
An Improved Dynamic Programming Algorithm for Coalition
Structure Generation

(Short Paper)
Talal Rahwan and Nicholas R. Jennings

School of Electronics and Computer Science, University of Southampton, Southampton, UK.
{tr, nrj}@ecs.soton.ac.uk

ABSTRACT
Forming effective coalitions is a major research challenge in the field
of multi-agent systems. Central to this endeavour is the problem of
partitioning the set of agents into exhaustive and disjoint coalitions
such that the social welfare is maximized. This coalition structure
generation problem is extremely challenging due to the exponential
number of partitions that need to be examined. Specifically, given
n agents, there are O(nn) possible partitions. To date, the only al-
gorithm that can find an optimal solution in O(3n) is the Dynamic
Programming (DP) algorithm, due to Rothkopf et al. However, one
of the main limitations of DP is that it requires a significant amount
of memory. In this paper, we devise an Improved Dynamic Program-
ming algorithm (IDP) that is proved to perform fewer operations than
DP (e.g. 38.7% of the operations given 25 agents), and is shown to
use only 33.3% of the memory in the best case, and 66.6% in the
worst.

1. INTRODUCTION
Coalition formation, the process by which a group of agents come
together and agree to coordinate and cooperate in the performance of
a set of tasks, is an important form of interaction in multi-agent sys-
tems.To date, a number of coalition formation algorithms have been
developed to determine which of the many potential coalitions should
actually be formed. To do so, they typically calculate a value for each
coalition, known as the coalition value, which provides an indication
of the expected outcome that could be derived if that coalition was
formed. Then, having computed all the coalition values, the decision
about the optimal coalition(s) to form can be taken.

One of the main bottlenecks that arise in this formation process is
that of coalition structure generation (CSG). Specifically, given the
value of every possible coalition, the CSG problem involves parti-
tioning the set of agents into exhaustive and disjoint coalitions so as
to maximize the social welfare. Such a partition is called a coali-
tion structure. In this context, it is usually assumed that every coali-
tion performs equally well, given any coalition structure containing
it (i.e. the value of a coalition does not depend on the actions of non-
members). Such settings are known as characteristic function games
(CFGs), where the value of a coalition is given by a characteristic
function. Many (but clearly not all) real-world multi-agent problems
happen to be CFGs [4, 5]. In this context, a number of algorithms
have been developed to solve the CSG problem, which we classify
into the following broad classes:

Cite as: An Improved Dynamic Programming Algorithm for Coalition
Structure Generation (Short Paper), T. Rahwan and N. R. Jennings, Proc.
of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16.,2008,Estoril,Portugal,pp. 1417-1420.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. Dynamic programming: Algorithms in this class have been
developed for solving the complete set partitioning problem
[8] and the winner determination problem [3], both of which
can be viewed as being analogous to the CSG problem.1 Note
that both of these algorithms use basically the same technique
and, therefore, have the same computational complexity. Thus,
throughout this paper, we do not distinguish between them,
and consider both to be the state-of-the-art dynamic program-
ming (DP) algorithm. The main advantage of this algorithm is
that, given n agents, it guarantees to find an optimal solution
in O(3n) time. However, the downside is that this algorithm
only produces a solution when it has completed its entire ex-
ecution. Another limitation of this approach is that it requires
maintaining three tables in memory, including the input, that
each have 2n − 1 entries.

2. Heuristics: A number of heuristics have been developed to
solve the CSG problem. Shehory and Kraus, for example, pro-
posed a greedy algorithm that puts constraints on the size of the
coalitions that are taken into consideration [7]. Sen and Dutta,
on the other hand, use an order-based genetic algorithm [6].
Although these algorithms return solutions relatively quickly,
they do not provide any guarantees on finding the optimal. In
fact, their solutions can always be arbitrarily worse than the
optimal, and even if they happen to find an optimal solution, it
is not possible to verify this fact.

3. Anytime optimal algorithms: These algorithms work is by
generating initial solutions that are guaranteed to be within a
bound from the optimal, and then improve on the quality of
their solutions, and establish progressively better bounds, as
they search more of the search space, until an optimal solu-
tion is found. A number of algorithms have been developed
to generate solutions anytime [4, 1], but these can only find an
optimal solution once the entire space has been exhaustively
searched. More recently, however, Rahwan et al. developed
a state-of-the-art anytime algorithm that is significantly faster
than the other anytime algorithms [2]. However, the algorithm
is still O(nn), meaning that it might, in the worst case, end up
searching the entire space.

In this paper, we are particularly interested in the first approach
because it is the one with the lowest worst case complexity that is
guaranteed to find the optimal solution. In contrast, the second ap-
proach might never find the optimal, and the third approach might
still end up searching the entire space.

Against this background, our contribution lies in developing an
Improved Dynamic Programming algorithm (called IDP) that per-
forms fewer operations, and requires less memory, compared to the
1This is because they both involve partitioning a set of elements into subsets
based on the weights that are associated to every subset.

current state of the art DP algorithm. For example, given 25 agents,
IDP performs only 38.7% of the operations, and requires 33.3% of
the memory in the best case and 66.6% in the worst.

Throughout this paper, we will denote by A the set of agents, n the
number of agents, v the input table (i.e. v[C] is the value of coalition
C), and V (CS) the value of coalition structure CS. Moreover, the
terms “coalition structure" and “solution" will be used interchange-
ably. The remainder of this paper is structured as follows. Section
2 provides a detailed analysis of how DP works. Section 3 presents
IDP, and compares it with DP. Finally, section 4 concludes.

2. THE DP ALGORITHM
The DP algorithm is shown in figure 1. The way this algorithm works
is by computing two tables, namely f1 and f2, each with an entry for
every possible coalition. In more detail, for every coalition C ⊆ A,
the algorithm computes f1[C] and f2[C] as follows. First, it eval-
uates all the possible ways of splitting C in two, and compares the
highest evaluation with v[C] to determine whether it is beneficial to
split C. If so, then the best splitting (i.e. the one with the highest
evaluation) is stored in f1[C], and its evaluation is stored in f2[C].
Otherwise, the coalition itself is stored in f1[C] and its value is stored
in f2[C] (see step 2).2 Note that every splitting {C′, C′′} is evaluated
as follows: f2[C

′] + f2[C
′′]. This implies that, in order to evaluate

the possible splittings of a coalition C, the algorithm first needs to
compute f2 for the possible subsets of C. Based on this, the algo-
rithm does not evaluate the splittings of the coalitions of size s until
it has finished computing f2 for the coalitions of sizes 1, . . . , s − 1
(see step 1 and the first line of step 2). Figure 2 shows an example of
how f1 and f2 are computed given A = {1, 2, 3, 4}.3

Input: v[C] for all C ⊆ A. If no v[C] is specified then v[C] = 0.
Output: the optimal coalition structure, CS∗.
1. For all i ∈ {1, . . . , n}, set f1[{ai}] := {ai}, f2[ai] := v[{ai}]

2. For s := 2 to n, do:
For all C ⊆ A such that |C| = s, do:
2.1. f2[C] := max{f2[C′] + f2[C\C′] : C′ ⊂ C and 1 ≤

˛̨
C′ ˛̨ ≤ 1/2 |C|}

2.2. If f2[C] ≥ v[C], then set f1[C] := C∗ where C∗ maximizes the
right hand side of the equation in step 2.1.

2.3. If f2[C] < v[C], then set f1[C] := C, and f2[C] := v[C].
3. Set CS∗ := {A}.
4. For every C ∈ CS∗, do:

If f1[C] 6= C, then:
4.1. Set CS∗ := (CS∗\{C}) ∪ {f1[C], S\f1[C]}.
4.2. Goto 4 and start with new CS∗.

Figure 1: The DP algorithm for coalition structure generation.

Once f1 and f2 are computed for every coalition, the optimal
coalition structure, denoted CS∗, can be computed recursively (steps
3 and 4 in figure 1). In our example, this is done by first setting
CS∗ = {1, 2, 3, 4}. Then, by looking at f1[{1, 2, 3, 4}], we find
that it is more beneficial to split {1, 2, 3, 4} into {1, 2} and {3, 4}.
Similarly, by looking at f1[{1, 2}], we find that it is more beneficial
to split {1, 2} into {1} and {2}, and by looking at f1[{3, 4}], we find
that it is more beneficial to keep {3, 4} as it is. The optimal coalition
structure is, therefore, {{1}, {2}, {3, 4}}.

Having described how DP operates, we will now analyse its per-
formance. To this end, based on our previous experience in this do-
main, we have observed that the elimination of any redundancy (if
2The special case in which C contains only one agent is dealt with seperately
(see step 1); in this case, we always have: f1[C] = C and f2[C] = v[C].
3Note that, in order to store a splitting C′, C′′ of a coalition C, it is sufficient
to store either C′ or C′′ in f1[C] (because knowing one of them is sufficient
to know the other). In figure 2, however, both of them are shown in f1 to
make the example easier to understand.

Figure 2: Example of how the DP algorithm computes f1 and f2,
given A = {1, 2, 3, 4}.

it exists) can lead to significant performance improvements. With
this in mind, we looked at the coalition structure graph [4], which
consists of a number of nodes and a number of edges connecting
these nodes. Specifically, every node in the graph represents a coali-
tion structure, and every edge represents the merging of two coali-
tions into one (when followed downwards) and the splitting of one
coalition into two (when followed upwards). The nodes are catego-
rized, based on the number of coalitions in each node, into levels
Li : i ∈ {1, 2, . . . , n} such that Li contains the nodes (i.e. coalition
structures) that contain i coalitions. Figure 3 shows an example of 4
agents.4

Figure 3: The coalition structure graph of 4 agents.

Looking at this graph enables us to visualize how DP works. Ba-
sically, given a coalition structure CS, the splitting of a coalition
C ∈ CS into {C′, C′′} can be seen as a movement from the node
that contains CS to the node that contains (CS\C)∪{C′, C′′}. The
way DP works is by evaluating every possible movement in the graph
(steps 1 and 2 in figure 1), and then, starting at the bottom node and
moving upwards through a series of connected nodes (which we call
a “path") until an optimal node is reached, after which no movement
is beneficial (steps 3 and 4 in figure 1). The dashed path in figure
3 shows how DP found the optimal in our previous example (which
was shown in figure 2).

To be still more precise, the way DP works can be described on
the coalition structure graph as follows. For every coalition C of size
4For illustrative purposes, the figure also shows the value of every coalition
structure, taken from our previous example which is shown in figure 2.

s ∈ {2, . . . , n}, the algorithm determines whether it is beneficial
to make a movement that involves the splitting of C. This is done
by first evaluating the possible splittings of C (using f2) and then
comparing the best one, denoted {C∗, C\C∗}, with v[C]. Now if
it is more beneficial to split C, then C∗ is stored in f1[C]. This
indicates that, whenever a node CS is reached that contains C, the
best movement (out of all the movements that involve splitting C) is
the one that leads to (CS\C)∪{C∗, C\C∗}. On the other hand, if it
is more beneficial not to split C at all, then C is stored in f1[C]. This
indicates that, whenever a node is reached that contains C, it is not
beneficial to make any movement that involves splitting C. A key
point to note, here, is that the evaluation of a particular movement
is done by taking into consideration the best movements that will
follow this one. This is captured by the way f2[C] is calculated,
which uses f2[C

′] for all C′ ⊂ C. In figure 3, for example, DP
did not move from the node containing {1, 2, 3, 4} to that containing
{{3}, {1, 2, 4}} (which has a value of 145). Instead, it moved to the
one containing {{1, 2}, {3, 4}} (which has a value of 130). The way
DP made this decision was based on the movements that will follow
each of the aforementioned ones. As can be seen, the movement
that DP took led to the optimal coalition structure (which has a value
of 150), while the other movement would not lead to any coalition
structure with a value greater than 145.

From this visualization, it is apparent that, any coalition structure
containing more than two coalitions has more than one path leading
to it. For example, starting from the bottom node, one could reach
{{1}, {2}, {3, 4}} through three different paths, which are shown in
figure 3 using dotted, dashed, and bold lines. To this end, we note
that, whenever there are multiple paths leading to the optimal, DP
does not have any preference on which of these is taken. This can
be seen in step 2.2 in figure 1, where f1[C] is set to the splitting
that maximizes the right hand side of the equation in step 2.1, (i.e.
the one that has the maximum evaluation). This implies that, when-
ever multiple splits have the same evaluation, it doesn’t matter which
one of them is chosen, as long as it maximizes the right hand side
of 2.1. In figure 2, for example, f1[{1, 2, 3, 4}] was set to the split-
ting {{1, 2}, {3, 4}} because this had one of the highest evaluations
(which is 150). However, we could have set it to {{1}, {2, 3, 4}}
instead (since this splitting also has an evaluation of 150), and from
f1[{2, 3, 4}], we would have found that it is more beneficial to split
{2, 3, 4} into {2} and {3, 4}. As a result, the same optimal (i.e.
{{1}, {2}, {3, 4}}) would have been found.

Now suppose that, when determining the best of all the movements
that involve splitting {2, 3, 4}, the following splitting was never taken
into consideration: {{2}, {3, 4}}. This corresponds to the removal
of the edge that connects {{1}, {2, 3, 4}} with {{1}, {2}, {3, 4}}.
In this case, DP will no longer consider the movement from {1, 2, 3, 4}
to {{1}, {2, 3, 4}} as one of the options that lead to the optimal.
This is because, as far as DP can tell, the best coalition structure
that can be reached by making this movement is one that has a value
of 145. Note that, although DP will no longer be able find the op-
timal through the dotted path, it can still do so through any of the
remaining paths (i.e. the dashed or the bold ones). In fact, as long
as there is one path leading to the optimal, DP will be able to find
that optimal (because the evaluation of that path is not affected by
the removal of the other paths). This implies that finding the optimal
might not require evaluating every possible splitting of every possible
coalition. What would be desirable, then, is to be able to avoid the
evaluation of as many splittings as possible, and still be guaranteed
to keep at least one path for every possible solution. In the next sub-
section, we present an Improved Dynamic Programming algorithm
(which we call IDP) which does exactly that. Moreover, we show
how the memory requirements can be reduced without affecting its
performance.

3. THE IDP ALGORITHM
The main idea behind IDP is to avoid the evaluation of as many split-
tings as possible, without losing the guarantees of finding the opti-
mal coalition structure. As mentioned above, this corresponds to the
removal of as many edges from the coalition structure graph as pos-
sible, without removing all the paths that lead to the optimal node
(where a path to a node CS : |CS| = s is defined as a series of con-
nected nodes 〈n1, n2, . . . , ns〉 such that ∀i ∈ {1, 2, . . . , s}, ni ∈ Li

and ns = CS). In order to do so, we must guarantee that, for
every node in the graph, there exists at least one path leading to
that node.5 This can be done by proving that, for every node in
Ls : s ∈ {2, . . . , n}, there exists another node in Ls−1 that is con-
nected to that node. In other words, for every coalition structure CS
containing s coalitions (where s ∈ {2, . . . , n}), we need to prove
that there exists another coalition structure containing s − 1 coali-
tions that is connected to CS.

To this end, let Es′s′′ be the set of all the edges that involve the
splitting of a coalition of size (s′+ s′′) into two coalitions of sizes s′

and s′′, where s′ ≤ s′′. Moreover, let E∗ be a subset of edges that is
defined as follows:

E∗ = (
S

s′′≤n−(s′+s′′) Es′s′′) ∪ (
S

s′+s′′=n Es′s′′) (1)

With these definitions in place, we can now present the main the-
orem underpinning IDP.

Theorem 1. For every coalition structure CS containing s coali-
tions (s ∈ {2, . . . , n}), there exists an edge in E∗ that connects CS
with another coalition structure containing s− 1 coalitions.

Proof. For the coalition structures that contain two coalitions, we
need to show that each one of them is connected with the coalition
structure that contains one coalition (which is the grand coalition).6

This is easily shown since E∗ includes all the edges that involve the
splitting of the grand coalition in two (i.e. Es′s′′ : s′ + s′′ = n).
What is left, then, is to show that, for every coalition structure CS
that contains more than two coalitions, there exists two coalitions
C′, C′′ ∈ CS (where C′ contains s′ agents and C′′ contains s′′

agents), such that Es′s′′ ∈ E∗. This can be done by proving that the
following condition holds:

∃C′, C′′ ∈ CS : |C′| = s′, |C′′| = s′′, s′′ ≤ n− (s′ + s′′)

Note that n − (s′ + s′′) is the sum of all the sizes of the remain-
ing coalitions in CS. That is:

n− (s′ + s′′) =
P

C∈{CS\(C′∪C′′)}
|C|

Also note that the size of any of the smallest two coalitions in CS
has to be smaller than, or equal to, the sum of the sizes of the remain-
ing coalitions in CS. In other words, by setting C′ and C′′ to the
smallest two coalitions in CS, we have s′′ ≤ n− (s′ + s′′). 2

Based on theorem 1, what IDP does is avoid the evaluation of all
the edges that do not belong to E∗. For instance, given our previous
example of four agents (shown in figure 2), IDP does not evaluate the
splittings of a coalition of size 3 into two coalitions of sizes 1 and 2.
Instead, it simply sets f2[C] = v[C] : |C| = 3. This is because,
given: n = 4, s′ = 1, s′′ = 2, we have: s′′ > n− (s′ + s′′).

To analyse the difference between DP and IDP in terms of the

5Otherwise, if there is no path leading to a particular node, and if that node
happens to be the optimal one, then DP will not be able to find it.
6Recall that the grand coalition is the one in which every agent is a member.

number of evaluated splittings, we provide equations for computing
the exact number of splittings that are evaluated by each of the al-
gorithms. Generally speaking, the number of possible subsets that
contain s out of n elements is: Cn

s = n!
(n−s)!×s!

. Based on this, the
number of possible splittings of a coalition C : |C| = s into two
coalitions of sizes s′, s′′ is given as follows:

Ns′,s′′ =

8>><>>:
Ps−1

s′′=d s
2e

Cs
s′′
2

if s′ = s′′

Ps−1

s′′=d s
2e

Cs
s′′ otherwise

This is because, for every possible subset C′ ⊂ C of size s′, there
exists another subset C′′ ⊂ C of size s′ such that C′ ∪ C′′ = C.7

Against this background, the total number of splittings (denoted t) is
given as follows:

t =
Pn

s=1(C
n
s ×

P
s′′∈{d s

2e,...,s−1} Nn−s′′,s′′)

and the number of splittings that are avoided by IDP (denoted d)
is computed as follows:

d =
Pn

s=1(C
n
s ×

P
s′′∈{d s

2e,...,s−1},s′′>n−s Nn−s′′,s′′)

Based on this, the number of splittings that are evaluated by DP is
t, and the number of those evaluated by IDP is t − d. Given 25
agents, figure 4 shows the number of splittings evaluated by both al-
gorithms for coalitions of different sizes.8 When computing the total
number of operations, we found that IDP evaluates only 38.7% of
the splittings that are evaluated by DP.

Figure 4: Given 25 agents, the figure shows (on linear and log
scales) the number of splittings that are evaluated for the coali-
tions of size s ∈ {2, 3, . . . , 25}.

Having shown how the number of evaluated splittings can be re-
duced without losing optimality, we will now show how the memory
requirements can also be reduced. To this end, recall that the move-
ment through a path, from a node CS to another, is done by splitting
a coalition C ∈ CS in two. The way this is done is based on f1[C],
which returns a splitting of C that has an evaluation of f2[C]. Now
suppose that we did not use f1. In this case, we would not have
instance access to a splitting of C that has an evaluation of f2[C].
Such a splitting, however, can still be found by re-evaluating all the

7Note that, if s′ = s′′, then we only need to count half of the possible subsets
of size s′′.
8Larger numbers of agents show the same broad trends.

splittings of C that were originally evaluated.9 Note that the longest
possible path contains n nodes, and that the movement from one node
to another involves splitting one coalition. This means that we only
need to re-evaluate the splittings of at most n − 1 coalitions. This
is insignificant compared to the total number of evaluated splittings
(which is exponential). Based on this, IDP avoids the use of f1 and,
therefore, require only 66.6% of the memory (compared to DP).

The memory requirements can be reduced even further whenever
the input is not required after an optimal solution has been found.
To this end, note that v is used two times. The first is when com-
puting f2 for every coalition, and the second is when determining
whether it is beneficial to make a movement from a node CS in the
graph.10 Now suppose that, after computing f2[C], we stored in v[C]
the value that we would have normally stored in f2[C] (This can be
seen in figure 2 by replacing every f2 with v). In this case, determin-
ing whether it is beneficial to make a movement from a node CS can
no longer be done by comparing v[C] with f2[C] for all C ∈ CS
(this is because we no longer have the original v[C]). This, however,
can still be done in a different way as follows. First, we re-evaluate
the splittings of the coalitions in CS, but this time, without taking
v[C] into consideration. For example, {1, 2, 3} is re-evaluated by
only comparing f2[{1}] + f2[{2, 3}] with f2[{2}] + f2[{1, 3}] and
f2[{3}] + f2[{1, 2}]. By not taking v[C] into consideration, we end
up with a different value f̂2[C], which is, then, compared with f2[C]

(which we now store in v[C]). Now if f̂2[C] < f2[C], then it is not
beneficial to split the coalition in two. The process of re-evaluating
the splittings is carried out for every coalition C ∈ CS, and if it
is not beneficial to split any of the coalitions in two, then it is not
beneficial to make a movement from CS. Note that the longest pos-
sible path contains n nodes, and that every node CSi ∈ Li in that
path contains i coalitions. This means that the maximum number of
coalitions in a path is

Pn
i=1 i. This is, again, insignificant compared

to the total number of evaluations. Based on this, whenever the input
is not required after the optimal has been found, IDP only uses a table
with 2n entries, which is 33.3% of the memory requirements of DP.

4. CONCLUSIONS
This paper has developed a new state-of-the-art dynamic program-

ming algorithm (called IDP) for solving the CSG problem. Specifi-
cally, IDP performs less operations, and requires less memory, and is
guaranteed to find the optimal solution.

5. REFERENCES
[1] V. D. Dang and N. R. Jennings. Generating coalition structures with

finite bound from the optimal guarantees. In AAMAS-04, pages
564–571, 2004.

[2] T. Rahwan, S. D. Ramchurn, A. Giovannucci, V. D. Dang, and N. R.
Jennings. Anytime optimal coalition structure generation. In AAAI-07,
pages 1184–1190, 2007.

[3] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally
manageable combinatorial auctions. Management Science,
44(8):1131–1147, 1995.

[4] T. W. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme.
Coalition structure generation with worst case guarantees. Artificial
Intelligence, 111(1–2):209–238, 1999.

[5] T. W. Sandholm and V. R. Lesser. Coalitions among computationally
bounded agents. Artificial Intelligence, 94(1):99–137, 1997.

[6] S. Sen and P. Dutta. Searching for optimal coalition structures. In
Proceedings of the Fourth International Conference on Multiagent
Systems, pages 286–292, 2000.

[7] O. Shehory and S. Kraus. Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1–2):165–200, 1998.

[8] D. Y. Yeh. A dynamic programming approach to the complete set
partitioning problem. BIT Numerical Mathematics, 26(4):467–474,
1986.

9This is especially true since DP has no preference on which splitting is cho-
sen as long as it has an evaluation equal to f2[C].

10Recall that a movement from a node CS is only beneficial if there exists a
coalition C ∈ CS such that v[C] < f2[C].

