-player game are shown in Figure 3. We
see that the last agent’s utility is quickly decreased to a low posi-
tive value by keeping approximately 16 for this agent. The other
two agents obtain an equal split of the remaining 84. Note that
the first agent could have exploited the other agents; he could have
obtained approximately 64 without the other two agents rejecting.
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However, since all agents are learning simultaneously, both agent
1 and agent 2 are increasing their payoffs at the same time; at a
certain point, they thus have reduced agent 3’s utility value to 0.
Then, if any agent wishes to increase his payoff, agent 3 will re-
ject. Thus, agent 1 cannot exploit agent 2 unless agent 2 willingly
lowers his payoff, which simply will not happen.2 When we use a
valid initial solution different from an equal split, we see that agent
1 may obtain a higher payoff than agent 2, if his payoff was al-
ready higher in the initial solution. However, with a set of 1000
randomly generated valid initial solutions, we see that the differ-
ence is small (i.e., agent 1 obtains 42 instead of 41 – the standard
deviation increases from 1.6 to 4). Results generalize well over an
increasing number of agents; with 4 and 10 agents, a valid solution
in which the last agent is ‘exploited’ is found and maintained every
time, with the other agents achieving an equal split. Again, choos-
ing random valid initial solutions instead of an equal split does not
affect results in a noticable manner. With 100 agents, the solution is
successfully maintained in only 81% of the experimental runs with
standard settings for the CALA’s parameters. Since agents now
each have to obtain a much smaller portion of the reward R, espe-
cially the learning rate could be lowered to increase convergence.
Indeed, with a lower learning rate and a lower σL (i.e., ten times
lower), every experimental run is a success (see Table 1(c)). Note
that, in case of success, the last agent receives a rather high pay-
off, due to the fact that the other 99 agents can only approximate
the optimal payoff of 1. Thus, we can conclude that a multi-agent
Ultimatum Game poses no difficulties for our agent architecture; a
‘human’ solution can always be found.

Multi-agent Nash Bargaining Game. As with the Ultimatum
Game, we scale up our problem to include more agents. Results
for this experiment are summarized in Table 1(b). We immediately
start with CALA that include the extended learning rule. With 3,
4 and 10 agents and punishment possible, a valid solution is al-
ways found and maintained. This solution is always very close to
a Pareto-optimal equal split, as can be seen in Table 1. The same
happens in case we use a random valid initial solution instead of an
equal split. With 100 agents, a valid solution is often found, but not
maintained in about half of the cases. Once again, this is caused
by the fact that we did not adapt the learning rate of the CALA.
Lowering the learning rate and σL with a factor 10, we can achieve
success in every experiment (see Table 1(c)). Thus, a multi-agent
Nash Bargaining Game can indeed be played in a ‘human’ way by
our agent architecture.

Multi-agent Nash Bargaining Game without punishment. Since
we saw that in the two-agent case, the Nash Bargaining Game was
played without any agent punishing, we assessed the effects of dis-
abling the punishment option in this game. Results are summarized
in the last three rows of Table 1(b). Interestingly, the game can be
often solved if agents do not have the possibility to punish, both
in initial equal-split solutions as in valid random initial solutions.
However, when we add the possibility to punish, solutions are eas-
ier to be found and maintained because agents are slightly more
conservative (i.e., less greedy). It is quite easy to see why this hap-
pens: due to the rules of the game, an overly greedy agent is still
punished, if not by other agents, then by the environment. There-
fore, regardless of the initial solution, an agent increasing his own

2Research with humans has shown that only a minority of human
subjects actually exploits the other player(s). For instance, in [11],
we saw that people tend to give away 50% even if the stakes are
very high. Thus, the fact that the first agent does not exploit only
makes it more ‘human’.
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Figure 2: Two agents playing the Nash Bargaining Game; pay-
offs (left) and utilities (right) evolve over time.
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Figure 3: Three agents playing the Ultimatum Game; payoffs
(left) and utilities (right) evolve over time.

payoff too much is immediately given negative feedback. As a re-
sult, valid solutions are found and maintained only slightly less of-
ten with punishment disabled than with punishment enabled. More-
over, it is interesting to note that solutions are on average closer to a
Pareto-optimal solution. Once again, with 100 agents, lowering the
learning rate and σL with a factor 10 increases the number of exper-
iments that were finished successfully (see Table 1(c)). Thus, we
see that the possibility to punish is not really necessary for CALA
to learn ‘human’ solutions for the Nash Bargaining Game, but it
does increase agents’ ability to learn such solutions.

6. CONCLUSION
In this paper, we presented our work in the area of human-inspired

fairness in adaptive multi-agent systems. In essence, there are two
distinct reasons for incorporating fairness. First, multi-agent sys-
tems often perform tasks for humans, or even interact with them.
Since research shows that humans are not individually rational, the
classical, individually rational agent model may not be sufficient to
obtain alignment with human expectations. Second, there are mul-
tiple examples of multi-agent interactions in which following an
individually rational strategy actually leads to bad results. Strate-
gies that consider concepts such as social welfare or fairness have
been shown to perform better.

We presented a straightforward architecture which enables the
inclusion of a descriptive model of human fairness, i.e., the inequity-
averse Homo Egualis utility function, into an adaptive multi-agent
system, driven by Continuous Action Learning Automata. Homo
Egualis was used in an explicit, computational manner, in contrast
to earlier work [46], in which the agents’ architecture is only in-
spired by Homo Egualis. The resulting system has been used to
learn solutions for the Ultimatum Game and the Nash Bargaining
Game, both of which are abstract models of actual bargaining in-
teractions. From our experiments, we can draw two conclusions,
viz. (1) using this adaptive agent system, we can find and maintain
valid solutions to both games under study, even with many agents
learning together; (2) the solutions found by the agents conform to
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solutions found using an existing descriptive model, which in turn
adequately conforms to solutions found using human subjects. The
proposed methodology therefore presents a possibility to integrate
explicitly human-inspired fairness in adaptive multi-agent systems.

In future work, we wish to apply our findings in actual applica-
tions of multi-agent systems in which fairness is important. More
precisely, we wish to look at fairness in scheduling of aircraft de-
icing [24]. Moreover, the Homo Egualis model (and thus, our adap-
tive agents) should be extended by including notions such as bar-
gaining powers, priorities and reputation, which have been shown
to be important for humans [11].
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