
Towards Bidirectional Distributed Matchmaking

(Short Paper)

Victor Shafran
∗

Bar Ilan University
Department of Computer

Science
Ramat Gan, Israel

shafrav@cs.biu.ac.il

Gal Kaminka, Sarit Kraus
Bar Ilan University

Department of Computer
Science

Ramat Gan, Israel
{galk,sarit}@cs.biu.ac.il

Claudia V. Goldman
Samsung Telecom Research

Israel
Yakum, Israel

c.goldman@samsung.com

ABSTRACT
Matchmaking is the process of introducing two or more agents to
each other. Current matchmaking techniques are unidirectional and
fail to address large-scale and highly dynamic systems with time
constraints. We propose a new distributed technique which scales
well, and still maintains relatively low matchmaking time and com-
munication overhead. Our technique introduces very low storage
and computational overhead to the agents. We suggest using a
matching cache which can take advantage of the multidirectional
nature of the matchmaking problem. We empirically evaluate the
proposed technique on bilateral matchmaking and show that it out-
performs the existing techniques.

Categories and Subject Descriptors
I.2.1 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Matchmaking; Peer to Peer; Distributed; Evaluation

1. INTRODUCTION
Matchmaking is the process of introducing two or more enti-

ties to each other. In the context of multi agent systems (MAS),
this process can be used in order to obtain service providers, cre-
ate groups of shared interest, or form coalitions. Matchmaking is
a prerequisite function for those and many other tasks in systems
where entities do not have full information about the overall system
configuration in advance, i.e., in open multi-agent systems that are
usually very large in size.

The importance of the agent matchmaking problem rises from
the growing popularity of open MAS. Open MAS can contain a
large number of agents, possibly developed by different vendors.
Moreover, agents can join and leave the system dynamically, which
means the system configuration cannot be preprogrammed in ad-
vance. All this makes it necessary to provide mechanisms for on-
line discovery of resources and service providers that are currently
available in open MAS.

∗This work was supported in part by ISF under grant #1685/07
Cite as: Towards Bidirectional Distributed Matchmaking (Short Paper),
Victor Shafran, Gal Kaminka, Sarit Kraus and Claudia V. Goldman, Proc.
of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16., 2008, Estoril, Portugal, pp.1437-1440.
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We are interested in developing protocols for matchmaking un-
der time constraints, in environments where the number of agents
is large, and each agent has limited computational (runtime and
storage) capabilities. We assume a highly dynamic environment,
agents continuously join and leave the system. We aim to develop
matchmaking algorithms that will be fast and scalable, and in par-
ticular will minimize the amount of traffic generated in the system.

When solving the matchmaking problem, we focus on a dis-
tributed approach. In this case, each agent is capable of searching
and announcing the activities it is looking for. There is no cen-
tral point or special kind of agent that assists in finding matching
agents; instead, agents share information among themselves and
help each other resolve their matching requests. Such a distributed
solution is very robust although the number of messages that are
transferred among agents and the time it takes to find matching
partners can be extremely large [3].

Previous works on distributed matchmaking [5, 6] used tech-
niques that are unidirectional in nature: One agent searches, while
the other passively waits to be contacted. This type of approach
requires each passive agent to be continuously on-line. Moreover,
it may increase the search time, because only one of the agents is
searching for a match.

We are interested in highly dynamic environments where agents
can join or leave the environment at any time. In addition, we are
interested in systems where agents look for short-lived interactions,
therefore we need a matching service that can find partners as quick
as possible. For such types of applications, however, the passive
search is not appropriate. Examples of interactions relevant to this
paper include pickup, chess games or multi-party card games, given
that a number of partners can be found quickly. Here, all matching
agents are active in the search, simply because the user is not open
to game proposals at all times. Thus the matchmaking process is
not unidirectional but multi-directional.

To carry out efficient multi-directional matchmaking, we pro-
pose to use amatching cachestored with each participating agent.
A matching cache is a structure, maintained by each one of the
agents, which enables the agents to collect information about queries
and perform matching on behalf of other agents. We aim to show
that this makes matchmaking more efficient.

2. RELATED WORK
Many researchers e.g. [4] point out that open MAS and peer-to-

peer (P2P) research areas are very similar to each other. As a result,
the problem we study can be defined using P2P terminology, i.e.,
the resource location problem of some peer that is trying to search
for a resource or service located somewhere in a P2P network.

Distributed techniques like Distributed Hash Tables (DHT) [7]

impose structure on the system based on the query key agent pro-
vides. The system is restructured each time an agent joins or leaves
the network, and also each time an agent places or removes a re-
quest for a partner. Rather then pay this cost we focus on the un-
structured systems,given the dynamic nature of the environment.

Shehory [6] introduced a distributed agent location mechanism
in which each agent stores information about some predefined num-
ber of other agents in the network. While looking for some resource
or service, an agent queries the agents it knows of for the required
resources. The query propagates recursively through the system,
until it is resolved. Under the assumptions of Shehory’s work, it
has been shown that the agent may know only a small portion of
the MAS and still be able to resole queries efficiently in terms of
time and communication costs. However, these results only suit
MAS that can be modeled as lattice graphs. Also, it is assumed that
the MAS changes adequately slow, to make the information which
is sent over the network sufficiently reliable. The latter assumption
does not hold in our environment.

Banaei-Kashaniy and Shahabi proposed modeling P2P resource-
discovery using methods from statistical physics and percolation
theory [3]. Since MAS or P2P systems can be very complex, these
methods are important for analytical studies of the matchmaking
problem. Using criticality-based analysis Banaei-Kashaniy and Sha-
habi reduced communication overhead introduced by the distributed
search query which is sent over the network. They proposed a tech-
nique called probabilistic flooding, in which a message is sent with
some predefined probability to each one of the sender’s neighbors.
The exact value of the probability for sending the message is deter-
mined analytically. However, they did not model matchmaking, in
particular multidirectional matchmaking.

Additional research in matchmaking was performed by Ogston
and Vassiliadis [5]. Their environment included simple agents with
limited resources and they studied distributed techniques that would
be suitable to solve consumer-provider problems. They proposed
to use local search and investigated the system behavior with dif-
ferent numbers of agents and different numbers of tasks. Only local
communication was allowed.

In contrast to these investigations, in this paper we propose a
multi-directional activesearch process, in which all partners take
active searching actions to accelerate the search process. This is
done through the use of a matching-cache located at intermediate
nodes, which allow agents to find each other’s “trails” in the net-
work, and thus discover matches. To the best of our knowledge
such solution has not been studied previously.

3. THE APPROACH
Due to the size of the environment and its high dynamics, none

of the agents has full knowledge of all other agents in the system.
Instead, agents have an address book of a limited size where they
store connection information to a small number of other agents.
This situation can be modeled as a directed graph, where nodes are
agents and edges correspond to links stored in the address book. In
graph-theoretic terms, the graph isnot fully-connected; actually, it
is fairly sparse (though connected)[1].

To locate (i.e., to match) an agent that is not in the seeker’s ad-
dress book, the seeker can send a query to one or more of the agents
in its address-book, and ask them to forward the query to their own
peers. The cost of such a query is proportional to the number of
messages the query creates. Once a match is found, the connection
information is obtained, and the cost of communication is constant.

We want the agents to query the MAS for available matches, but
the distributed nature of the environment makes it difficult to reduce
the required matchmaking time together with a reduced number of

messages. Previous works have proposed two basic techniques to
reduce the number of messages in uni-directional search: The first
one is calledteeming[2]. Instead of forwarding a matchmaking
query message to all the agents in the address book, teeming pro-
poses to send messages to the neighboring agents with some pre-
defined probability. Given the random nature of the address book
graph, the proper probability value will ensure the message delivery
to a bounded number of peers, and thus some bounds on the mes-
sage number can be guaranteed. The second technique, standard in
networking, limits the number of times each message is sent. This
limitation is referred to asTime To Live (TTL)[3]. Both techniques
can keep matchmaking time low. We assume that our environment
supports both techniques and that proper values for both TTL and
teeming parameters are given.

The key to our techniques is the use of amatching cachein inter-
mediate agents. The matching cache stores incoming queries until
a match is found (e.g., a matching query arrives at the same node),
or until the time-limit expires (in which case the matchmaking is
no longer relevant).

3.1 Bilateral Matchmaking
In bilateral matching, both agents actively query the MAS for a

possible match. These two queries travel through the network, in
essence executing a bi-directional distributed search process. In a
simple case, a match is successfully resolved if one of the queries
reaches a second matching agent.

To increase the likelihood (and to reduce the time) of a successful
match, we introduce the matching cache data-structure. Each agent
stores a FIFO cache of incoming queries of a predefined size and
matches new queries against this cache. The cache stores agent
connection information, together with the information necessary
for matching (i.e., the activity type sought). Due to the distributed
nature of the system, it is possible that information stored in the
cache may be outdated. But if the cache size is chosen properly,
and the data flow is fast, the portion of the outdated information
will be relatively small.

To limit the number of messages in a network, and to prevent an
infinite cycling of messages we use network hop counter with each
message, called TTL (Time To Live). The TTL defines the number
of hops (edge traversals) that a message can travel in a network until
it expires. Every node that receives a message forwards it only if
the TTL is greater than 0; when it carries out such forwarding, it
reduces the TTL by one.

We assume that there are different kinds of activities in our en-
vironment. For example, there are agents looking for chess game
players and agents looking for checkers players. Those activities
are referred to as having different activity types. Agents that are
willing to participate in an activity are referred to as partners. The
agents pass simple query messages to each other, composed of the
following data items: the initiator of the query,the activity dead-
line, activity type and TTL. Each agentA in the system performs
Algorithm 1, running forever.

The cache stores received queries, including their associated ac-
tivity types, partners sought, partners found, and deadlines. A sepa-
rate process is assumed to maintain the cache, in terms of deadlines:
When a message query in the cache reaches its deadline (i.e., how
long the user is willing to wait), the process discards the query. In
addition, the process is in charge of throwing out the oldest queries
(even if still valid) when the cache is full, and new queries need to
be stored.

3.2 Cache size
The cache stores only unmatched requests; when a matching re-

quest is satisfied it is removed from the cache. As a result, if an

Algorithm 1 Bilateral Matchmaking Algorithm.

1. For each incoming query from agentB do:

(a) If agentA is interested in the query (i.e., it is a match),
try to contactB to start the activity.

(b) Otherwise, try to match the query to queries inA’s
cache.

i. If a match is found, inform the matching agents.
ii. Otherwise, store the query in the cache and for-

ward the query using teeming.

2. For each new activity seeking a match forA do:

(a) Create a queryq.

(b) If q is satisfied by a query fromB on the local matching
cache, then try to contactB to start the activity.

(c) Otherwise, forward the query using teeming.

activity requiresk participants, at mostk− 1 requests are stored in
the cache. Assume that the number of different activities in the sys-
tem ism. This provides us with an upper bound for the matching
cache size: Matching Cache Size= m (k − 1)

The above formula provides only an upper bound. Moreover it
should be noticed that the cache can also reduce the performance
of the system. This can happen since the cache stores knowledge
about the whole system. According to our model, the system is
distributed and highly dynamic, and, as a result the information
stored in the cache can be incorrect. Assume that some, already
invalid request is stored in the cache. When, a new valid request
arrives it is matched with an invalid request and is not forwarded.
We should minimize the effect of such an event.

4. EXPERIMENTS
We have conducted two comprehensive sets of experiments to

evaluate the techniques presented in this report. The first set exam-
ines the effects of different network characteristics (e.g., connec-
tivity, TTL levels, teeming probability) on performance, in order to
establish baselines. The detailed results of these experiments are
omitted from this article due to lack of space. The general trends
that are derived from these experiments are summarized in Section
4.1 after a brief definition of all network parameters. The second
set of experiments (summarized in Section 4.2) focuses on match-
making performance when applying the matching cache for a given
set of parameters in the context of bilateral matchmaking.

In all the experiments, we examine matchmaking performance
along four independent measures:

• Matching Success Rate.This measures the percentage of
matching attempts ending in a successful match. A higher
value indicates improved performance.

• Number of messages.This measures the total number of
query messages sent during an experiment. The lower the
value the better.

• Matchmaking Time. This measures the time (in units of
network hops) that took the agents to establish a successful
match. Again, the lower the value the better. Note that this
measureonly applies to successful matches, and is thus bi-
ased toward such successes.

4.1 Experiment Setup
As stated previously, the network of agents is modeled as a di-

rected graph. In order to evaluate the algorithms proposed earlier,

different graphs (corresponding to different networks) were gener-
ated using the following procedure: First, a complete simple cycle,
encompassing allN agents in the network, was created (essentially
establishing anN -size ring topology) to ensure that the graph is
connected. Then, we created each possible edge in the graph (i.e.,
an edge may connect any two agents), with a probability ofp. For
the purpose of the experiments in this section, we generated graphs
with N = 1200, and we experimented with differentp values.

We focus on bi-directional searches for matches of different types
of activities. We tested systems with 1200 agents and 10 different
types of activities. We simulated different workloads on the sys-
tem by creating 2 types of scenarios. In the first one, 120 randomly
chosen agents were looking for matches. In the second one, the
number of such active agents was set to 600. We randomly gener-
ated 9 graphs and 3 scenarios and ran each scenario on each graph,
creating 27 samples for each simulation. In order to make our sim-
ulation more realistic, we activate the agents searching for a match
one by one during the first 120 (or 600) time steps.

The next network characteristic is the teeming probability [2].
This value defines the probability that a message will be sent to a
given neighboring node . In our experiments we varied the teeming
parameter from 0.1 to 0.7.

The last network characteristics are the TTL. The purpose of
TTL is to limit the message’s life in the network. We varied the
TTL parameter from 1 to 20.

As the values of the TTL and the teeming probabilities grow, the
overall success rate of the system and the total number of messages
increases as well. Later, we compare the performance obtained
with our distributed matchmaking technique based on the matching
cache with the search technique that is based only on teeming and
also on the TTL parameter. As we show later, the matching cache
technique is qualitatively and quantitatively distinct from the use of
TTL and increased teeming probabilities.

In the following experiments, the graph sizeN was set to 1200,
the TTL value was set to 5, the visitor’s cache was set to 0, and the
scenario was set to matchmaking 600 agents. The edge probability
p was 0.005, and the teeming probabilityt was 0.3. These values
were set as default (unless explicitly stated differently) after having
tested a large range of values and having obtained similar trends.

4.2 Bilateral Matchmaking using a Matching
Cache

The set of experiments, described here, evaluated the effect of
the matching cache size on the performance of our matchmaking
algorithm. In these experiments, we set the matching cache size to
0,1,5 and 10.

We compare our distributed bilateral algorithm to the passive
matchmaking (unilateral search) algorithm in which only one of
the agents is sending out queries, and the other is passively await-
ing a message to reach it. We want to show that Algorithm 1 with
a matching cache set to 0 provides an upper bound for the passive
(unilateral) search. We assume that both the bilateral (Algorithm 1)
and unilateral search algorithms use the same network parameters
(TTL, Teeming, Edge probability).

PROPOSITION 1. Let Tb, Mb and Sb be the time, number of
messages and success rate of Algorithm 1 that finds a match be-
tween any 2 agents assuming that the size of the matching cache is
zero. LetTu, Mu andSu be the time, number of messages and suc-
cess rate of two unilateral searches run in parallel to find the same
match between any 2 agents in the same network. Then,Tu ≥ Tb,
Mu ≥ 2 · Mb andSu ≤ Sb.

PROOF. First, we need to show that given any successfully re-

solved matching task with a unilateral search, our algorithm run
with a matching cache of size zero will also perform the same task
successfully. A match is considered successful if and only if both
agents looking for a match have found each other.

Assume first that only pairs of agents look for a match. That is
some agent B is looking for some agent A with certain characteris-
tics (and similarly A is looking for B). This match can be resolved
successfully with a simple unidirectional algorithm when the query
of agent A reaches agent B or the query of agent B reaches A. The
same result will be obtained when running our bilateral algorithm
with a matching cache set to zero. A successful match can only
be found when either one of the agent’s message reaches the other
agent directly (no intermediate node can help when the cache is
kept of size zero). In such case, the bilateral algorithm cannot incur
a larger cost in terms of time and number of messages. Also, the
rate of the successes is equal in both cases.

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 2 4 6 8 10

S
uc

ce
ss

 r
at

e

Match cache size

Bilateral Matchmaking

Figure 1: Success rate as a function of the matching cache size.

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 0 2 4 6 8 10

T
im

e
to

 r
es

ol
ve

 m
es

sa
ge

Match cache size

Bilateral Matchmaking

Figure 2: Time for matchmaking as a function of matching
cache size.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10

T
ot

al
 M

es
sa

ge
 N

um
be

r

Match cache size

Bilateral Matchmaking

Figure 3: Number of messages as a function of the matching
cache size.
Figures 1,2, and 3 show the matchmaking success rate, the match-
ing time (for successful matches), and the number of messages,

respectively, as a function of the matching cache size. The fig-
ures show that as the matching cache size increases, the success
rate increases, and the number of messages and the time needed to
find a match drops. An interesting observation is that even a small
matching cache (size 1, in these experiments), is sufficient to pro-
vide a strong improvement in the matching time and success rate.
Also, increasing the size of the matching cache further improves
the other measures dramatically. Also note that the total number
of messages that travels through the network decreases with larger
caches. This happens because when agents receive a new query for
which they have a match, such message is not forwarded. Follow-
ing our approach, a match can be resolved by any of the agents in
the network. Therefore, we also see a sharp decrease in successful
matching time. Since we are interested in short-life interactions,
this result is essential to finding matches as quickly as possible.

5. CONCLUSIONS
In this paper we presented an empirical study on the distributed

matchmaking problem. In particular, we make use of the multi-
directional nature of the matchmaking problem by introducing a
matching cache which allows agents to find each other’s “trail” in
the network and thus discover matches more efficiently.

We have studied matchmaking in bilateral settings. We evaluated
our techniques using a testbed which we developed and showed that
we can solve the matchmaking process faster using our techniques.
In addition, our algorithms reduce the total number of messages and
improves the success rate of the overall system. We also demon-
strate that achieving the same success rate using only the teeming
or TTL techniques will require more time and more messages.

Our study is the first step towards implementing matching frame-
work in highly dynamic networks comprised of agents looking for
short-life interactions. In the future, we aim to extend our tech-
niques by implementing incentives for cooperation and considering
the topology of the agents’ network and its effects on the cost of the
matchmaking process.

6. REFERENCES
[1] T. T. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction

to algorithms. MIT Press, 1990.
[2] V. V. Dimakopoulos and E. Pitoura. On the performance of

flooding-based resource discovery.IEEE Trans. Parallel
Distrib. Syst., 17(11):1242–1252, 2006.

[3] F. B. Kashani and C. Shahabi. Criticality-based analysis and
design of unstructured peer-to-peer networks as "complex
systems". InCCGRID, pages 351–358. IEEE Computer
Society, 2003.

[4] M. Koubarakis. Multi-agent systems and peer-to-peer
computing: Methods, systems, and challenges. In M. Klusch,
S. Ossowski, A. Omicini, and H. Laamanen, editors,CIA,
volume 2782 ofLecture Notes in Computer Science, pages
46–61. Springer, 2003.

[5] E. Ogston and S. Vassiliadis. Matchmaking among minimal
agents without a facilitator. InAgents, pages 608–615, 2001.

[6] O. Shehory. A scalable agent location mechanism. In N. R.
Jennings and Y. Lespérance, editors,ATAL, volume 1757 of
Lecture Notes in Computer Science, pages 162–172. Springer,
1999.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InProceedings of the ACM
SIGCOMM ’01 Conference, San Diego, California, August
2001.

