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ABSTRACT
Information-based agency is founded on two observations:
everything in an agent’s world model is uncertain, and ev-
erything that an agent communicates gives away valuable
information. The agent’s deliberative mechanism manages
interaction using plans and strategies in the context of the
relationships the agent has with other agents, and is the
means by which those relationships develop.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Theory
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1. INTRODUCTION
This paper is in the area labelled: information-based agency
[14]. An information-based agent has an identity, values,
needs, plans and strategies all of which are expressed using
a fixed ontology in probabilistic logic for internal represen-
tation and in an illocutionary language [13] for communica-
tion. All of the forgoing is represented in the agent’s delib-
erative machinery. We assume that such an agent resides
in a electronic institution [1] and is aware of the prevailing
norms and interaction protocols. In line with our “Informa-
tion Principle” [12], an information-based agent makes no a
priori assumptions about the states of the world or the other
agents in it — these are represented in a world model, Mt,
that is inferred solely from the messages that it receives.

The world model, Mt, is a set of probability distributions
for a set of random variables each of which represents the
agent’s expectations about some point of interest about the
world or the other agents in it. We build a history of interac-
tion by noting each commitment made (commitments to act,
commitments to the truth of information or to the validity
of an argument), and by relating each of them to subsequent
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observations of what occurs. Tools from information theory
are then used to summarise these historic (commitment, ob-
servation) pairs — in this way we have defined models of
trust, honour, reliability and reputation [13]. Further we
have defined the intimacy and balance of both dialogues
and relationships [15] in terms of our ‘LOGIC’ illocution-
ary framework. All of these notions make no presumption
that our agents will align themselves with any particular
strategy.

The information-based approach is concerned with mod-
elling the speaker by observing the interaction process. In
contrast the utilitarian approach is primarily concerned with
outcomes, in particular with attempting to achieve the most
preferred outcome. An information-based agent may oper-
ate as a utility optimiser if its preferences are known outright
— e.g. if its preferences are expressed in terms of the ontol-
ogy independent of any world or agent states. For example,
it may prefer to pay less than pay more. If its preferences
involve world or agent states then they will be modelled as
probability distributions in Mt, where they can support a
utilitarian strategy provided that the agent’s belief in them
is sufficiently strong.

We have described argumentation strategies. For exam-
ple, the equitable information gain strategy attempts to re-
ply to an utterance with a response that will give the oppo-
nent expected information gain that is similar to that which
the agent observed when the utterance was received. This
strategy may be used in a rich argumentation setting to
assist an agent to choose from a set of possible responses.
In the LOGIC negotiation framework [15] we show how in-
equitable information gain in the responses may be used to
gradually develop a relationship over repeated interaction
rounds. Estimates of information gain across five classes of
illocutionary acts form the basis for an on-going relationship-
building strategy that attempts to move the relationship to-
wards a ‘relationship target’. It is guided by estimates of
intimacy (the current degree of ‘closeness’ in the relation-
ship) and of balance (the observed degree of ‘fairness’ in the
exchanges).

In related papers we have focused on argumentation strate-
gies, trust and honour, and have simply assumed that the
agent has a kernel deliberative system. In this paper we
describe the deliberative system for an information-based
agent, and show how it may accommodate utilitarian think-
ing if required.

Information-based agency is founded on two premises. Fi-
rst, everything in its world model is uncertain. Second, ev-
erything that an agent communicates gives away valuable
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information. Information, including arguments, may have
no particular utilitarian value, and so may not readily be
accommodated by an agent’s utilitarian machinery. We ar-
gue that information should not only be valued in terms of
the agent’s preferences. We discuss uncertainty in Section 2.
Section 3 discusses a utilitarian approach and an informa-
tion approach to valuing information. Section 4 describes
the kernel of the deliberative mechanism, that is employed
in a discussion of strategies in Section 5, and Section 6 con-
cludes.

2. UNCERTAINTY
This discussion is from the point of view of an information-
based agent α in a multiagent system where α interacts
with negotiating agents, βi, information providing agents,
θj , and an institutional agent, ξ, that represents the insti-
tution where we assume that all interactions happen [1]:
{α, β1, . . . , βo, ξ, θ1, . . . , θt}.

A pair of agents interact by passing messages to each
other. We assume that they share a common ontology and
that their interactions are organised into dialogues, where a
dialogue is a finite sequence of inter-related utterances. A
commitment is a consequence of an utterance by an agent
that contains a promise that the world will be in some state
in the future. A contract is a pair of commitments exchanged
between a pair1 of agents. The set of all dialogues between
two agents up to the present is their relationship.

We represent commitments using conditional probabili-
ties, P(ϕ′|ϕ). If ϕ is a commitment that is expected to be
fulfilled to some degree, and ϕ′ the corresponding subse-
quent enactment then P(ϕ′|ϕ) is the probability that ϕ′ will
be observed given that ϕ was expected. For example, if ϕ is
a commitment signed by β then the conditional probability,
P(ϕ′|ϕ), is an estimate of α’s expectation of β’s execution
of that commitment, and the uncertainty in β’s execution of
his commitments is the entropy H(ϕ′|ϕ).

In a multiagent system it is natural to measure the un-
certainty of a random variable in terms of the cost, in some
sense, of communicating the true value of it from one agent
to another. One such sense is the lower bound on the number
of binary questions that are always guaranteed to discover
the true value of a random variable, X; this is given by the
entropy, H(X) =

P
i−pi log pi, where the pi are values of

the probability mass function for X, [10].
Agent α’s world model, Mt, at time t is a set of ran-

dom variables, Mt = {Xi, . . . , Xn} each representing an
aspect of the world that α is interested in. In the ab-
sence of new information the integrity of Mt should de-
crease in time. α may have background knowledge con-
cerning the expected probability mass function for a vari-
able X as t → ∞. Such background knowledge is repre-
sented as a decay limit distribution. Given a probability
mass function, P(Xi), for variable Xi, and a decay limit dis-
tribution D(Xi): Pt+1(Xi) = di(D(Xi),Pt(Xi)), where di is
the decay function for the Xi satisfying the property that
limt→∞ Pt(Xi) = D(Xi). Either the decay function or the
decay limit distribution could also be a function of time:
dt

i and Dt(Xi) [14]. For simplicity we use a linear decay
function; P(Xi) decays by:

Pt+1(Xi) = λ× D(Xi) + (1− λ)× Pt(Xi) (1)

1Sets of commitments between more than two agents are
not considered here.

for some constant λ: 0 < λ < 1, where λ is the decay rate.
Suppose that α receives some new information in an utter-

ance u from agent β at time t where u states that something
is so with some probability z, and suppose that α attaches
an epistemic belief Rt(α, β, u) to u — this probability re-
flects α’s level of personal caution. [14] gives a method for
estimating Rt(α, β, u) on the basis of observation. [14] also
describes how each of α’s active plans, s, contains construc-
tors for a set of distributions {Xi} ∈ Mt together with as-
sociated update functions, Js(·), such that JXi

s (u) is a set of
linear constraints on the posterior distribution for Xi. Let
Pt(Xi,(u)) be the distribution with minimum relative entropy
with respect to the prior Pt(Xi) subject to the constraints
JXi

s (u). Then let Pt(Xi,(u)) =

Rt(α, β, u)× Pt(Xi,(u)) + (1− Rt(α, β, u))× Pt(Xi,(u))

The posterior Pt+1(Xi) is Pt(Xi,(u)) as long as Pt(Xi,(u))

is “more interesting2” than Pt(Xi), otherwise it is the prior.
This process takes account of both the belief Rt(α, β, u), and
the probability z that will be represented in JXi

s (u). The
update functions, J , are the bridge between the illocutionary
language and the agent’s world model.

In his 1957 paper [5], E.T. Jaynes wrote: “Information
theory . . . leads to a type of statistical inference which is
called the maximum entropy estimate. It is the least biased
estimate possible on the given information; i.e., it is max-
imally noncommittal with regard to missing information.”
Entropy-based inference is a form of Bayesian inference that
is convenient when the data is sparse [2] and encapsulates
common-sense reasoning [11]. It has three difficulties. First,
it assumes that what the agent knows is “the sum total of
the agent’s knowledge, it is not a summary of the agent’s
knowledge, it is all there is” [11] — this assumption is re-
ferred to as Watt’s Assumption [4]. Second, it may only be
applied to a consistent set of beliefs. Third, its knowledge
base is expressed in first-order logic, and so probability dis-
tributions are built over finite sample spaces. The way in
which the sample space is chosen will affect the inferences
drawn — this is referred to as representation dependence [3].
Despite these difficulties, maximum entropy inference is an
elegant formulation of common sense reasoning that is useful
when data is sparse.

3. VALUING INFORMATION
If β passes an utterance to α, α evaluates this act in two
ways. First, it is valued for the strategic significance of the
information that it contains, precisely it is measured as the
expected increase in utility that α expects to enjoy given
that it has the information — this is the utilitarian measure.
Second, it is valued because the sending agent was prepared
to divulge the information in the utterance, precisely it is
measured as the decrease in uncertainty that the receiving
agent has over the sending agent’s private information —
this is the information measure. All utterances received are
qualified by α with a belief probability as described in Sec-
tion 2.

From α’s point of view, β’s private information is every-
thing that β knows and that α does not know with certainty.
Due to the persistent effect of Equation 1, this will include
much of what β knows.

2One simple criterion is: H(Mt+1) < H(Mt).
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3.1 Utilitarian measures
An agent may wish to decide which action, {ai}, to take
where the payoff depends on which state, {sj}, the world is
in when the action is taken (possibly in the future). The
payoff, ~vi, from taking action ai is a vector where vij will be
the payoff from taking action ai and the state of the world
is sj . Let ~p be the probability mass function of a random
variable representing the prior expectation about the state
of the world when the action is taken. Then the expected
monetary value gained by choosing action ai is mi = ~p · ~vi.

Armed with this information suppose that the agent ap-
plies some decision criterion, c, to decide what to do —
perhaps c will choose the action with the greatest expected
payoff: arg maxi ~p · ~vi. Now suppose that the agent receives
information in an utterance u that enables him to refine
his expectation of the state of the world when the action
is to be taken (~p|u), and that he applies the same criterion
c. Then one utilitarian value of utterance u to criterion c
is the difference between the payoffs of the respective out-
comes. For each state of the world sj let bj = maxi vij i.e.
bj is the ‘best’ action that the agent can take if the state of
the world is sj then the expected value of perfect information

is ~p ·~b−maxi ~p · ~vi; this is an upper limit on the total value
of all possible utterances with respect to the application of
criterion c.

Utilitarian measures of information are expressed in terms
of: if you know information x when applying criterion y to
determine which action to perform then you will gain utility
z over not knowing x [8]. That is, they are defined in the
context of some decision making act — they do not place
an intrinsic value on information. So if an agent learns x at
time t and is unaware of what future decisions he will make
that will benefit from knowing x, then he will be unable to
value x until he knows what those future decisions are. But,
by the time he is aware of all of those decisions it may not
be possible to reconstruct with certainty how he and the
other agents would have behaved if he had not known x at
time t. In summary, it is only possible to attach an intrinsic
utilitarian value to information when the future decisions
that are relevant to it are known.

We have described the value gained by acquiring informa-
tion, we now consider the value lost by an agent’s private
information becoming public knowledge — that is, known to
all agents in the system. Once information becomes public
knowledge it has no tradable value until the integrity of the
public’s belief of it decays in time.

Utilitarian measures of information may be used when all
the relevant future decisions are either known with certainty
or a probability distribution expressing their likeliness to
occur is known.

3.2 Information measures
α’s world model, Mt, is a set of probability distributions.
If at time t, α receives an utterance u that may alter this
world model (as described in Section 2) then the (Shannon)
information in u with respect to the distributions in Mt is:
I(u) = H(Mt) − H(Mt+1). Let N t ⊆ Mt be α’s model of
agent β. If β sends the utterance u to α then the information
about β within u is: H(N t) − H(N t+1). We give structure
to the measurement of information using an illocutionary
framework to categorise utterances, and an ontology.

The illocutionary framework will depend on the nature
of the interactions between the agents. The LOGIC frame-

work for argumentative negotiation [15] is based on five cate-
gories: Legitimacy of the arguments, Options i.e. deals that
are acceptable, Goals i.e. motivation for the negotiation,
Independence i.e: outside options, and Commitments that
the agent has including its assets. The LOGIC framework
contains two models per agent: first α’s model of β’s private
information, and second, α’s model of the private informa-
tion that β has about α. Generally we assume that α has
an illocutionary framework F and a categorising function
v : U → P(F) where U is the set of utterances. The power
set, P(F), is required as some utterances belong to multiple
categories. For example, in the LOGIC framework the ut-
terance “I will not pay more for Protos3 than the price that
John charges” is categorised as both Option and Indepen-
dence.

We assume an ontology, and O denotes its concepts that
are organised in an is-a hierarchy.4 δ measures the semantic
distance between two concepts c1 and c2, for example [9]:

δ(c1, c2) = e−κ1l · e
κ2h − e−κ2h

eκ2h + e−κ2h

where l is the shortest path between the concepts, h is the
depth of the deepest concept subsuming both concepts, and
κ1 and κ2 are parameters scaling the contribution of shortest
path length and depth respectively.

In [15] two central concepts are used to describe relation-
ships and dialogues between a pair of agents. These are
intimacy — degree of closeness, and balance — degree of
fairness. Both of these concepts are summary measures of
relationships and dialogues, and are expressed in the LOGIC
framework as 5× 2 matrices.

More generally, the intimacy of α’s relationship with βi,
It

i , measures the amount that α knows about βi’s private
information and is represented as real numeric values over
G = F×O. Suppose α receives utterance u from βi and that
category f ∈ v(u). For any concept c ∈ O, define ∆(u, c) =
maxc′∈u δ(c

′, c). Denote the value of It
i in position (f, c) by

It
i(f,c) then: It

i(f,c) = ρ × It−1
i(f,c) + (1 − ρ) × I(u) × ∆(u, c)

for any c, where ρ is the discount rate. The balance of α’s
relationship with βi, B

t
i , is the element by element numeric

difference of It
i and α’s estimate of βi’s intimacy on α.

[13] describes measures of: trust (in the execution of con-
tracts), honour (validity of argumentation), and reliability
(of information). The execution of contracts, soundness of
argumentation and correctness of information are all rep-
resented as conditional probabilities P(ϕ′|ϕ) where ϕ is an
expectation of what may occur, and ϕ′ is the subsequent
observation of what does occur.

[14] describes a single computational framework for these
three measures that summarise α’s observations of β’s be-
haviour. One of these summary measures is:

M(α, β, ϕ) = 1−
X
ϕ′

Pt
I(ϕ

′|ϕ, e) log
Pt

I(ϕ
′|ϕ, e)

Pt(ϕ′|ϕ)

where the “1” is an arbitrarily chosen constant being the
maximum value that this measure may have, and Pt

I(ϕ
′|ϕ, e)

is a distribution of enactments that represent α’s “ideal” in
the sense that it is the best that α could reasonably expect
to happen in context e. If α repeatedly observes ϕ′ then the

3A fine wine from the ‘Ribera del Duero’ region, Spain.
4A simplified way of understanding an utterance u is as a
set of concepts in O, that is u = {ci | ci ∈ O}.
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amount of information that those observations convey about
the associated commitments, ϕ, is the mutual information:
I(ϕ′;ϕ) = H(ϕ′)−H(ϕ′|ϕ), this measures the mutual depen-
dence of the two variables, where I(ϕ′;ϕ) = I(ϕ;ϕ′).

These summary measures are all abstracted using the on-
tology; for example,“What is my trust of John for the supply
of red wine?”. These measures are also used to summarise
the information in some of the categories in the illocution-
ary framework. For example, if these measures are used to
summarise estimates Pt(ϕ′|ϕ) where ϕ is a deep motivation
of β’s (i.e. a Goal), or a summary of β’s financial situation
(i.e. a Commitment) then this contributes to a sense of trust
at a deep social level.

3.3 Confidentiality
[15] advocates the controlled revelation of information as
a way of managing the intensity of relationships. In Sec-
tion 3.1 we noted that information that becomes public
knowledge is worthless, and so respect of confidentiality is
vital to maintaining the value of revealed private informa-
tion. We have not yet described how to measure the extent
to which one agent respects the confidentiality of another
agent’s information — that is, the strength of belief that
another agent will respect the confidentially of my informa-
tion: both by not passing it on, and by not using it so as to
disadvantage me.

Consider the motivating example, α sells a case of Protos
to β at cost, and asks β to treat the deal in confidence.
Moments later another agent β′ asks α to quote on a case
of Protos — α might then reasonably increase his belief in
the proposition that β had spoken to β′. Suppose further
that α quotes β′ a fair market price for the Protos and that
β′ rejects the offer — α may decide to further increase this
belief. Moments later β offers to purchase another case of
Protos for the same cost. α may then believe that β may
have struck a deal with β′ over the possibility of a cheap
case of Protos.

Confidentiality is the mirror image of trust, honour and
reliability that are all built by an agent “doing the right
thing” — respect for confidentiality is built by an agent not
doing the wrong thing. As human experience shows, vali-
dating respect for confidentiality is a tricky business. One
proactive ploy is to start a false rumour (e.g. “My wife is
a matador.”) and to observe how it spreads. The following
reactive approach builds on the Protos example above.

An agent will know when it passes confidential informa-
tion to another, and it is reasonable to assume that the
significance of the act of passing it on decreases in time. In
this simple model we do not attempt to value the informa-
tion passed as in Section 3. We simply note the amount of
confidential information passed and observe any indications
of a breach of confidence.

If α sends utterance u to β “in confidence”, then u is cat-
egorised as f as described in Section 3.2. Ct

i measures the
amount of confidential information that α passes to βi in
a similar way to the intimacy measure It

i described in Sec-
tion 3.2: Ct

i(f,c) = ρ × Ct−1
i(f,c) + (1 − ρ) ×∆(u, c), for any c

where ρ is the discount rate; if no information is passed at
time t then: Ct

i(f,c) = ρ × Ct−1
i(f,c). Ct

i represents the time-

discounted amount of confidential information passed in the
various categories.
α constructs a companion framework to Ct

i , L
t
i is as es-

timate of the amount of information leaked by βi repre-

sented in G. Having confided u in βi, α designs update
functions JL

u for the Lt
i. In the absence of evidence im-

ported by the JL
u functions, each value in Lt

i decays by:
Lt

i(f,c) = ξ × Lt−1
i(f,c), where ξ is in [0, 1] and probably close

to 1. The JL
u functions scan every observable utterance, u′,

from each agent β′ for evidence of leaking the information
u, JL

u (u′) = P(β′ knows u | u′ is observed). As previously:
Lt

i(f,c) = ξ × Lt−1
i(f,c) + (1− ξ)× JL

u (u′)×∆(u, c) for any c.

This simple model estimates Ct
i the amount of confidential

information passed, and Lt
i the amount of presumed leaked,

confidential information represented over G. As with most
things that information-based agents do, the ‘magic’ is in
the specification of the JL

u functions. A more exotic model
would estimate “who trusts who more than who with what
information”— this is what we have elsewhere referred to as
a trust network. The feasibility of modelling a trust network
depends substantially on how much detail each agent can
observe in the interactions between other agents.

4. DELIBERATIVE MECHANISM

4.1 Plans
A plan p is p(ap, sp, tp, up, cp, gp) where:

• ap is a conditional action sequence — i.e. it is condi-
tional on future states of the world, and on the future
actions of other agents. We think of plans as proba-
bilistic statecharts in the normal way where the arcs
from a state are labelled with “event / condition / ac-
tion” leading into a ℗ symbol that represents the lot-
tery, sp, that determines the next state as described
following:

• sp : S → P(Sp = s) ≡ ~s where S is the set of states
and Sp is a random variable denoting the state of the
world when ap terminates5.

• tp : S → P(Tp = t) ≡ ~t where Tp is a random variable
denoting the time that ap takes to execute and termi-
nate for some finite set of positive time interval values
for t.

• up : S → P(Up = u) ≡ ~u where Up is a random variable
denoting the gross utility gain, excluding the cost of
the execution of ap for some finite set of utility values
for u.

• cp : S → P(Cp = c) ≡ ~c where Cp is a random variable
denoting the cost of the execution of ap for some finite
set of cost values for c.

• gp : S → P(Gp = g) ≡ ~g where Gp is a random variable
denoting the expected information gain to α and to β
of the dialogue that takes place during the execution
of the plan each expressed in G = F ×O.

The distributions above are estimated by observing the per-
formance of the plans as we now describe.6 In the absence
of any observations the probability mass functions for Sp,

5For convenience we assume that all action sequences have
a “time out” and so will halt after some finite time.
6An obvious simplification would be to use point estimates
for tp, up, cp and each element of gp, but that is too weak a
model to enable comparison.
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Tp, Up, Cp and Gp all decay at each and every time step by
Equation 1.

The implementation of ap does not concern us. We do
assume that the way in which the plans are implemented
enables the identification of common algorithms and maybe
common methods within different plans. Given two plans p
and q, the function Sim(p, q) ∈ [0, 1] measures the similarity
of their action sequences ap and aq in the sense their per-
formance parameters are expected to be correlated to some
degree.

Estimating Sp. Denote the prior estimate by ~st. When a
plan terminates, or is terminated, the world will be in one of
p’s end states. Call that state z. Then the observed distribu-

tion for ~st+δt will have the value 1 in position z. On the basis
of this observation the agent may be inclined to fix its esti-
mate for st+1

z at γ where st
z ≤ γ ≤ 1. The posterior distribu-

tion ~st+1 is defined as the distribution with minimum rela-
tive entropy with respect to ~st: ~st+1 = arg min~r

P
j rj log

rj

~st

that satisfies the constraint st+1
z = γ. If γ = st

z then the pos-
terior is the same as the prior. If γ = 1 then the posterior is

certain with H( ~st+1) = 0. One neat way to calibrate γ is in
terms of the resulting information gain; that is to measure
γ in terms of the resulting learning rate µ:

H( ~st+1) = (1− µ)×H(~st) (2)

where µ: 0 < µ < 1.
Estimating Tp, Up, Cp and Gp. Just as for estimat-

ing Sp, when the plan terminates α will have observations
for the values of these variables, and as a result may wish
to increase the corresponding frequency in the posterior to
some new value. Using the method described above for esti-
mating Sp, the posterior distribution is the distribution with
minimum relative entropy with respect to the prior subject
to the constraint that the frequency corresponding to the
observation is increased accordingly.

Further, for these four variables we use the Sim(·, ·) func-
tion to revise the estimates for ‘nearby’ plans. In [14] two
methods for using a Sim(·, ·) function to revise estimates are
described — the situation here is rather simpler. Consider
the variable Cp. Applying the method in the paragraph
‘Estimating Sp.’, suppose a value had been observed for Cp

and as a result of which ct+1
j had been constrained to be

γ. Consider any plan q for which Sim(p, q) > 0. Denote

P(Cq = c) by ~d. The posterior distribution ~dt+1 is defined
as the distribution with minimum relative entropy with re-

spect to ~dt: ~dt+1 = arg min~r

P
j rj log

rj

~dt
that satisfies the

constraint: dt+1
j = γ′ where γ′ is such that:

H( ~dt+1) = (1− µ× Sim(p, q))×H(~dt) (3)

where 0 ≤ Sim(p, q) ≤ 1 with higher values indicating greater
similarity.

4.2 Planning
If an agent’s needs could potentially be satisfied by more
than one plan then a mechanism is required to select which
plan to use. As the execution of plans incurs a cost we
assume that α won’t simply fire off every plan that may
prove to be useful. A random variable, Vp, derived from the
expectations of Sp, Tp, Up, Cp, Gp and other estimates in
Mt represents the agent’s expectations of each plan’s overall
performance. Vp is expressed over some finite, numerical

valuation space with higher values being preferred.
The mechanisms that we describe all operate by selecting

plans stochastically. We assume that there is a set of P
candidate plans {pi} with corresponding random variables
Vpi representing performance, and plan pj is chosen with
probability qj where

P
k qk = 1. Let N t = {V t

pk
}P

k=1. The
integrity of the performance estimates for random variable
Vpi are maintained using the method “Estimating Sp” in
Section 4.1. If pi is selected at time t then when it terminates
the observed performance, vt

pi,ob, is fed into that method.
First, consider the näıve mechanism that selects plan pj

by: qj = 1 for j = arg maxi E(Vpi). This mechanism is well-
suited to a one-off situation. But if the agent has continuing
need of a set of plans then choosing the plan with highest
expected payoff may mean that some plans will not be se-
lected for a while by which time their performance estimates
will have decayed by Equation 1 to such a extent that may
never be chosen. An agent faces the following dilemma: the
only way to preserve a reasonably accurate estimate of plans
is to select them sufficiently often — even if they they don’t
perform well today perhaps one day they will shine.

The simple method: qi = 1
P

selects all plans with equal
probability. The following method attempts to prevent the
uncertainty of estimates from decaying above a threshold,
τ , by setting qj = 1 where:

if ∃i ·H(Vpi) > τ then let j = arg maxk H(Vpk )
else let j = arg maxk E(Vpk )

this method may deliver poor performance from the ‘then’
and good performance from the ‘else’, but at least it at-
tempts to maintain some level of integrity of the performance
estimates, even if it does so in an elementary way.

A strategy is reported in [6] on how to place all of one’s
wealth as win-bets indefinitely on successive horse races so
as to maximise the rate of growth; this is achieved by propor-
tional gambling, i.e. by betting a proportion of one’s wealth
on each horse equal to the probability that that horse will
win. This result is interesting as the strategy is indepen-
dent of the betting odds. Whether it will make money will
depend on the punter’s ability to estimate the probabilities
better than the bookmaker. The situation that we have is
not equivalent to the horse race, but it is tempting to suggest
the strategies:

qi =
E(Vpi)P
k E(Vpk )

(4)

qi = P(Vpi > Vpj ),∀Vpj ∈ N , j 6= i (5)

For the second strategy: qi is the probability that pi’s perfor-
mance is the better than that of all the other plans. With
this definition it is clear that

P
i qi = 1. Both strategies

will favour those plans with a better performance history.
Whether they will prevent the integrity of the estimates for
plans with a poor history from decaying to a meaningless
level will depend on the value of λ in Equation 1, the value
of µ in Equation 2, and on the frequency with which plans
are activated. As the estimates for plans that perform well,
and plans that perform badly, all decay to the maximum
entropy decay limit D(Vpi) if they are not invoked, both of
these strategies indirectly take account of the level of cer-
tainty in the various performance estimates.

We consider now the stability of the integrity of the per-
formance estimates in time. If plan pj is not executed the
information loss in Xt

j for one time step due to the effect of
Equation 1 is: λ × H(Xt

j). If no plans in N are executed
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during one time step then the total information loss in N
is: λ ×

P
k H(Xt

k). If plan pj is executed the information
gain in Xt

j due to the effect of Equation 2 is: µ × H(Xt
j),

but this observation may affect the other variables in N t

due to Equation 3, and the total information gain in N is:
µ ×

P
k Sim(pj , pk) × H(Xt

k). Assuming that at most one
plan in N t is executed during any time step, and that the
probability of one plan being executed in any time step is χ;
the expected net information gain of N t+1 compared with
N t is:

χ · µ ·
X

j

qj ·
X

k

Sim(pj , pk) ·H(Xt
k)− λ ·

X
k

H(Xt
k) (6)

If this quantity is negative then the agent may decide to
take additional steps to gain performance measurements so
as to avoid the integrity of these estimates from consistently
declining.

We now consider the parameters λ and µ to be used with
the strategy in Equation 4. The effect of Equation 1 on
variable Vi after t units of time is:`

1− (1− λ)t´
× D(Vpi) + (1− λ)t × V t0

pi

The probability that plan pi will be activated at any partic-
ular time is:

χ× E(Vpi)P
k E(Vpk )

and the mean of these probabilities for all plans is: χ
P

. So
the mean number of time units between each plan’s activa-
tion is: N

χ
. In the absence of any intuitive value for λ, a

convenient way to calibrate λ is in terms of the expected
total decay towards D(Vpi) between each activation — this
is expressed as some constant φ, where 0 < φ < 1. For
example, φ = 1

2
means that we expect a 50% decay be-

tween activations. The value of λ that will achieve this is:
λ = 1 − (1 − φ)χ÷N . Then the value for µ is chosen so
that the expression (6) is non-negative. Using these values
should ensure that the probability distributions for the ran-
dom variables Vi remain within reasonable bounds, and so
remain reasonably discriminating.

It would be nice to derive a method that was optimal in
some sense, but this is unrealistic if the only data available
is historic data such as the Vpi . In real situations the past
may predict the future to some degree, but can not be ex-
pected to predict performance outcomes that are a result
of interactions with other autonomous agents in a changing
environment. As a compromise, we propose to use (5) with
values for λ and µ determined as above. (5) works with
the whole distribution rather than (4) that works only with
point estimates, but is algebraically simpler. These methods
are proposed on the basis that the historic observations are
all that α has.

5. STRATEGIES
An information-based agent’s deliberative logic consists of:

1. The agent’s raison d’être — its mission — this may
not be represented in the agent’s code, and may be
implicit in the agent’s design.

2. A set of values, Π, — high level principles — and a
fuzzy function υ : (S × A× Π) → fuz, that estimates,
when the world is in state s ∈ S, whether the agent

performing action a ∈ A supports or violates a value
π ∈ Π.

3. A strategy that provides an overarching context within
which the plans are executed — see Section 5.2. The
strategy is responsible for the evolution of the relation-
ships between the agents, and for ensuring that plans
take account of the state of those relationships.

4. A hierarchy7 of needs, N , and a function σ : N →
P(S) were σ(n) is the set of states that satisfy need
n ∈ N . Needs turn ‘on’ spontaneously, and in response
to triggers, T ; they turn ‘off’ because the agent believes
they are satisfied.

5. A set of plans, P — Section 4.1.

In this model an agent knows with certainty those states
that will satisfy a need, but does not know with certainty
what state the world is in. Before describing information-
based strategies in Section 5.2 we discuss the role of prefer-
ences in managing the information revelation and discovery
process.

5.1 The role of preferences
Agent α’s preferences is a relation defined over an outcome
space, where s1 ≺α s2 denotes “α prefers s2 to s1”. Elements
in the outcome space may be described either by the world
being in a certain state or by a concept in the ontology
having a certain value. If an agent knows its preferences
then it may use results from game theory or decision theory
to achieve a preferred outcome in some sense. For example,
an agent may prefer the concept of price (from the ontology)
to have lower values than higher, or to purchase wine when
it is advertised at a discount (a world state). In practice the
articulation of a preference relation may not be simple.

Consider the problem of specifying a preference relation
for a collection of fifty cameras with different features, from
different makers, with different prices, both new and sec-
ond hand. This is a multi-issue evaluation problem. It is
realistic to suggest that “a normal intelligent human being”
may not be able to place the fifty cameras in a preference
ordering with certainty, or even to construct a meaningful
probability distribution to describe it. The complexity of
articulating preferences over real negotiation spaces poses a
practical limitation on the application of preference-based
strategies.

In contract negotiation the outcome of the negotiation,
(a′, b′), is the enactment of the commitments, (a, b), in that
contract, where a is α’s commitment and b is β’s. Some of
the great disasters in market design [7], for example the Aus-
tralian Foxtel fiasco, could have been avoided if the design-
ers had considered how the agents were expected to deviate
(a′, b′) from their commitments (a, b) after the contract is
signed.

Consider a contract (a, b), and let (Pt
α(a′|a),Pt

α(b′|b)) de-
note α’s estimate of what will be enacted if (a, b) is signed.
Further assume that the pair of distributions Pt

α(a′|a) and
Pt

α(b′|b) are independent8 and that α is able to estimate

7In the sense of the well-known Maslow hierarchy, where
the satisfaction of needs that are lower in the hierarchy take
precedence over the satisfaction of needs that are higher.
8That is we assume that while α is executing commitment
a she is oblivious to how β is executing commitment b and
vice versa.
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Pt
α(a′|a) with confidence. α will only be confident in her es-

timate of Pt
α(b′|b) if β’s actions are constrained by norms, or

if α has established a high degree of trust in β. If α is unable
to estimate Pt

α(b′|b) with reasonable certainty then put sim-
ply: she won’t know what she is signing. For a utilitarian
α, (a1, b1) ≺α (a2, b2) if she prefers (Pt

α(a′2|a2),Pt
α(b′2|b2)) to

(Pt
α(a′1|a1),Pt

α(b′1|b1)) in some sense.
One way to manage contract acceptance when the agent’s

preferences are unknown is to found the acceptance criterion
instead on the simpler question: “how certain am I that (a, b)
is a good contract to sign?” — under realistic conditions this
is easy to estimate9.

So far we have not considered the management of informa-
tion exchange. When a negotiation terminates it is normal
for agents to review what the negotiation has cost ex post ;
for example, “I got him to sign up, but had to tell him about
our plans to close our office in Girona”. In Section 3.1 we
argued that it is not feasible to attach an intrinsic value to
information that is related to the value derived from enact-
ments. Without knowing what use the recipient will make
of the “Girona information”, it is not possible to relate the
value of this act of information revelation to outcomes and
so to preferences.

While this negotiation is taking place how is the agent
to decide whether to reveal the “Girona information”? He
won’t know then whether the negotiation will terminate with
a signed contract, or what use the recipient may be able to
make of the information in future, or how any such use might
affect him. In general it is unfeasible to form an expectation
over these things. So we argue that the decision of whether
to reveal a piece of information should not be founded on an-
ticipated negotiation outcomes, and so this decision should
not be seen in relation to the agent’s preferences. The dif-
ficulty here is that value is derived from information in a
fundamentally different way to the realisation of value from
owning a commodity, for example10.

An agent should reveal information if: it assists the dia-
logue towards a satisfactory conclusion, it deepens the rela-
tionship (if that is desired), he can confide in the recipient
not to broadcast it, and can trust the recipient not to be
malicious with it. In general, information revelation and
discovery should be seen in the context of the evolution of
the social relationship between the agents; it should not be
managed by a utilitarian strategy.

A preference-based strategy may call upon powerful ideas
from game theory. For example, to consider equilibria α
will require estimates of Pt

β(a′|a) and Pt
β(b′|b) in addition to

Pt
α(a′|a) and Pt

α(b′|b) — these estimates may well be even

9In multi-issue negotiation an agent’s preferences over each
individual issue may be known with certainty. Eg: she may
prefer to pay less than pay more, she may prefer to have
some feature to not having it. In such a case, if some
deals are known to be unacceptable with certainty, some
are known to be acceptable with certainty, and, perhaps
some known to be acceptable to some degree of certainty
then maximum entropy logic may be applied to construct a
complete distribution representing ‘certainty of acceptabil-
ity’ over the complete deal space. This unique distribution
will be consistent with what is known, and maximally non-
committal with respect to what is not known.

10If a dialogue is not concerned with the exchange of any-
thing with utilitarian value, then the two agents may feel
comfortable to balance the information exchanged using the
methods in Section 3.2.

more speculative than those in the previous paragraph. In
addition she will require knowledge about β’s utility func-
tion. In simple situations this information may be known,
but in general it will not.

5.2 Information-based strategies
We now describe the strategic reasoning of an information-
based agent. This takes account of the, sometimes conflict-
ing, utilitarian and information measures of utterances in
dialogues and relationships. This general definition may be
instantiated by specifying functions for the ψi in the follow-
ing.

The following notation is used below. Rt
i denotes the re-

lationship (i.e. the set of all dialogues) between α and βi

at time t. Intimacy is a summary measure of a relationship
or a dialogue and is represented in G. We write It

i to de-
note the intimacy of that relationship, and I(d) to denote
the intimacy of dialogue d. Likewise Bt

i and B(d) denotes
balance.
The Needs Model. α is driven by its needs. When a need
fires, a plan is chosen to satisfy that need using the method
in Section 4.2. If α is to contemplate the future she will
need some idea of her future needs — this is represented in
her needs model : ν : T → ×n[0, 1] where T is time, and:
ν(t) = (nt

1, . . . , n
t
N ) where nt

i = P(need i fires at time t).
Setting Relationship Targets. On completion of each
dialogue of which α is a part, she revises her aspirations
concerning her intimacy with all the other agents. These
aspirations are represented as a relationship target, T t

i , for
each βi, that is represented in G. Let It = (It

1, . . . , I
t
o), Bt =

(Bt
1, . . . , B

t
o) and Tt = (T t

1 , . . . , T
t
o), then Tt = ψ1(ν, I

t,Bt)
— this function takes account of all βi and aims to encap-
sulate an answer to the question: “Given the state of my
relationships with my trading partners, what is a realistic
set of relationships to aim for in satisfaction of my needs?”.
Activating Plans. If at time t, some of α’s active needs,
N t

active, are not adequately11 being catered for, N t
neglect, by

existing active plans, P t
active, then select P t+1

active to take ac-
count of those needs:

P t+1
active = ψ2(P

t
active, N

t
neglect, N

t
active, I

t,Tt)

The idea being that α will wish select P t+1
active so as to move

each observed intimacy It
i towards its relationship target in-

timacy T t
i . Having selected a plan p, E(Up) and E(Gp) assist

α to set the dialogue target, Dt
i , for the current dialogue [15].

In Section 4.2 we based the plan selection process on a ran-
dom variable Vp that estimates the plan’s performance in
some way. If α is preference-aware then Vp may be defined
in terms of its preferences.
Deactivating Plans. If at time t, a subset of α’s active
plans, P t

sub ⊂ P t
active, adequately caters for α’s active needs,

N t
active, then:

P t+1
active = ψ3(P

t
active, N

t
active, I

t,Tt)

is a minimal set of plans that adequately cater for N t
active in

11For each need n, σ(n) is the set of states that will satisfy n.
For each active plan p, P(Sp = s) is probability distribution
over the possible terminal states for p. During p’s execution
this initial estimation of the terminal state is revised by
taking account of the known terminal states of executed sub-
plans and P(Sp′ = s) for currently active sub-plans p′ chosen
by p to satisfy sub-goals. In this way we continually revise
the probability that P t−1

active will satisfy α’s active needs.
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the sense described above. The idea here is that P t+1
active will

be chosen to best move the observed intimacy It
i towards the

relationship target intimacy T t
i as in the previous paragraph.

The work so far describes the selection of plans. Once se-
lected a plan will determine the actions that α makes where
an action is to transmit an utterance to some agent deter-
mined by that plan. Plans may be bound by interaction
protocols specified by the host institution.
Executing a Plan — Options. [15] distinguishes between
a strategy that determines an agent’s Options from which a
single kernel action, a, is selected; and tactics that wrap
that action in argumentation, a+ — that distinction is re-
tained below. Suppose that α has adopted plan p that aims
to satisfy need n, and that a dialogue d has commenced,
and that α wishes to transmit some utterance, u, to some
agent βi. In a multi-issue negotiation, a plan p will, in gen-
eral, determine a set of Options, At

p(d) — if α is preference
aware [Section 5.1] then this set could be chosen so that
these options have similar utility. Select a from At

p(d) by:

a = ψ4(A
t
p(d),Π, Dt

i , I(d), B(d))

that is the action selected from At
p(d) will be determined by

α’s set of values, Π, and the contribution a makes to the
development of intimacy.

If d is a bilateral, multi-issue negotiation we note four
ways that information may be used to select a from At

p(d).
(1) α may select a so that it gives βi similar information gain
as βi’s previous utterance gave to α. (2) If a is to be the
opening utterance in d then α should avoid making exces-
sive information revelation due to ignorance of βi’s position
and should say as little as possible. (3) If a requires some
response (e.g. a may be an offer for βi to accept or reject)
then α may select a to give her greatest expected informa-
tion gain about βi’s private information from that response,
where the information gain is either measured overall or re-
stricted to some area of interest inMt. (4) If a is in response
to an utterance a′ from βi (such as an offer) then α may use
entropy-based inference to estimate the probability that she
should accept the terms in a′ using nearby offers for which
she knows their acceptability with certainty [14].
Executing a Plan — Tactics. The previous paragraph
determined a kernel action, a. Tactics are concerned with
wrapping that kernel action in argumentation, a+. To achieve
this we look beyond the current action to the role that the
dialogue plays in the development of the relationship:

a+ = ψ5(a, , T
t
i , I

t
i , I(d), B

t
i , B(d))

In [15] stance is meant as random noise applied to the action
sequence to prevent other agent’s from decrypting α’s plans.
Stance is important to the argumentation process but is not
discussed here.

6. CONCLUSION
In this paper we have presented a number of measures to
value information including a new model of confidentiality.
We have introduced a planning framework based on the ker-
nel components of an information-based agent architecture
(i.e. decay, semantic similarity, entropy and expectations).
We have defined the notion of strategy as a control level over
the needs, values, plans and world model of an agent. Fi-
nally, the paper overall offers a model of negotiating agents
that integrates previous work on information-based agency

and that overcomes some limitations of utility-based archi-
tectures (e.g. preference elicitation or valuing information).
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