
A Best-First Anytime Algorithm for Computing Optimal
Coalition Structures

(Short Paper)
Chattrakul Sombattheera

Decision Systems Lab
School of Computer Sience and Software

Engineering
University of Wollongong, NSW 2500

Australia
cs50@uow.edu.au

Aditya Ghose
Decision Systems Lab

School of Computer Sience and Software
Engineering

University of Wollongong, NSW 2500
Australia

aditya@uow.edu.au

ABSTRACT
This work presents a best-first anytime algorithm for com-
puting optimal coalition structures. The approach is novel
in that it generates coalition structures based on coalition
values, while existing algorithms base their generation on
the structure (members and configurations) of coalitions.
With our algorithm, coalition structures are generated by
repeatedly choosing the best coalition, as determined using
a novel metric called agent’s contribution to coalition struc-
ture that we define. We have compared the performance of
our algorithm against that of Rahwan et al [5] using 20 data
distributions. Our results show that our algorithm almost
always converges on an optimal coalition structure faster
(although it terminates later in some cases). Empirically,
our algorithm almost always yields better than or as good
as Rahwan et al’s results at any point in time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithm

Keywords
Multiagent Systems, Coalition Formation, Optimal Coali-
tion Structure

1. INTRODUCTION
Computing optimal coalition structures in multi-agent sys-

tems is an important research problem both from theoret-
ical [2] and practical perspectives. The optimal coalition
structure problem seeks to identify, given a set of agents
and a value to each subset, the optimal partitioning of that
set of agents (i.e., a partitioning for which the sum of the

Cite as: A Best-First Anytime Algorithm for Computing Optimal Coali-
tion Structures (Short Paper), Chattrakul Sombattheera and Aditya Ghose,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.), May, 12-16., 2008, Estoril, Portugal, pp.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

coalition values is maximized). The optimal coalition struc-
ture problem finds application in a variety of real world set-
tings, including logistics and supply chains [8, 9, 10], virtual
organizations, team formation,

Formally, given a set N of n agents, a coalition is a non-
empty subset, S ⊆ N . A coalition where S = N is called
the grand coalition. We will use |S| to refer to the cardi-
nality (i.e., number of agents) of a coalition S. We assume
that there is a characteristic function, V : N → Z

+, which
associates each S with a coalition value, VS . The number of
distinct coalitions that can be formed with n agents is 2n−1.
Formally, a coalition structure is a partitioning of the set of
agents. For example, the following are all the coalition struc-
tures that can be obatined from a set of 3 agents {1, 2, 3}:
{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}},
{{1}, {2}, {3}}. The number of all coalition structures can
be determined by Bell Number, Bn [3]. Given a coalition
structure CS, we define its value, V (CS) =

∑
S∈CS VS ,

which denotes the utility that accrues to the systems from
that partitioning. An optimal coalition structure is denoted
by CS∗ such that CS∗ = argmaxCS∈LV (CS). In general,
multiple such optimal coalition structures might exist. This
problem is proved to be NP-Hard [7].

This work presents a best-first anytime algorithm for com-
puting optimal coalition structures (that we shall refer to
as CH). The approach is novel in that it generates coali-
tion structures based on coalition values, while existing al-
gorithms base their generation on the structure (members
and configurations) of coalitions. With our algorithm, coali-
tion structures are generated by repeatedly choosing the best
coalition, as determined using a novel metric called agent’s
contribution to coalition structure that we define. We have
compared the performance of our algorithm against that of
Rahwan et al [5] using 20 data distributions. Our results
show that our algorithm almost always converges on an op-
timal coalition structure faster.

2. THE CH ALGORITHM
This work generates coalition structures based on coalition

values rather than their coalition members. We consider
generating coalition structures as a process of repeatedly
choosing the best coalition (i.e., one that contributes the
best value to the coalition structure) from available candi-
dates such that for each generated coalition structure i)

⋃
Si =

1425-1428.

N (the exhaustiveness condition [7, 4, 1]) and ii)Si ∩Sj = ∅
for i 6= j (the disjointness condition [6, 5]). The algorithm
must be systematic, i.e., it must not generate/evaluate the
same coalition structure more than once.

Best Coalition: Since the data (coalitions and their val-
ues) distribution varies, we need a metric that would permit
us to pick the next coalition to add to an (incrementally
constructed) coalition structure. We define a metric called
agent contribution to coalition, aS , i.e., the average value for
each agent in S:

aS =
VS

|S|

and use this as a basis for our best-first search. We note
in passing that the agent contribution to coalition structure,
aCS , i.e., the average value for each agent in CS:

aCS =

∑
VSi

n

will always be maximal for any optimal coalition structure.
In order to be efficient in random environments, we define

the best coalition, S∗, is the one whose a is the highest and
. The smaller coalition is better than the larger one whose
a is equal to the former.

Data Structures: We define CS a one-dimensional ar-
ray of coalitions, whose size is n = |N |, the maximal number
of coalitions the coalition structure may contains. Each el-
ement is for a coalition chosen so far. CS represents CS
and will be used interchangeably. We shall refer to the in-
dex of CS as the coalition layer, l-th. Element CS[1] and
CS[2] are the coalitions at the 1st and the 2nd layer of the
coalition structure respectively. We store all coalitions in a
two-dimensioned array, C. The first dimension refers to car-
dinalities of coalitions. The second dimension refers to the
position of coalitions of a given cardinality. Coalitions in
each cardinality will be sorted by their value in descending
order, i.e., the 1st position is the highest value or the best
coalition, the 2nd position is second highest value or the sec-
ond best coalition, and so on. We shall refer to the second
dimension as the order of coalitions within each cardinality.
Element C[1][1], for example, refers to the 1st order (coali-
tion) of cardinality 1 while C[2][1] refers to the 1st order
(coalition) of cardinality 2, and so on.

In order to maintain the disjoint condition, we define R a
set of available agents from which a coalition can be chosen
for generating CS. A new CS is generated once R is empty,
i.e., the exhaustive condition is satisfied. We define B a two-
dimensional array of integer for indexing coalitions in C, in
order to guarantee the correctness, the algorithm needs to
keep track of what coalitions have been used at each layer so
far. The first dimension refers to the layer of CS. The second
dimension refers to the cardinality in each layer. The value
of each element of B indexes a coalition in C. Such a coali-
tion, S ⊆ R and S 6= ∅, in each cardinality is the first avail-
able order of a given cardinality in C that might be chosen for
layer l of CS. We shall refer to this coalition as the candidate
coalition of its cardinality. Element B[1][1] = 1 in Figure ??,
for example, implies that the candidate coalition from cardi-
nality 1 for layer 1 of CS is C[1][B[1][1]]) = B[1][1] = {1}, i.e.,
the 1st coalition of cardinality 1. Element B[3][2] = 6 im-
plies that the candidate coalition for layer 3 from cardinality
2 is C[2][B[3][2]] = C[2][6] = {3, 4}, i.e., the 6th coalition of
cardinality 2. The value 0 of an element implies there is no
candidate coalition for the specified layer and cardinality.

Hence, the value of elements in B simply tells what is the
candidate coalition of each cardinality in each layer of CS.

Algorithm 1 Construct coalition structures by adding the
next available coalition into the existing structure

1: l← 1
2: S ← chooseNextS(l)
3: while S! = ∅ do
4: CS[l]← S
5: R ← R \ S
6: S ← ∅
7: if R = ∅ then . a coalition structure is made
8: print ”***** ”+CS;
9: end if . attempt to extend layer

10: S ← Extend()
11: if S != null then . Extend to the next layer
12: l← l + 1;
13: else . cannot extend then attempt for altering
14: S ← Alter()

. cannot alter
15: if S = ∅ then . attempt to shrink
16: S ← Shrink()
17: end if
18: end if
19: end while

2.1 Main Function
There are two parts in the main function: populating data

and the main loop. Populating Data: At the beginning,
C is populated. We follow Sandholm et. al. [7, 11] that
a 1/n bound can be established at the cost of 2n−1. Its
elements in each cardinality are sorted by their values in de-
scending order. Sorting coalitions in each cardinality can be
done in parallel using any efficient sort algorithm. In our
implementation, we use Merge sort algorithm, which is very
robust and efficient because its worst case time complexity
is among the best, i.e., m log m where m is the size of in-
put. Since sorting is done in parallel, the largest value of
m is nCbn/2c which is slightly less than 2n − 1, the time
complexity of Rahwan et. al. The space complexity is also
reasonable that it is O(m). (One may argue that sorting can
be costly to the performance of the algorithm. The empiri-
cal results show that, taking into account the sorting time,
our algorithm still converges much quicker in all data distri-
butions.) All the coalitions in C are sorted by their values
rather than their members as in Rahwan et. al [6, 5]. The
first coalition of each cardinality is the best, i.e., highest
value, and so on. Then, both B and CS are initialized with
0 and null for all elements respectively. Then, l is set to 1
indicating that the coalition structure is being built at layer
1 as the starting layer. At each layer l, the algorithm will
determine what are the candidate coalitions. At the begin-
ning, the first coalition in each cardinality is its candidate.
Thus, B[1][j] is set to 1 indicating that any first coalition
can be chosen for layer 1 of CS. R is set to N since a coali-
tion is yet to be used in CS. Just before the main loop, the
first coalition S is chosen by function ChooseNextS(). This
function is described below.

Main Loop: The logic of the main loop is very simple.
It determines if there is anymore candidate coalition to be
placed in CS at the present layer l. Since the first coalition S
has just been chosen, the algorithm enters the main loop in

this first round and places S at layer l = 1 of CS. Remain-
der agents R is subtracted by S because the agents who are
the members of S cannot be part of the next coalition. This
will guarantee the disjointness of the coalition structure [6,
5]. S is then reset to null. After that the algorithm deter-
mines whether a new coalition structure has been generated
by examining if agents are exhaustively used in CS, i.e., to
examine whether R is empty. If that is the case, Then the
algorithm outputs the newly generated CS.

The algorithm continues acquiring the next coalition to
fill in CS. To satisfy the two conditions mentioned above,
the algorithm may do one of the followings in order to ac-
commodate the new coalition into CS: i)Extend the body
by calling Extend(), ii)Alter the body by calling Alter(), or
iii)Shrink the body by calling Shrink. The algorithm goes
through these steps, in which the value of S as well as the
next layer l at which the new coalition can be inserted into
CS will be determined, and reaches the end of the loop . It
goes back to the start of the loop again where it examines
the value of S whether it will continue in the loop. The al-
gorithm terminates when it cannot find any more coalition.
The 5 working functions that are used in the main algorithm
will be discussed below.

2.2 Working Functions
The following are working functions used in the algorithm.

Choosing Next Coalition (CHOOSENEXTS): Firstly,
this function is called to determined the first best coalition
before entering the main loop as well as in extending, alter-
ing and shrinking CS. The search for the best coalition to
fill in CS is very simple. The algorithm goes through each
candidate coalition at layer l by cardinalities in ascending
order nd chooses the highest aS . In case there is no candi-
date found, it returns 0.

Extending Coalition Structures: After inserting a
new coalition into CS, the algorithm examines whether there
will be a new coalition which will extend, or be inserted into
layer l+1 of, CS. The present CS might be extended if l < n
and for each valid cardinality i, i ≤ |R|. Firstly, algorithm
search for candidates in cardinalities i at the next level, l+1
by calling function NextS. The returned value will be as-
signed to B[i][l+1] as the candidate coalition. Note that the
return value might be 0, indicating that there is no more
candidate in this cardinality. The algorithm then chooses
the next coalition S by calling the function chooseNextS(),
which will return the best candidate at the next layer. The
best candidate will be inserted into mathcalCS in the next
round. If S is empty, the algorithm tries the followings func-
tions.

Altering the Last Coalition: Since it cannot extends
CS, the algorithm tries altering the body by replacing its last
coalition at CS[l] with the next best coalition from available
candidates at that level. Before it can actually do that, it has
to return the member of CS[l] back to R. Then it searches
for the next candidate of the the corresponding cardinality
by calling function nextS(). The next coalition S will be
acquired by calling function chooseNextS(l). If S is found,
the execution reaches the end of the loop and continues in
the next round. Otherwise, it attempts shrinking the body.

Shrinking Coalition Structures: At this point, algo-
rithm cannot find any coalition to extend CS to the next
layer l + 1 nor any coalition to alter CS[l]. It then shrinks
CS and tries if coalition structure can still be generated.

This can be done only if the condition l > 1 holds. Firstly,
it decreases the value of l by 1. The coalition CS[l] will be
replaced by its next available candidate by calling NextS.
The next coalition S will be acquired by calling function
chooseNextS(l). If S is found, the execution reaches the
end of the loop and continues in the next round. Otherwise,
it will attempt to shrink the body again.

Search for Next Candidate Coalition (NEXTS):
After acquiring a new coalition S at any layer l, the al-
gorithm prepares the next candidate coalition in its cor-
responding cardinality by searching downwards. The next
available coalition is the first one, whose members are all in
R. The value of each of these candidate coalitions is the
upperbound of its cardinality and can be used to determine
the upperbound of the optimality in order to decide whether
the algorithm should terminate. The search might not find
a valid candidate. Thus the respective element of B is as-
signed the value 0. Hence, the search is needed only if there
is a chance to find a candidate coalition, i.e., the value of
the respective B is greater than 0.

2.3 Correctness
Guarantee of Correctness and Systematicity: This

algorithm guarantees the correctness condition by the col-
laboration of these extending, altering and shrinking actions.
At the beginning, the algorithm will keep extending CS. At
layer l = 1, all coalitions are candidates. The number of
candidate coalitions across cardinalities in each layer drops
while the algorithm proceeds to further levels. This contin-
ues until the first coalition structure is generated and the
algorithm cannot extend the structure anymore. Hence the
algorithm tries altering its last coalition. It discards the last
coalition of the coalition structure and search for its substi-
tute as the candidate coalition. Then one of the candidate
coalitions in that layer then could be chosen as the new
coalition from which the algorithm can further extend the
coalition structure.

This cycle of extend and alter repeats until there is no
candidate coalitions left in that layer. Once there is no can-
didate coalition left in each layer, the algorithm shrinks CS
by 1 layer. The last coalition in CS will, again, be discarded.
The algorithm substitutes it with its valid successor from the
same cardinality. The algorithm chooses one of the candi-
date coalitions in this layer from which the algorithm may
extend CS. In the case that there is no candidate coalition
in the last layer after shrinking, then the algorithm repeats
the shrinking until it can either extend CS or alter the last
coalition. If the shrinking repeats until it reaches layer 1,
the search for candidate coalitions downward will push the
upperbound down as well.

Two coalition structures are identical if they are composed
of the same set of coalitions. The repeating coalition struc-
ture might have coalitions generated i) in the same order, or
ii) in different order of its predecessor. Our algorithm gener-
ates coalition structures in a certain order thus guaranteeing
systematic search. Since the next coalition is to be chosen
from candidate coalitions by a certain criterion, a coalition
Si that is strictly better than Sj will always be chosen before
Sj regardless of the layer l and other candidate coalitions.
This prevents repetition in different order. Our algorithm
easily prevents the first type repetition by its method in the
search for next candidate coalition which must be a subset
of R as well as the search always begin at the next coalition

Figure 1: The graph show results on NMD. Each
gadget, i.e., square, diamond, circle and star, repre-
sent elapsed time of CH Convergence, CH Termina-
tion, RN Convergence and RN Termination respec-
tively.

in the same cardinality as the chosen coalition.

3. EXPERIMENTAL RESULTS
Settings end Empirical Results: We actually experi-

ment our algorithm against Rahwan et.al.(RN), s apparently
the state of the art, on 20 data distribution (in addition to
Sandholm et al 4 distributions). 1 For each of 100 sample
data in each distribution, we observe the elapsed time for i)
convergence (the solution reaches the highest value but yet
to terminate) and ii) termination (the algorithm terminates
because either there is no way to improve the solution or
it is timeout). For each of these elapsed time, we find the
average, highest and lowest elapsed times for 17 ≥ n ≤ 26
agents for both algorithms.

Due to limited space, we choose to show outputs of nor-
mail distribution. CH converges and terminates earlier than
RN in all cases. Both algorithms terminate shortly after
convergence across all variations. Empirically, our algorithm
always converges earlier than RN. This implies that our algo-
rithm guarantees better or, at least, as good as RN’s result
at anytime although our algorithm takes longer to termi-
nate in some cases. The further implication of this is that
generating coalition structures from best coalitions can help
reach optimal coalition faster. This is based on the sim-
ple fact that merely generating coalitions alone can be in-
tractable for a centralized system because all the existing
algorithms (including ours) requires that all coalitions and
their values must be observed before the actual generation–
let alone the coalition structure generation. For example,

1Both algorithms are implemented in Java 1.5. Note that
we were not given RN implementation, we try our best on
several ways to ensure it runs at the fastest speed possi-
ble. The representation of the coalitions and their values
are the same as in our implementation. The executions are
done on Pentium 4 2GHz with 2GB of ram on Windows XP
machines.

it is impossible to execute any of the existing centralized
algorithms for 60 agents because none of the existing sin-
gle computer systems can offer enough memory. In terms
of anytime algorithm which might be more appropriate for
multi-agent systems, our algorithm empirically shows that
it always generates better or, at least, as good solution as
RN. Note that the

4. CONCLUSION AND FUTURE WORK
In this work, we have sought to develop an anytime algo-

rithm that provides a guarantee of generating the optimal
solution, given it has enough time. The algorithm advances
the state of the art, in terms of anytime algorithm, by al-
most always generating solution better or, at least, as good
as RN at any point in time. We present empirical results
that support our claims. In the future, we would like to
apply more efficient pruning machanism.

5. REFERENCES
[1] V. D. Dang and N. R. Jennings. Generating coalition

structures with finite bound from the optimal
guarantees. In Third International Joint Conference
on Autonomous Agents and Multiagent Systems -
Volume 2 (AAMAS’04), pp. 564-571, 2004.

[2] J. P. Kahan and A. Rapoport. Theories of Coalition
Formation. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1984.

[3] D. L. Kreher and D. R. Stinson. Combinatorial
Algorithms Generation, Enumeration and Search.
CRC Press, Boca Raton, Florida, 1999.

[4] K. S. Larson and T. W. Sandholm. Anytime coalition
structure generation: an average case study. Journal
of Experimental & Theoretical Artificial Intelligence,
12(1):23 – 42, January 2000.

[5] T. Rahwan, S. D. Ramchurn, V. D. Dang,
A. Giovannucci, and N. R. Jennings. Anytime optimal
coalition structure generation. In Proceedings of the
22nd Conf. on Artificial Intelligence (AAAI), pages
1184–1190, July 2007.

[6] T. Rahwan, S. D. Ramchurn, V. D. Dang, and N. R.
Jennings. Near-optimal anytime coalition structure
generation. In Proceedings of the 20th International
Joint Conference on AI (IJCAI), January 2007.

[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohm. Coalition structure generation with
worst case guarantees. Artif. Intell., 111(1-2):209–238,
1999.

[8] T. Sandholm and V. Lesser. Coalition Formation
among Bounded Rational Agents. 14th International
Joint Conference on Artificial Intelligence, pages
662–669, January 1995.

[9] O. Shehory and S. Kraus. Task allocation via coalition
formation among autonomous agents. In Proc. of
IJCAI, pages 655–661, August 1995.

[10] C. Sombattheera and A. Ghose. Agent-based
coalitions in dynamic supply chains. In The 9th Pacific
Asia Conference on Information Systems, 2005.

[11] C. Sombattheera and A. Ghose. A pruning-based
algorithm for computing optimal coalition structures
in linear production domains. In Proceedings of the
19th Canadian Conference on Artificial Intelligence,
2006.

