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ABSTRACT
In this paper, we deal with the sequential decision making prob-
lem of agents operating in computational economies, where there
is uncertainty regarding the trustworthiness of service providers
populating the environment. Specifically, we propose a generic
Bayesian trust model, and formulate the optimal Bayesian solution
to the exploration-exploitation problem facing the agents when re-
peatedly interacting with others in such environments. We then
present a computationally tractable Bayesian reinforcement learn-
ing algorithm to approximate that solution by taking into account
the expected value of perfect information of an agent’s actions. Our
algorithm is shown to dramatically outperform all previous finalists
of the international Agent Reputation and Trust (ART) competition,
including the winner from both years the competition has been run.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Mul-
tiagent systems

General Terms
Algorithms, Design, Measurement, Experimentation

Keywords
Trust, Reputation, Uncertainty, Reinforcement Learning

1. INTRODUCTION
Trust constitutes an important facet of multi-agent systems research
since it provides a form of distributed social control within highly
dynamic and open systems whereby agents form opinions about
others based on their own past interactions, as well as from the re-
ports of other agents [11]. Now, in many dynamic open systems,
such as e-marketplaces, agents have to interact with one another to
achieve their goals—for example by purchasing services or infor-
mation from each other. Here, agents may be self-interested, and
when trusted to perform an action for (or provide information to)
another, may betray that trust by not performing the action as re-
quired. In addition, due to the size of such systems, agents will
often have to interact with agents with which they have little or no
past experience. There is thus a need for models of trust and repu-
tation that will ensure good interactions among software agents in
large scale open systems.
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To this end, a number of trust models and strategies have been
proposed in order to deal with distinct aspects of the interactions
between agents (e.g. to deal with lying agents, and to model and
learn the behaviour of other agents [17, 13]). However, none of
these approaches has so far explicitly dealt with the sequential deci-
sion making problem arising naturally in computational economies.
Specifically, agents that repeatedly interact with each other, by ei-
ther purchasing services or information from a pool of agents, have
the opportunity to form opinions over time regarding the trustwor-
thiness of some of their prospective service or information providers;
however, they always face the dilemma of whether to keep inter-
acting with the same “trusted” agents (i.e., exploit their experience)
or to keep experimenting by trying other agents with whom they
haven’t had much interaction so far (i.e., explore in order to dis-
cover better providers). This is the classic exploration-exploitation
problem in a (multi-agent) computational trust setting. Now, a
number of approaches have been proposed to tackle this problem
in non-trust related reinforcement learning (RL) settings. Here we
adopt a principled Bayesian approach to resolve this dilemma.

In more detail, in addition to describing the theoretical aspects
of our model, we also evaluate its performance (using a tractable
approximation algorithm) against other trust strategies in a sim-
ulated e-market environment. Specifically, we apply our approach
to the Agent Reputation and Trust (ART) International Competition
Testbed [10], and show that it outperforms (by a huge margin) all
the finalists of the two competition years. In so doing, this paper ad-
vances the state of the art in the following ways: First, we propose
the first trust model that enables rational agents to take optimal se-
quential decisions in environments necessitating exploration when
dealing with potentially untrustworthy service providers. Second,
we provide a computationally tractable algorithm to approximate
the optimal (but intractable) Bayesian solution. This algorithm ex-
tends the value of perfect information exploration ideas of [8, 7, 4]
into a computational trust setting for the first time. Thus, it trades
off the expected gains from exploration against the expected costs
of choosing potentially suboptimal providers. Third, we demon-
strate that this is the most effective strategy yet devised for the ART
benchmark scenario.

The paper is organized as follows: Sec. 2 provides a background
to computational trust and Bayesian RL; in Sec. 3 we describe our
generic Bayesian trust model, detail the optimal solution to the
agents’ sequential decision making problem, and present our ap-
proximation algorithm to this solution. Then, in Sec. 4, we describe
the specifics of the ART competition, and instantiate and evaluate
our approach in this testbed. Finally, Sec. 5 concludes.

2. BACKGROUND
Here, we briefly review related work on computational trust and
Bayesian RL.
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2.1 Computational trust
The issue of trust in multi-agent systems is one that is widely rec-
ognized, and which has been addressed in a number of different
ways (see [11] for a full review). In particular, much of this work
focuses on estimating the future behaviour of an agent’s peers, so
it can decide how best to interact with them in the future. A com-
mon theme is the need to make assessments based on a variety of
information sources, so that predictions are not sensitive to the ab-
sence or failure of any particular source. This is especially true of
large systems, in which interactions regularly occur between enti-
ties that have no previous experience of each other. In this case,
agents must base their decisions on third party experience, or use
other information, such as general environmental trends.

Typically, the proposed mechanisms vary in how they represent
agent behaviour, the sources of information they use, and the learn-
ing mechanism adopted. For example, with regard to information
sources, we can use knowledge of social norms and rules [12], or
the relationships that may exist between agents [1]. However, such
evidence cannot be expected to exist in all domains. In contrast, in
many domains, agents can observe the past behaviour of their peers,
and so most models adopt past experience (direct or third party) as
an indicator of preformance, including those discussed below.

With regard to learning, early mechanisms tend to adopt a heuris-
tic approach, with improvised functions to account for different as-
pects of agent behaviour (for example, see [15]). However, such
techniques have few theoretical properties showing how they should
perform in different conditions, or how they compare to any notion
of optimal performance. Consequently, a number of recent trust
models have adopted a theoretical grounding based on probabil-
ity theory. For example, models in which probability distributions
are estimated over possible agent behaviour are presented in [17]
and [13]. Probabilistic systems, such as these, allow an agent to
combine its own experience with third party information, in a man-
ner that is principled, and accounts for the possibility that third
party information may be malicious, or otherwise unreliable. In
addition to their theoretical benefits, such systems have also been
shown to outperform other approaches in practice. Indeed, the win-
ner for the ART competition for the past two consecutive years has
been based on probability theory [16].

2.2 Bayesian reinforcement learning
Now, turning our discussion to Bayesian RL, assume we have an
agent learning to control a stochastic environment modeled as a
Markov decision process (MDP) 〈S,A, Pr, R〉, where S and A
represent finite state and action sets; Pr are transition dynamics
refering to a family of transition distributions Pr(s, a, ·), specify-
ing the Pr(s, a, s′) probability with which state s′ is reached when
action a is taken at s; and R : S 7→ R is a (stochastic) reward
function specifying the probability with which the agent obtains
reward r when state s is reached. Now, an RL agent does not know
R and/or Pr: so, it must learn a policy to maximize sequential
performance (i.e., maximize the expected sum of future discounted
rewards over an infinite horizon) based on the observed results of
its interactions with the environment.

In model-based RL, the learner maintains an estimated MDP
〈S,A, cPr, bR〉, using standard methods to solve (or approximate
the solution of) this MDP at each stage of the RL process. Single-
agent Bayesian RL [7] allows agents to incorporate priors and ex-
plore optimally, assuming a prior density P over possible dynam-
ics D and reward distributions R, updated with each experience
tuple 〈s, a, t, r〉 observed. In a similar manner, agents using mul-
tiagent Bayesian RL [4] update priors over the space of possible
opponent strategies, as well as over the space of possible MDPs.

With sequential performance in mind, one can identify two com-
ponents of the value of an agent’s action at any particular belief
state: an expected value with respect to the current belief state;
and an expected value of the action’s impact on that belief state.
This second component, in particular, captures the expected value
of information (EVOI) of an action in the following sense: each ac-
tion triggers some “response” by the environment, which changes
the agent’s beliefs, influencing subsequent action choice and ex-
pected reward. Now, EVOI need not be computed directly, but it
can be incorporated in Bellman equations describing the solution
to the POMDP representing the exploration-exploitation problem
(by conversion to a belief-state MDP). The optimal course of ac-
tion for the agents is then to act greedily w.r.t. their actions’ values
(i.e., without a need for explicit exploration); this Bayesian explo-
ration outperforms in expectation any other method that uses the
same prior knowledge [3]. Thus, the Bayesian approach provides
the optimal solution to the agents’ exploration-exploitation prob-
lem. Furthermore, experiments with various tractable Bayesian al-
gorithms in [8, 7, 4] demonstrate the practical value of Bayesian
exploration.

3. A GENERIC BAYESIAN TRUST MODEL
Having outlined the background, we now describe a generic Bayesian
trust model that can be used in a reinforcement learning framework
to help an agent take sequentially optimal decisions while repeat-
edly interacting with service providers under uncertainty. We then
propose an RL algorithm to tackle the problem in a computationally
tractable manner.

3.1 The problem and its optimal solution
A Bayesian trust sequential decision making problem is character-
ized by a set of enquiring agents (or “trusters”)1, a set of service
(or information) provider agents (or “trustees”), a set of types for
the agents, a set of enquiring actions, a set of outcomes, a reward
function, and agents’ beliefs over types. We now describe each of
these components in detail:

Assume a set of trusters M = {1, . . . , m} and a set of service
providers N = {1, . . . , n}. Nothing in our model prevents a truster
from being a service provider itself—i.e., M and N may intersect.
Each provider j has a specific type τj , which intuitively captures
its “trustworthiness”.2 This, in the general case, can be consid-
ered to be drawn from a continuous space Tj (for example, a space
of potential standard deviations defining a provider’s accuracy or
trustworthiness—as is the case in the ART framework). For any
collection of service providers S ⊆ N , τS = 〈τi;i∈S〉 is the vector
of types of agents in the collection. Each agent i knows its own
type τi, but not those of other agents: thus, a truster is unaware of
the trustworthiness of the providers.

A truster i has available to it a finite set of enquiring actions
Ai of size 2|N|: Specifically, a truster may (or may not) choose
to contact and request a service (or information) from up to |N |
of the providers available. When an action is taken, it results in
some outcome o ∈ O. The odds with which an outcome is realized
depend on the types (trustworthiness) of the contacted trustees: if,
for example, they are art experts and their assessment on the value
of an artwork is requested, the outcome of enquiring from them is
the collective assessment error (calculated given the observed indi-
vidual assessment errors, as we detail in Section 4). Whenever a
1For simplicity, henceforth in our paper we will refer to any such truster simply as an
“agent”—unless it is clear from the context that this term refers to a trustee.
2Recently, Bayesian RL was used in the coalition formation setting, where agents
maintain beliefs regarding potential partners’ capabilities (types) [5, 6]. Our model
bears certain resemblances (but also very distinct differences) with that work.
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truster contacts collection S of service providers (by taking enquir-
ing action aS ∈ Ai), and trustee types are as in τS , an outcome o
occurs with some probability drawn from a density P (o|τS). Each
outcome-action pair 〈o, aS〉 then results in some reward Ri(aS , o)
for truster i.

At each point in time, a truster has a belief state over the possi-
ble types of its potential trustees, which is defined as follows. For
each potential trustee j, truster i maintains a prior belief state over
its types, denoted bj

i . One could think of the bj
i s as a set of hy-

perparameters describing the distributions over types. Thus, each
bj
i defines a probability density P (τj |bj

i ). Assuming that trustees
provide information independently, we can assume that the belief
state bi of agent i consists of a collection of the bj

i priors. In this
way, a joint density P (τS |bi) can be defined for any collection S
of agents, with P (τS |bi) =

Q
j∈S P (τj |bj

i ).
Now we describe an RL process in which agents repeatedly con-

tact subsets of potential trustees for service. In this case, a truster
has to decide which subset S of trustees to enquire from (that is,
which enquiring action aS to take); then, through observation of
the outcome of the service (or the accuracy of the received infor-
mation), the truster is able to update his beliefs regarding the trust-
worthiness of the providers.

The process proceeds in stages: at each time step t, at which the
truster has current beliefs bi, it takes an action aS and observes the
outcome o. Then, i is able to update its beliefs about the providers’
types. Denoting the posterior belief state of agent i, following ex-
perience 〈o, aS〉, as bo,aS

i , we get the posterior P (τS |bo,aS
i ) by

Bayes rule:

P (τS |bo,aS
i ) ∝ P (o|τS)P (τS |bi)

The process then repeats.
Given the model above, we now provide a set of Bellman equa-

tions [2] that provide the solution of the corresponding belief-state
MDP that describes the sequential decision making problem fac-
ing a truster i. In these equations, Qi(aS , bi) denotes the quality
of performing the enquiring action aS of asking a subset of S ser-
vice providers for their services while at belief state bi; and Vi(bi)
denotes the value of being at belief-state bi:

Qi(aS , bi) =

Z
τ S

P (τS |bi)

Z
o

P (o|τS)[ri + γVi(b
o,aS
i )]do dτS

(1)

Vi(bi) = max
aS

Qi(aS , bi) (2)

where ri is the immediate reward for i, provided by the reward
function Ri(aS , o); and γ ∈ [0, 1) is a discount factor.

Notice that this formulation takes into account both the imme-
diate value to i of performing an enquiring action, and its long-
term (sequential) value deriving from the fact that i’s beliefs will
change as a result of the information it will receive by perform-
ing aS . Thus, the agents enquire (“explore”) in an informed way,
asking for opinions from the providers they consider more reliable,
taking into account the value of information implicit in these equa-
tions: this means the agents take into account the potential effect
that new information will have on their future decisions, and ex-
plore in such a way that their anticipated costs (captured in the
reward function) are outweighed by their anticipated (long-term)
benefits. This belief-state MDP formulation enables us to resolve
the exploration-exploitation tradeoff in this setting—in an optimal
way, provided one can solve this set of equations.

Unfortunately, solving these equations exactly is, in the general
case, impossible—the intractability of the solution arising from the
well-known curse of dimensionality [2]. This forces us to con-

sider computational approximations to tackle the problem. We now
describe one such approximation to the optimal solution provided
above; our algorithm avoids time-consuming lookahead calcula-
tions, but rather focuses on (myopically) estimating the value of
information of any action.

3.2 The VPI exploration algorithm
The value of perfect information (VPI) exploration method we present
here is based on a technique initially developed in [8, 7] for single-
agent RL, and which was adapted to the multiagent RL context as
described in [4]. Recasting the relevant ideas to the trust and rep-
utation setting, we now propose a VPI exploration method that es-
timates the (myopic) value of obtaining perfect information about
the types of service providers given current beliefs. This leads to
the agents calculating an estimate of the sequential value of any ac-
tion of selecting a set of providers. Though the basic idea of our
algorithm is as in [8, 7, 4], it differs in that there is no sampling over
a space of MDP models involved, but rather we require sampling
over a space of types. Furthermore, applying the generic VPI ideas
in the ART setting requires dealing with subtle technical issues in
a principled, but also practical, manner. This will become apparent
in Sec. 4, where we discuss the construction of the reward function
for our setting, and ways to achieve action space reduction.3 In ad-
dition, we note that this is the first time the VPI ideas have been
applied in a realistic setting encompassing dozens of agents.

Now, let us consider what can be gained by learning the true
value of some action aS of choosing a subset S of providers to
interact with. If aS is executed, assume that it leads to specific
exact evidence regarding the types of the agents in S. Thus, we
assume that the real type vector τ ∗

S is revealed after aS . In this
way, the true value of aS is also revealed for i; let it be denoted as
q∗aS

= Qi(aS |τ ∗
S). We calculate this myopically as:

Qi(aS |τ ∗
S) =

Z
o

P (o|τ ∗
S)Ri(aS , o)do (3)

employing sampling from the P (o|τS) distribution, for computa-
tional efficiency reasons.4

This information is of interest only if it leads i to change its deci-
sion as to what strategy to follow. Specifically, there are two ways
to take advantage of this new, “perfect” knowledge.

First, suppose that under its current belief state bi, the value of
i’s current best action a1 = aS1 (e.g., asking the S1 subset for ser-
vice) is q̄1 = Q̄i(aS1 , bi), the expected value given this belief state
(obtained through averaging over samples from bi). Now, suppos-
ing that the new knowledge indicates that aS is a better action (i.e.,
q∗aS

> q̄1), i should perform aS instead of aS1 , gaining q∗aS
− q̄1.

Second, say that the value of the current second best action a2 =
aS2 (e.g., enquiring of S2) is q̄2. If action aS coincides with the
action considered best, a1 = aS1 , and the new knowledge indicates
that the real value q∗aS1

= q∗aS
is less than the value of the action

previously considered as second-best (that is, if q∗aS1
< q̄2), then

the agent should ask S2 instead of S1 for service, gaining q̄2−q∗aS1
.

Thus, the gain from learning the true value q∗aS
of aS is:

gainaS
(q∗aS

|τ ∗
S) =

8<: q̄2 − q∗aS
, if aS = a1 and q∗aS

< q̄2

q∗aS
− q̄1, if aS 6= a1 and q∗aS

> q̄1

0, otherwise
(4)

3Also, in reality, the distribution over types is a distribution over the precision of
the providers’ opinions, not readily provided but carefully constructed given the ART
testbed specification (see Sec. 4).
4We note that q∗aS

could also be calculated by employing any n-step lookahead
method—if one is willing to pay the additional computational price imposed.
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However, i does not know in advance which types will be revealed
for S; thus, he needs to take into account the expected gain given
prior beliefs. Hence, i computes the expected value of perfect in-
formation (EVPI) about performing aS as:

EVPI(aS |bi) =

Z
τ S

gainaS
(q∗aS

|τS)P (τS |bi)dτS (5)

This expected value of perfect information represents the expected
gain deriving from the exploration of enquiring action aS . Thus,
the value of aS after taking EVPI into account is now defined as:

QVi(aS |bi) = Q̄i(aS , bi) + EVPI(aS |bi) (6)

The agents should then use these QV values, instead of using the
usual Q-value quantities to select providers (in other words, EVPI
is used as a way to boost the desirability of actions). Since our
type space is continuous, we sample the joint type distribution to
calculate the expected values and EVPI above.5 In summary, VPI
exploration proceeds as follows:

1. A number of type configurations are sampled from density P
given current beliefs bi.

2. The “true” q∗-values of any potential enquiring action aS ,
w.r.t. each sample, are calculated using Eq. 3, an average
q̄aS value is calculated for each aS (given all samples drawn
from bi), and actions aS are ranked given the q̄aS values.

3. The gain from choosing each aS is then calculated via Eq. 4.

4. The EVPI for aS is calculated via Eq. 5, the QVi values for
(any) aS are calculated via Eq. 6.

The QV-values calculated by the VPI algorithm are subsequently
used for action selection. Put simply, agent i should perform an
action with maximal QVi value (if there are more than one such
actions, i randomly chooses one among them).

Finally, so far we have experimented with our method calculat-
ing the Q-values above myopically. This is done for computational
efficiency reasons. Myopic as this calculation may be, our exper-
iments clearly show the benefits of using this particular VPI algo-
rithm. However, we note that our method is generic, in the sense
that it can be used for the calculation of VPI over action quality
values generated using any method deemed appropriate.

4. APPLICATION TO ART
We now present an empirical evaluation of the techniques described
above by applying them to the ART testbed.6 The aim of this
testbed is to provide a standard problem scenario that can be used to
compare different approaches to modelling and applying trust and
reputation in multi-agent systems. Specifically, the testbed sim-
ulates a marketplace consisting of service providers (agents) that
compete to provide information services. There is a fixed total
number of clients who are apportioned between the agents accord-
ing to the comparative quality of their service provision. Each of
the providers needs to spend money in order to gain information.
Furthermore, they can improve their quality of service by request-
ing (against a payment) information from their competitors. How-
ever, it is not necessary that the requested agents will provide good
information. In fact, as a result of the competition between the
agents, it is quite likely that they will provide bad information.
5Of course, the calculation of Q-values and EVPI can be done in a straightforward
manner (using summation instead of integration, and no sampling) if the type space is
discrete and the number of possible type configurations small.
6The ART testbed website can be found at
http://www.lips.utexas.edu/art-testbed/.

Thus, within this competition, agents must not only decide how
much of their income to spend to maximise their profit, but also
which of their competitors they should purchase opinions from to
obtain the most accurate information for the lowest investment.

For our purposes, the ART testbed provides a suitable scenario
on which to evaluate our proposed methods for three reasons. First,
there is a trade-off between the cost to an agent for acquiring in-
formation from its competitors, and the potential increase in the
agent’s future marketshare that such acquisition may bring about.
Second, to determine which of its competitors provide the best in-
formation for a given amount of money, an agent must purchase
information from different providers and compare their relative ac-
curacy. Thus, each agent must make non-trivial decisions about
how to trade-off immediate costs against potential future rewards.
Finally, as the ART testbed provides a shared platform on which to
evaluate agent decision mechanisms, its use facilitates comparisons
between our methods and previous approaches in the literature to
the same problem domain. In particular, we shall compare against
previous work that provided the winning algorithm of the annual
ART competition in the past two years [16]. The rest of this sec-
tion is structured as follows: Sec. 4.1 describes the details of the
testbed necessary to understand the application of our approach to
the scenario; Sec. 4.2 describes the instantiation of our model to the
testbed; and Sec. 4.3 presents our empirical results.

4.1 The ART testbed scenario
The main goal of an agent competing in the ART testbed is to
maximise the profit it receives by the end of each game. To do
so, each agent is assigned a number of artworks (paintings) for
which it estimates the monetary value, in return for a fixed pay-
ment. Each painting is associated with exactly one client (one
painting per client) drawn from a fixed set of clients, C, and is
assigned to exactly one agent. Moreover, each game consists of a
number of timesteps, and at the end of each timestep, each agent is
assigned a proportion of clients according to the accuracy of its pre-
vious estimates, relative to its competitors. In this way, the agents
that provide the most accurate estimates gain the largest share of
available client revenue. However, in the interest of fair play, each
agent initially receives an equal proportion of assignments, and to
discourage end-game strategies, agents are not aware of the total
number of timesteps in each game.

To make a profit, agents have three revenue streams: (1) pay-
ments received for appraisals of client paintings, (2) payments re-
ceived from competitors for help in evaluating their painting as-
signments, and (3) payments received from competitors to help as-
sess the reliability of opinions provided by other competitors. Each
of these types of transaction have a fixed price. Specifically, an
agent receives a fee of ca for each painting assigned from a client;
cp for each painting evaluation requested by a competitor; and cr

for selling information about its competitors to other competitors.
Each of these payment values are constant, and are chosen such
that ca > cp > cr .

Of these revenue streams, we shall focus our attention on pay-
ments received for painting appraisals, ca, as these generally make
up the majority of an agent’s income. In particular, we shall con-
sider how an agent can invest in both its own opinion and that of
its competitors, so that it increases its marketshare. At the end of
each timestep, each agent, i, is assigned a new marketshare, mi,
according to Eqs. 7 to 9.7

mi = q ·m′
i + (1− q) · m̃i (7)

7Equation 9 differs from its definition in [10], but matches the one actually in use in
the ART competition.
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m̃i =
1/eiP

b∈A 1/eb
(8)

ei =
1

|Ci|
X
c∈Ci

|p∗i,c − vc|
vc

(9)

Here, m′
i, is the agent’s previous marketshare; q ∈ [0, 1) is a pa-

rameter determining the influence of previous marketshares over
new assignments; m̃i is the agent’s provisional marketshare, prior
to adding the effect of the previous markshare; and ei is the agent’s
average relative error for its client painting assignments in the most
recent timestep. The latter term is calculated according to Eq. 9, in
which Ci is the set of client paintings assigned to i in the previous
timestep, vc is the true value of painting c, and p∗i,c is the agent’s
overall estimate (“appraisal”) of its value.

Each appraisal, p∗i,c, is generated in the following way. First, the
agent generates its own personal estimate (known as an opinion)
of the painting’s value. For agent j, its opinion of painting c is
denoted pj,c, and is generated by the testbed according to a normal
distribution with mean vc and standard deviation given by Eq. 10.

s =

„
s∗ +

α

cg

«
vc (10)

Here, s∗ is a value randomly selected by the testbed from {0.1, 0.2,
. . . , 1.0} that represents an agent’s expertise in estimating a paint-
ing. Each painting is classified as belonging to one of a finite num-
ber of eras, and each agent has a different s∗ value assigned for
each era. The standard deviation is further determined by a con-
stant parameter α known by all agents, and cg , which is the mone-
tary amount the agent chooses to spend on generating its opinion.

Clearly, an agent can increase the expected accuracy of its es-
timates (and thus its marketshare) by increasing its value of cg .
However, it must be careful to balance its investment against its
need to make a profit, and s∗ places a hard limit on how much
it can increase its accuracy through personal assessment. To fur-
ther increase its accuracy, an agent can purchase opinions from its
competitors at a fixed price of cp, with the constraint that only one
opinion can be purchased from each competitor per painting. These
third party opinions are generated in the same manner as an agent’s
personal opinion, but a competitor does not reveal its values for
s∗ or its policy for choosing cg . Finally, an agent i’s appraisal of
a painting is calculated as a weighted sum of all purchased opin-
ions, pj,c, which can include the agent’s own opinion (Eq. 11). The
weights, wj , assigned to each opinion, pj,c, are set by the agent
according to its beliefs about the s∗ and cg values used to gener-
ate the opinions. Optimal weights can be determined for an agent’s
own opinions given perfect knowledge of s∗ and cg , and can be es-
timated using Bayesian analysis for the unknown behaviour of its
competitors [16].

p∗i,c =

P
j wj · pj,cP

j wj
(11)

4.2 Model instantiation for the ART scenario
Based on the details of the ART testbed outlined in the previous
section, we have devised a strategy for the scenario that uses the
concepts described in Sec. 3. In particular, we concentrate on spec-
ifying how an agent decides the number of third party opinions
to purchase to assess each painting, which competitors it should
purchase opinions from, and how its beliefs about its competitors’
opinion accuracy should be represented and updated.

In addition to this, a complete strategy for the ART testbed must
specify policies for deciding how much to spend on personal opin-
ions, deciding if and when to purchase reputation information, and

how to respond to requests from competitors for reputation and
opinions. For these aspects, we rely on the policies defined by
the competition-winning strategy of [16]. The salient features are
that an agent will always spend $4 on generating its own opinion
(cp = 4), regardless of whether that opinion is for a directly as-
signed painting or requested by a competitor (we refer to [16] for
the rationale for this); and due to the difficulty in its interpretation
(as defined in the ART scenario), reputation is not used.

This allows us to concentrate on the problem of opinion selection
for directly assigned client paintings, which we address by speci-
fying three components of the generic model presented in Sec. 3.
Specifically, we define (1) the outcome space, O, for performing
an enquiring action aS ∈ Ai; (2) the representation of an agent’s
beliefs, bi; and (3) the reward function, Ri(aS , o), which defines
the immediate reward to agent i for performing aS with outcome o.
Together, these components fully instantiate the generic model, and
allow an agent to use VPI for practical opinion provider selection.

To begin, we first specify the action outcome space, by defining
the outcome of performing action aS for painting c as a tuple o =
〈vc, pc〉, where vc is the true value of c and pc =< p1,c, . . . , pl,c >
is the vector of estimates of vc, generated by each of the opinion
providers from which agent i requested an opinion. With this in
mind, we now define the reward function and belief representation,
and also discuss how the large number of actions (2|N| for the set
of possible providers N ) can be reduced for practical reasoning.

The Reward Function
In the interest of computational tractability, we define Ri(aS , o)
under three simplifying assumptions. Specifically, that (1) each
game lasts forever; (2) in each timestep, all paintings assigned to an
agent are of the same era; and (3) the agent must consult the same
collection of competitors for all paintings assigned in the current
timestep. From the definition of the ART testbed, the immediate
reward is then8:

Ri(aS , o) = m̃i · ca −mi · (|S| · cp + cg) (12)

where mi is i’s current marketshare and m̃i is i’s provisional mar-
ketshare based on its current action. An interesting property of
this equation is that the cost of generating an appraisal depends on
the agent’s current marketshare, while the increase in revenue (as
a result of the current action) depends on the agent’s provisional
marketshare. The overall effect is that an agent will behave most
competitively when its current marketshare is low and it believes
it can significantly improve this by investing in its appraisal. For
example, if the agent already controls most of the available market-
share then a significant increase in marketshare is impossible, and
so a large investment in generating an appraisal may not be rational.
However, if its marketshare is currently very low, then it only has
to appraise a small number of paintings, and so even if it invests a
lot to appraise them, the benefit in terms of increased marketshare
may be significantly higher.

The influence of action outcome o on the reward emerges from
its effect on the provisional marketshare. Specifically, from Eq. 8:

m̃i =
1/ei

1/ei +
P

b6=i 1/eb
=

1/ei

1/ei + ê
=

1

1 + ei · ê
(13)

where ê depends on the performance of i’s competitors and ei is i’s
average relative appraisal error for the specific timestep (calculated
after observation of o using Eqs. 9 and 11). In general, ei depends,
8From the scenario in [10], it is straightforward to prove Eq. 12, using mathematical
induction over all timesteps: Eq. 12 actually incorporates the complete portion of the
agent’s future reward attributed to the specific provisional reward resulting from the
current aS (irrespective of the change in beliefs resulting from this action).
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not only on the outcome for the current painting, but also on i’s
appraisal error for all other paintings it must assess in the current
timestep. This means that, for this application, the rewards obtained
for different paintings are dependent. However, as our experiments
demonstrate, good performance can still be achieved in practice,
even when assuming the independence of these rewards.

Modelling an Agent’s Beliefs
For an agent to determine which actions it should perform, it must
maintain beliefs about the behaviour of its competitors, which it
updates in response to the observed outcomes of its actions. In
particular, two aspects of competitor behaviour must be modelled:
(a) the combined appraisal performance of all competitors, ê; and
(b) the error distribution of each competitor’s opinion estimates.

In general, ê, depends on the strategies employed by the agent’s
competitors, which may or may not adapt to the agent’s own pre-
vious actions. Thus, in the absence of any specific model of be-
haviour, we assume only that the expected market performance
changes slowly over time and estimate it using a moving average.
That is, at the end of each timestep, an agent observes o and cal-
culates its own relative appraisal error, along with its updated mar-
ketshare, and from this infers the value of ê (Eqs. 14 and 15). The
expected value of ê in the next timestep is then estimated accord-
ing to Eq. 16, where ê′ is the previous estimate, h ∈ [0, 1) is the
weight placed on the previous estimate, and ê its most recent value.
Specifically, from Eq. 13,

ê =
1/m̃i − 1

ei
(14)

where, from Eq. 7, m̃i is given as:

m̃i =
mi − q ·m′

i

1− q
(15)

Then,

E[ê] ≈ h · ê′ + (1− h) · ê (16)

Given an adequate number of timesteps and stable market perfor-
mance, Eq. 16 can provide a reasonable estimate of competitor be-
haviour, suitable for our purposes. In contrast, with regard to reli-
ability of competitor opinions, a more detailed model of an agent’s
belief is key to choosing which competitors to acquire opinions
from. This is due, not only to an agent’s need to select competitors
it believes will provide good opinions, but also to its need to model
the uncertainty in its beliefs, so that it can explore the behaviour of
competitors it knows little about.

For this reason, we adopt the following Bayesian model of an
agent’s beliefs about its competitor’s opinions. From the scenario,
we know that an agent’s opinion is generated by the testbed accord-
ing to a normal distribution with mean vc and a standard deviation
according to Eq. 10. As advocated in [16], with no loss of general-
ity, agent j models the distribution of competitor i’s opinion with
less complexity by applying the following transformation:

ρi =
(pi − vc)

vc
(17)

The resulting variable, ρi, again follows a normal distribution, but
is independent of the true painting value, with mean 0 and standard
deviation s = (s∗ + α/cg), and so depends only on the opinion
provider’s expertise (s∗) for the painting era and its strategy for
choosing cg . Given these dependencies, an agent maintains sepa-
rate beliefs about the distribution of ρi for each era and each com-
petitor as follows.
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Figure 1: The τi Parameter Distribution Before (a) and After
(b) Observing ρi = 1, 2, 1

For each competitor–era pair, an agent models the distribution of
the precision:

τi = 1/E[ρ2
i ] (18)

which is defined as the reciprocal of the variance. This distribution
over τi represents agent i’s beliefs regarding the type (“trustwor-
thiness” or “perceived expertise”) of agent i in the specific era. If
known, τi, fully determines the distribution of ρi for a given agent
and era, and represents a state of complete information. In prac-
tice, an agent can only determine ρi for its own opinions, and not
for those of its competitors. However, by modelling the distribu-
tion of τi, an agent can represent its beliefs about its competitors’
opinions, given the evidence it currently has available. For exam-
ple, if τi has a uniform distribution over all possible values of τi

then this represents a state of no information, in which any value
of τi is considered equally plausible. In contrast, if its distribution
peaks sharply around one possible value then this implies a strong
belief that the true value of τi lies close to that value.

As is standard practice, we initially assign a conjugate prior dis-
tribution to τi, so that beliefs can be easily represented and up-
dated. Given that τi represents the precision of a normal distri-
bution, this gives it a gamma distribution, with probability density
function (p.d.f.) [9]:

P (τi) =
βk

Γ(k)
τk−1

i exp [−βτi] (19)

where β > 0 and k > 0 are hyperparameters specifying the shape
of the distribution. Prior to observing any competitor behaviour,
β and k are chosen to reflect the belief that it is equally plausible
that a competitor’s opinions may have high (good) or low (bad)
precision relative to the agent’s personal opinions, but that the true
value is otherwise uncertain. Specifically, we choose β = 10−6

and k ≈ 0.0591, resulting in a 0.5 probability that ρi has a standard
deviation greater than 0.4602, which is approximately the value
one would expect in the ART competition from a competitor that
is assigned better than average expertise and spends between 10%
and 100% of its payment on generating its opinion. The resulting
p.d.f. is illustrated in Figure 1 (part a), which encourages agents
to explore competitor opinions given the high probability of good
precision, while at the same time placing a low prior weight on such
opinions due to the equally high probability of low precision.

When an agent observes the outcome of acquiring opinions from
a collection of providers, it calculates the corresponding values of
ρi by transforming the opinions using Eq. 17 and the observed true
painting values. These are then used to update the hyperparameters
according to Eq. 20, which provide the correct posterior distribu-
tion consistent with Bayes rule [9]. Figure 1 part (b) shows the
posterior distribution formed after applying these equations recur-
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sively for three observed values of ρi, 1, 2, 1. The rapid change
in shape after just a few observations demonstrates how an agent
quickly updates its beliefs in light of gathered evidence.

k = k +
1

2
, β = β +

ρ2
i

2
(20)

Action Space Reduction
When an agent decides which of its competitors to ask, it effec-
tively chooses a subset of all its competitors. As there are 2n sub-
sets of any set of size n, an exhaustive search of all possible actions
quickly becomes infeasible as the number of competitors increases.
Thus, some method of reducing the search space is required, and so
we currently adopt an algorithm consisting of the following three
steps. First, in a game containing n competitors, we consider the
set of n actions in which only one competitor is queried. These ac-
tions are then sorted in ascending order according to their expected
utility and EVPI, so that the most desirable opinions are placed at
the beginning of the list. Second, a new set of n actions is gener-
ated, by merging the previous actions in this order. Thus, in this
new set, the kth action is to ask the k competitors considered best
when enquired on their own. Finally, the new actions are assessed
according to the VPI algorithm, and the best action is selected. As
the reward for polling a collection of competitors is sub-additive,
there is no guarantee that the selected action is optimal. However,
as we shall demonstrate in the next section, this can achieve good
performance in practice.

4.3 Empirical evaluation
In this section, we empirically evaluate the performance of our pro-
posed strategy when run against previous competitors in the ART
competition. In particular, we focus on three aspects of behaviour:
(a) how VPI performs over time during each game, (b) how it per-
forms in populations of agents that require varying amounts of ex-
ploration, and (c) how long our implementation takes to run in prac-
tice. In each of these experiments, we set the game parameters ac-
cording to standard competition rules: each game ran for 100 time
steps; paintings belonged to one of 10 eras; there were 20 clients
in the system per competing agent; and the parameter values were
α = 0.5, q = 0.1, ca = 100, cp = 10, and cr = 1. In all cases,
each experiment was run for at least 30 runs for statistical signifi-
cance, computed using t tests with 95% confidence intervals. With
this in mind, we describe each of our three sets of results below.

Performance over time
To investigate VPI’s ability to explore over time, we ran a num-
ber of games involving populations of agents in which exploration
is important to gain a competitive advantage. To achieve this, each
game included three groups of “dummy” agents whose role was not
to compete in the game, but to provide a source of opinions to the
competitors. In each of these groups (denoted Gbad, Gmed, Ggood),
“dummies” spent a consistent amount on opinion generation such
that groups Gbad, Gmed, Ggood provided a standard deviation of 5,
0.5 and 0.05 respectively.

To encourage exploration, Gmed made up the largest proportion
of the population at 20, Gbad consisted of 15 dummies, and Ggood

of only 5. The rationale for this is that the “good” dummies provide
a strong competitive advantage, but the competitors must explore
well to find them. The average bank balances for these games are
illustrated in Figure 2, in which the competing strategies (includ-
ing all finalists of the 2006 and 2007 competitions) appear in the
legend in order of final score, and with 95% confidence intervals to
indicate statistical significance. Specifically, VPI played against all

0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

16

18

20
x 10

5

time step

ba
nk

 b
al

an
ce

Performance Against All Finalists

 

 
VPI
Blizzard
IAM'07
Sabatini
Jam
ZeCariocaLes
Spartan
Frost
Neil
EU Myopic
Joey

VPI
Blizzard

IAM’07

Sabatini

Jam

ZeCariocaLes

Spartan
Frost

Neil
EU Myopic

Joey

Figure 2: VPI versus ART Competition Finalists.

previous finalists, and a myopic expected utility-calculating algo-
rithm (labeled EU myopic) that used the same reward function and
model of agent behaviour, but did not account for the value of in-
formation. The results show that VPI significantly outperforms (by
a factor larger than 1.6) the other strategies in this setting, including
the previous winner of the 2006 and 2007 competitions (IAM’07)9

and EU myopic. The poor performance of the latter shows the im-
portance of exploration: despite having a good model of the en-
vironment, it cannot behave competitively without considering the
impact of its actions on its changing beliefs. More generally, all
agents quickly acquire a linear increase in bank balance over time,
indicating a constant strategy for provider selection after an initial
exploration of the environment. Interestingly, Blizzard, who came
3rd in the 2007 competition, appears to perform better exploration
than IAM’07, on which it gains an early lead, but fails to maintain
a significant advantage by the end of the game.10 Despite this, no
other agent comes close to VPI’s performance in this setting.

Performance in different populations
To assess the impact of varying populations on VPI’s performance,
we ran more detailed experiments in which we varied the relative
proportions of dummies providing high, medium and low standard
deviations. Specifically, we kept the size of Gbad constant at 10,
and the total size of Gmed and Ggood constant at 40, but varied
the proportion of Ggood relative to Gmed. To reduce simulation
time, we focused our attention on competitions against the previous
winner, IAM’07, with all other finalists removed.

For these experiments, the average end of game bank balances
are shown in Figure 3, plotted against the ratio of Gmed to Ggood.
This shows that VPI remains competitive with IAM’07 when there
are equal numbers of Gmed dummies and Ggood. This is impres-
sive given that VPI implements a generic model, while IAM’07 uses
specific prior distributions and heuristics tailored to the competi-
tion (see [16]). Moreover, as the proportion of Ggood dummies
decreases, exploration becomes more important, giving VPI a clear
advantage: this highlights the strength of VPI exploration.

Runtime complexity
Although our results show that VPI vastly outperforms alternative
strategies in terms of choosing better actions, it is important to con-
sider the cost of such performance in terms of runtime complexity.
Starting from our myopic VPI algorithm definition, it is easy to ver-

9IAM’07’s strategy was in fact identical to the strategy used by its 2006 “predecessor”,
IAM [16].

10We cannot comment further on Blizzard’s exploration behaviour, since we are un-
aware of the details of this competitor’s strategy.
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ify that the algorithm has a theoretical runtime complexity linear to
the number of opponents and the number of type samples used.11

To evaluate the VPI runtime performance in practice, we mea-
sure the total processing time for VPI to run per timestep (includ-
ing action selection and belief updates) in games played against
IAM’07 and EU Myopic. Given that VPI, EU Myopic and IAM’07
all maintain separate belief models for each agent and each era,
and choose one set of opinions in each timestep for each era, these
games present agents with paintings from only one era, to get a true
indication of performance.

The average runtimes per timestep for these games are illustrated
in Figure 4, plotted against the number of opponents, all of which
implemented “dummy” strategies (i.e., Gbad, Gmed and Ggood).
To obtain these results, simulations were run in Java, operating on
cluster nodes with 2GB RAM, and dual AMD Opteron processors,
and a type sample size of 50. The results show that all three algo-
rithms operate in close to linear time, and although VPI has a larger
runtime overhead, it is still reasonable, and, moreover, it scales well
as the number of agents it must consider increases. This is signif-
icant because, although VPI is based on and approximates an op-
timal Bayesian formulation (which is otherwise intractable), it can
be seen to produce good results in a practical time frame.

5. CONCLUSIONS
We presented a Bayesian approach for sequential decision mak-
ing in multiagent environments requiring computational trust and
reputation modeling. The Bayesian approach allows the agents

11By comparison, any lookahead algorithm would have a runtime that is exponential
in the number of lookahead steps (proportional to sn where n denotes lookahead
steps and s is the sample size). In practice this means that even a 1-step lookahead
method operating against 60 competitors would require roughly 3 times the allowed
competition time to run (with s = 50).

to incorporate different trust priors and explore optimally with re-
spect to their beliefs when choosing potential service or informa-
tion providers (trustees) in such environments. We provided an al-
gorithm that approximates the optimal Bayesian solution by taking
into account the myopic value of perfect information entailed in an
agent’s actions, and demonstrated that it dramatically outperforms
the (two years in a row) winning algorithm of the Agents Reputa-
tion and Trust international competition.

We believe that the value of this work is particularly apparent in
e-marketplaces, where rational agents need to take trust-based de-
cisions, without disregarding the impact of those decisions on their
future welfare (as all previous existing work does). Building on
this, for the future we want to integrate our VPI algorithm with al-
gorithms performing explicit lookahead in belief space (to quantify
expected gains in performance and costs in running time). Further,
we would like to test our approach in even more dynamic environ-
ments, experimenting with opponents that change their behaviour
over time. Both of the aforementioned tasks are readily allowed by
our model. Last but not least, we are keen to recast and test these
ideas in sensor networks [14], where the techniques described here
may be used to learn and exploit correlations between sensors (due,
for example, to their close physical proximity) in order to minimize
redundant sampling and, thus, prolong sensor lifetime.
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