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ABSTRACT
In this paper we introduce a new concept namely, generalized
Voronoi partition and use it to formulate two heterogeneous
multi-agent search strategies. The core idea is optimal de-
ployment of agents having sensors with heterogeneous capa-
bilities, in a search space so as to maximize search effective-
ness. We address a few theoretical issues such as optimality
of deployment, convergence and spatial distributedness of
the control law and the search strategies.

1. INTRODUCTION
Inspired by nature, scientists and engineers have devel-

oped the concept of multi-agent systems with robots, UAVs,
etc., as agents. These multi-agent systems can perform a
wide variety of tasks such as search and rescue, surveil-
lance, achieve and maintain spatial formations, move as
flocks while avoiding obstacles, multiple source identifica-
tion and many more. In this paper we address the problem
of searching for targets in an unknown environment.

Sujit and Ghose [1] partition the search space into hexag-
onal cells and associate each cell with an uncertainty value
representing lack of information about the cell. As the
agents move through these cells, they acquire information,
reducing the corresponding uncertainty value. Bullo et al.
[2] use centroidal Voronoi configuration [3] for deployment
of a sensor network and also provide a few fundamental the-
oretical results in the area of distributed optimization and
control.

In this work we provide a new partitioning scheme namely,
generalized Voronoi partition, as a generalization of the stan-
dard Voronoi partition [4] and use it to devise strategies
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for optimal deployment of heterogeneous agents. The opti-
mal deployment forms the basis for two heterogeneous multi-
agent search strategies namely, sequential deploy and search
and combined deploy and search. The heterogeneity arises
from the fact that the agents have sensors with different ca-
pabilities. We provide convergence results for the search
strategies and also analyze the strategies for spatial dis-
tributedness property.

The paper is organized as follows. In Section 2 we in-
troduce a novel partitioning scheme for a Euclidean space
based on Voronoi diagrams, namely generalized Voronoi par-
tition. We discuss the heterogeneous multi-agent locational
optimization problem in Section 3. The objective function,
its critical points, the control law responsible for motion
of agents and its convergence and spatial distributedness
property are also discussed here. In Section 4 we formu-
late a multi-agent heterogeneous search problem based on
the heterogeneous multi-agent locational optimization prob-
lem. We go on to propose and analytically study two multi-
agent heterogeneous search strategies, namely sequential de-
ploy and search and combined deploy and search. The paper
concludes with a discussion on possible directions for future
work in Section 5.

2. GENERALIZED VORONOI PARTITION
Here we present a new scheme of partitioning a given

space. The concept is based on Voronoi decomposition. In
case of Voronoi decomposition, a distance measure such as
the Euclidean distance forms the basis on which the space is
partitioned. A few generalizations such as weighted (multi-
plicatively and additively weighted) Voronoi partitions have
been used in some applications [4]. We propose a partition-
ing scheme based on a collection of functions called node
functions along with nodes or generators.

Consider a space Q ⊂ Rd, a set of points called nodes or
generators P = {p1, p2, . . . , pN} ∈ Q, with pi 6= pj , when-
ever i 6= j, and a strictly decreasing function fi : R+ 7→ R,
called node function for the i-th node. The collection {fi}
satisfies the condition that fi − fj is analytic ∀i, j ∈ [1, N ].
Define a collection {Vi}, i ∈ [1, N ], with mutually disjoint
interiors, such that Q = ∪i∈[1,N ]Vi, where Vi is defined as

Vi = {q ∈ Q|fi(‖pi − q‖) ≥ fj(‖pj − q‖),j 6= i, j ∈ [1, N ]}
(1)

We call {Vi}, i ∈ [1, N ], as a generalized Voronoi partition
of Q with nodes P and node functions fi. Note that

1. Whenever q = pi, either q ∈ Vi or Vi = ∅.
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2. Vi can be non-connected and may contain other Voronoi
cells inside.

3. q ∈ Vi means that fi(‖ pi− q ‖) is the maximum of all
other node functions. In the context of the multi-agent
search problem discussed later, q ∈ Vi means that the
i-th agent is most effective in performing the search
task at the point q.

4. If fis are strictly increasing, then ”≥” is replaced by
”≤” in (1) as in a minimization problem where the fi

are used as a kind of penalty functions.

5. The condition fi−fj is analytic ensures that the inter-
section between any two partitions is a set of measure
zero, that is, it should be made up of union of at most
d − 1 dimensional subsets of Rd. Otherwise the re-
quirement that the cells should have mutually disjoint
interiors may be violated.

6. The restriction of monotonicity on the node functions
can be relaxed. Restriction of monotonicity is imposed
so that the partitioning makes some sense in practical
applications such as multi-agent search discussed here.

7. Use of a general metric in place of the Euclidean metric
leads to further generalization.

8. The generators too can be general objects such as lines,
curves, or polytopes instead of points. In such cases
the distance measure can be suitably defined.

Remark 1: It can be shown that if the node functions are
homogeneous (and strictly increasing/decreasing), then the
generalized Voronoi partition is the same as the standard
Voronoi partition.
Remark 2: The multiplicatively and/or additively weighted
Voronoi partitions, Voronoi partitions with non-Euclidean
metric or pseudo-metric, and with general objects such as
lines, curves, discs, polytopes etc., in place of points [4] can
also be viewed as special cases of the generalized Voronoi
partition (1).

2.1 Generalized Delaunay Graph
Delaunay graph is the dual of Voronoi partition. Two

nodes are said to be neighbors (connected by an edge), if
corresponding Voronoi cells are adjacent. This concept can
be extended to generalized Voronoi partitioning scheme. For
simplicity we call such a graph a Delaunay graph, GD.

Two nodes are said to be neighbors in a generalized Delau-
nay graph, if the corresponding generalized Voronoi cells are
adjacent, that is, (i, j) ∈ EGD , the edge set corresponding to
the graph GD, if Vi ∩ Vj 6= ∅.

3. HETEROGENEOUS LOCATIONAL OP-
TIMIZATION PROBLEM

Here we use the concept of generalized Voronoi partitions
to solve heterogeneous locational optimization problem. Let
Q ⊂ Rd be a convex polytope; φ : Q 7→ [0, 1], be a density
distribution function; P = (p1, p2, . . . , pN ) ∈ QN be the
configuration of N agents, with pi 6= pj whenever i 6= j;
fi : R+ 7→ R, i ∈ [1, N ], be continuous, strictly decreas-
ing function corresponding to i-th node and Vi ⊂ Q be the
generalized Voronoi cell corresponding to the i-th node.

Consider the objective function to be maximized,

H(P) =
R

Q
maxi{fi(‖q − pi‖)}φ(q)dQ

=
P

i

R
Vi

fi(‖q − pi‖)φ(q)dQ
(2)

where ‖.‖ is the Euclidean distance.
Maximizing the objective function (2) can be interpreted

as locating the nodes in such a way, that with respect to the
density distribution φ, and the node functions fis, the node
configuration P∗ is optimal.

3.1 The critical points
The gradient of the objective function (2) with respect to

pi, the location of the i-th node in Q, is given by,

∂H
∂pi

=
R

Vi
φ(q) ∂fi(ri)

∂pi
dQ

= − R
Vi

φ̃(q)(pi − q)dQ = −M̃Vi(pi − C̃Vi)
(3)

where ri = ‖q − pi‖ and φ̃(q) = −φ(q)∂fi(ri)/∂(ri)
2, which

is always non-negative as fi is strictly decreasing function
of r ∈ R+. Here M̃Vi and C̃Vi are the mass and centroid

of the cell Vi with φ̃ as density. Thus the critical points
are pi = CVi , and such a configuration P of agents is called
centroidal Voronoi configuration.

Theorem 1. The gradient, given by (3), is spatially dis-
tributed over the Delaunay graph GD.

Here by spatial distributed function, we mean information
from only neighboring nodes suffices to compute the value
of the function at a node. We skip the proof here as it is
fairly straightforward.
Note : If for some i ∈ [1, N ], Vi = ∅, then CVi = pi.
Remark 3: The critical points are not unique, as with the
standard Voronoi partition. But in the case of a generalized
Voronoi partition, some of the cells could become null and
such a condition can lead to local minima.

3.2 The control law
Let us consider the system dynamics as

ṗi = ui (4)

Consider the control law

ui = −kprop(pi − C̃Vi) (5)

Control law (5) makes the robots move towards C̃Vi for pos-
itive kprop.
Remark 4: It is not necessary that CVi ∈ Vi, but CVi ∈ Q
is true ensuring that Q is an invariant set for (4) under (5).

Theorem 2. The trajectories of the robots governed by
the control law (5), starting from any initial condition P(0) ∈
QN , will asymptotically converge to the critical points of H.

Proof. Here we will use LaSalle’s invariance principle [5],
which is basically an extension of Lyapunov’s theorem re-
quiring V̇ to be negative semi-definite rather than negative
definite as in Lyapunov’s theorem, and the candidate func-
tion V need not be positive definite (see Remark on Theorem
3.8 in [5] pp 90-91).

Consider V (P) = −H , where P = (p1, p2, ..., pN ) repre-
sents the configuration of N robots.

V̇ (P) = −dH
dt

= −
X

i

∂H
∂pi

ṗi = −2αkprop

X
i

M̃Vi(pi−C̃Vi)
2

(6)



We observe that V : Q 7→ R is continuously differentiable
in Q, M = Q is a compact invariant set, V̇ is negative
definite in M , E = V̇ −1(0) = {C̃Vi}and E itself is the largest
invariant subset of E by the control law (5).

Thus by LaSalle’s invariance principle, the trajectories of
the robots governed by control law (5), starting from any ini-
tial configuration P(0) ∈ QN , will asymptotically converge
to set N , the critical points of H, that is, the centroidal
Voronoi partitions with respect to the density as perceived
by the sensors. 2

4. HETEROGENEOUS MULTI-AGENT
SEARCH

We consider a multi-agent search problem with heteroge-
neous sensors. N agents equipped with sensors are deployed
in the search space Q ⊂ Rd to perform search operation.
Lack of information about the search space is modeled as
an uncertainty density distribution φ : Q 7→ [0, 1], which is
assumed known a priori to all the agents at the beginning
of the search operation. For simplicity we will refer to φ
as density. If information is known completely at a point
q ∈ Q, then φ(q) = 0. Thus, the aim of the search strategy
is to ensure φ(q) → 0,∀q ∈ Q, as the search progresses. Let
P = (p1, p2, . . . , pN ) ∈ QN be configuration of agents, with
pi 6= pj whenever i 6= j.

During the search operation the density is updated as,

φn+1(q) = φn(q)min
i
{βi(‖pi − q‖)} (7)

where βi : R+ 7→ [0, 1] is a sensor detection function of i-th
agent and n is iteration count which will be discussed later.

Most sensors’ effectiveness decreases with Euclidean dis-
tance, thus βi can be assumed to be strictly increasing func-
tion of the Euclidean distance. Equation (7) selects the
agent i, which is most effective in performing search task
at point q ∈ Q.

Now suppose that the agents have to be deployed in Q
in such way as to maximize one-step uncertainty reduction,
that is, maximize the effectiveness of one-step multi-agent
search. Consider the objective function

Hn =
R

Q
(φn(q)−mini{βi(‖pi − q‖)}φn(q))dQ

=
P

i

R
Vi

φn(q)fi(ri)dQ
(8)

where Vi is the generalized Voronoi cell (1) corresponding to
the i-th agent, with fi(.) = 1 − βi(.) as node function and
P as the nodes, and ri = ‖pi − q‖.

The critical points
The gradient of Hn with respect to i-th agent position pi

can be derived in the same manner as in (3)

∂Hn

∂pi
= −M̃Vi(pi − C̃Vi) (9)

where φ̃n(q) = −φn(q)∂f(ri)/∂(ri)
2. Here M̃Vi and C̃Vi are

respectively the mass and centroid of the cell Vi with φ̃ as
density. Thus the critical points of the objective function
(8) are {CVi}, i = 1, 2, . . . N .

Theorem 3. The gradient, given by (9), is spatially dis-
tributed over the Delaunay graph GD.

Proof: Follows from Theorem 1. 2

We use,

βi(r) = 1− kie
−αir2

, ki ∈ (0, 1), αi > 0, and i ∈ [1, N ]
(10)

which models a class of sensors’ sensitivity with Euclidean
distance fairly well. The exponential function enables us to
get a closed form solution for the critical points. We assume
first order dynamics for individual agents as given by (4)
and same control law as (5).
Remark 5 Theorems 1 and 2 are valid for the heteroge-
neous multi-agent search problem discussed in this section.

In the following sections we propose and analyze two het-
erogeneous multi-agent search strategies namely Sequential
Deploy and Search and Combined Deploy and Search.

4.1 Sequential Deploy and Search (SDS)
In this strategy, the agents are first deployed optimally

according to the objective function (8) and the search task
is performed reducing the density at the end of the deploy-
ment step. This iteration of deploy and search in a sequen-
tial manner continues till the uncertainty density is reduced
below a required level. The iteration count n in (7) refers to
the number of deploy and search steps. The control law (5)
is used to move the agents towards the critical points, that
is, the centroids of the corresponding cells.

Theorem 4. The sequential deploy and search strategy
is spatially distributed over the Delaunay graph GD.

Proof : Follows from Theorem 3. 2

Theorem 5. The sequential deploy and search strategy
can reduce the average uncertainty to any arbitrarily small
value in a finite number of iterations.

Proof : The uncertainty density update law (7) for any
q ∈ Q with the exponential sensor detection function takes
the form,

φn(q) = (1− kie
−αiri

2
)φn−1(q) := γn−1φn−1(q), q ∈ Vi

(11)
Applying the above update rule recursively, we have,

φn(q) = γn−1γn−2 . . . γ1γ0φ0(q) (12)

Let D(Q) := maxp,q∈Q(‖ p − q ‖), k = mini{ki} and
α = maxi{αi}. It should be noted that, 0 < k < 1, 0 ≤
ri ≤ D(Q). D(Q) is bounded as the set Q is bounded and

0 ≤ γj ≤ 1− ke−α{D(Q)2} = l (say), j ∈ N; and l < 1.
Now consider the sequence {Γ} defined by Γn := γnγn−1 . . .

. . . γ1γ0 ≤ ln+1, which vanishes in the limit n →∞. Thus,

lim
n→∞

φn(q) = lim
n→∞

Γn−1φ0(q) = 0

As the uncertainty density φ vanishes at each point q ∈ Q in
the limit, the average uncertainty density over Q is bound
to vanish in the limit as n →∞, implying the statement of
the Theorem. 2

Figure 1 shows a simulation result for SDS strategy with
5 agents.

4.2 Combined Deploy and Search (CDS)
In the sequential deploy and search strategy, the search

task is carried out only at the end of each deployment step.



In combined deploy and search (CDS) strategy, the robots
are governed by the same control law, but as they move
towards the respective centroid, the search task is performed
simultaneously. From a more practical point of view the
search task could be performed in discrete intervals.

The formulation is based on the sequential deploy and
search strategy.

∆nφ(q) = φn+1(q)− φn(q)

= φn(q)mini(1− β(‖ pi − q ‖))
(13)

which has the continuous version given by,

φ̇(q, t) = min
i

(1− β(ri))φ(q, t) (14)

where ri = (‖ pi − q ‖).
The objective function (8), used for sequential deploy and

search strategy, is fixed for each iteration as φn(q) is fixed for
the n-th iteration. In combined deploy and search, the search
task takes place as the robots move continuously in time (or
in every time step in case of discrete time implementation).
Thus, it is appropriate to modify the objective function to
be maximized as,

H(t) =
X

i

Z

Vi

φ(q, t)(1− β(‖pi − q‖))dQ (15)

The objective function depends on φ, which is now a func-
tion of time. In this case we do not solve the optimization
problem in a formal way. It is easy to see that at any time
t, the critical points of the instantaneous objective function
(15) are the same as those of (8). We borrow the control
law (5) from the sequential deploy and search strategy. It
can be shown that the control law (5) will make the robots
move towards the respective instantaneous centroids. The
centroids depend on time explicitly in addition to implicit
time dependence through the robot positions.

Theorem 6. The continuous time combined deploy and
search strategy is spatially distributed over the Delaunay graph
GD.

Proof. The proof follows from Theorem 4. 2

Theorem 7. The continuous time combined deploy and
search strategy can reduce the average uncertainty to any
arbitrarily small value in finite time.

Proof : At any point q ∈ Q, the uncertainty density φ(q, t)
is bounded below by 0. We shall look at the upper bound
for the same.

We can extract a sequence from the function φ(q, t), at a
given q ∈ Q. Let {t0, t1, . . .} be a monotonically increasing
sequence of real numbers such that ti+1 = ti + 1.

The equation (14) can be re-written as

φ̇(q, t) = γ(t)φ(q, t) (16)

where γ(t) = mini(1− β(ri)).
Now let us define a sequence {ρ} as, ρ0 = φ(q, t0) and

ρn+1 = { min
{tn≥t>tn+1}

γ(t)}ρn = γnρn (17)

where γn = min{tn≥t>tn+1} γ(t) < 1. Note that ρn ≥
φ(q, tn),∀n ∈ N.
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Figure 1: The average uncertainty density vs num-
ber of deploy and search steps for SDS strategy with
k = 0.8 and α1 = 0.4, α2 = 0.7, α3 = 0.1, α4 = 0.07,
α5 = 0.1 for 5 agents

The above equation (17) can be applied recursively to get
the relationship

ρn+1 = γnγn−1 . . . γ1γ0ρ0 (18)

The sequence {Γ} defined by Γn =
Q

0
nγi converges to 0

as proved in Theorem 5, so also the sequence {ρ}. Thus, the
function φ(q, t), for a given q ∈ Q, is bounded above by a
sequence which converges to zero and is bounded below by
the constant function 0. Thus, limt→∞ φ(q, t) = 0, for any
q ∈ Q. Hence, the average density too is bound to vanish as
t →∞, implying the statement of the Theorem. 2

5. CONCLUSIONS
We have introduced the concept of a generalized Voronoi

partition. The standard Voronoi partitions and its varia-
tions were shown as special cases of the general partitioning
scheme. We used generalized Voronoi partition to devise
a locational optimization problem using heterogeneous sen-
sors. Then we went on to formulate a heterogeneous multi-
agent search problem based on these concepts. The objective
function, its critical points, a control law moving the agents,
its spatial distributedness and convergence properties were
discussed. Two heterogeneous multi-agent search strategies
namely sequential deploy and search and combined deploy
and search have been proposed and their spatial distribute-
deness and convergence properties have been studied.
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