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ABSTRACT
We consider Effort Games, a game theoretic model of co-
operation in open environments, which is a variant of the
principal-agent problem from economic theory. In our mul-
tiagent domain, a common project depends on various tasks;
achieving certain subsets of the tasks completes the project
successfully, while others do not. The probability of achiev-
ing a task is higher when the agent in charge of it exerts
effort, at a certain cost for that agent. A central authority,
called the principal, attempts to incentivize agents to exert
effort, but can only reward agents based on the success of
the entire project.

We model this domain as a normal form game, where
the payoffs for each strategy profile are defined based on
the different probabilities of achieving each task and on the
boolean function that defines which task subsets complete
the project and which do not. We view this boolean function
as a simple coalitional game, and call this game the under-
lying coalitional game. We show that finding the minimal
reward that induces an agent to exert effort is at least as
hard computationally as finding the Banzhaf power index in
the underlying coalitional game, so this problem is #P-hard
in general.

We also show that in a certain restricted domain, where
the underlying coalitional game is a unanimity weighted vot-
ing game with certain properties, it is possible to solve all
of the above problems in polynomial time.

1. INTRODUCTION
The computational aspects of many game theoretic con-

cepts have been thoroughly studied in recent years. A key
issue in many such domains is constructing a proper reward
scheme to achieve the desired behavior of self-interested agents.

In this paper, we deal with the computational complexity
of finding a reward scheme in effort games in open environ-
ments. In our model, the mechanism’s purpose is to incen-
tivize agents to exert effort on a common project; each agent
is in charge of a task, and can increase the probability that
this task will be completed successfully, at a certain cost to
that agent. We assume that the interested party, called
the principal, cannot observe the agents’ decisions about
whether to expend effort, or the results of the individual
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tasks. The only information available to the principal is the
overall result of the entire project.

1.1 Preliminaries
We consider the effort game model using game theoretic

tools. We use the solution concept of iterated elimination
of dominated strategies, where strictly dominated strategies
are removed from the game and no longer have any effect
on future dominance relations. The analysis also relies on
viewing the project as a cooperative game.

The heart of an effort game is a boolean function that de-
cides which task subsets complete the project successfully,
and which task subsets do not. Our results depend on view-
ing this boolean function as a simple coalitional game.

Definition 1. A coalitional game is a domain that con-
sists of a set of tasks, T , and a characteristic function map-
ping any subset of the tasks to a real value v : 2T → R,
indicating the total utility of a project that achieves exactly
these tasks.

In a simple coalitional game, v only gets values of 0 or 1
(v : 2I → {0, 1}). We say a subset C ⊂ T wins if v(T ) =
1, and say it loses if v(C) = 0. We denote the set of all
subsets of tasks that win the simple game as Twin = {T ′ ⊂
T |v(T ′) = 1}. A task t is critical in a winning subset C if the
task’s removal from that coalition makes it lose: v(C) = 1,
v(C \ {t}) = 0. A game is increasing if for all subsets C′ ⊂
C ⊂ T we have v(C′) ≤ v(C). We will assume achieving
more tasks is always better for the project, so games are
increasing. Thus, if a certain subset of tasks C ⊂ T wins,
every superset of C also wins.

We also consider the restricted case of effort voting games.
A weighted voting game is a well-known game-theoretic model
of cooperation in political bodies; each agent has a weight,
and a coalition of agents wins the game if the sum of the
weights of its members exceeds a certain threshold.

Definition 2. A weighted voting game is a simple coali-
tional game with tasks (agents) T = (t1, . . . , tn), a vector
of weights w = (w1, . . . , wn) and a threshold q. We say ti
has the weight wi. Given a coalition C ⊆ T we denote the
weight of the coalition w(C) =

P
i∈{i|ti∈C} wi. A coalition

C wins the game (so v(C) = 1) if w(C) ≥ q, and loses the
game (so v(C) = 0) if w(C) < q.

A question that arises in the context of simple games, and
especially in weighted voting games, is that of measuring
the influence a certain task (player) has on the outcome of
the game. One approach to measuring this notion is power
indices, and specifically the Banzhaf power index.
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Definition 3. The Banzhaf index is a power index that
depends on the number of coalitions in which an agent is
critical, out of all possible coalitions. It is given by β(v) =
(β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

X
S⊂T |i∈S

[v(S)− v(S \ {i})].

1.2 The Effort Game Model
We now define effort game models and related problems.

Definition 4. An effort game domain is a domain that
consists of the following: A set of n agents, I = {a1, . . . , an};
a set of n tasks, T = {t1, . . . , tn}; a simple coalitional game
G with task set T , such that |T | = n, and with the value
function v : 2T → {0, 1}; a set of success probability pairs
(α1, β1), (α2, β2), . . . , (αn, βn) so that αi, βi ∈ R, and that
0 ≤ αi ≤ βi ≤ 1; a set of effort exertion costs c1, . . . , cn ∈ R,
so that ci > 0.

Informally, this domain is interpreted as follows. A joint
project depends on the completion of certain tasks. Achiev-
ing some of the subsets of tasks completes the project suc-
cessfully, and some fail, as determined by the simple game
G. An agent ai is responsible for each such task ti. That
agent may exert effort, which gives the task a probability of
βi of being completed. However, exerting effort costs that
agent a certain utility ci. If the agent shirks (does not exert
effort) the agent does not incur the cost ci, and the task has
a lower probability αi of being completed.

We now formally describe the domain. Each of the agents
ai ∈ I is responsible for the task ti ∈ T . For each coalition
of agents C ⊂ I, we denote the set of tasks owned by these
agents T (C) = {ti ∈ T |ai ∈ C}. We say the common project
is successful if a subset of tasks T ′ ⊂ T is achieved, so that
v(T ′) = 1 (so T ′ is winning in G). Each agent can either
choose to exert effort or shirk. In the effort games model,
we assume the tasks succeed or fail independently of one
another. If ai exerts effort, task ti is completed with proba-
bility βi. If it does not exert effort (and shirks instead), task
ti is completed with a lower probability αi < βi. However,
each agent has a cost for exerting effort, ci > 0, which is
deducted from the utility obtained by the agent. Suppose
the agents in C exert effort, and that the agents in I \ C
do not. Given C we know the probability that each task is
completed. If ai ∈ C then ti is completed with probability
βi; if ai /∈ C, ti is completed with probability αi.

Given the coalition of agents that contribute effort, C, we
denote the probability that a certain task ti is completed as
pi(C), defined as follows:

pi(C) =

(
βi if ti ∈ C
αi if ti /∈ C

Consider a subset of tasks T ′ ⊂ T . Given the coalition C
of agents that exert effort, we can calculate the probability
that exactly the tasks in T ′ are the ones achieved: PrC(T ′) =Q
ti∈T ′ pi(C) ·

Q
ti /∈T ′(1− pi(C)). We can also calculate the

probability that any winning subset of tasks is achieved, and
denote this by PrC(Win) =

P
Tw∈Twin PrC(Tw).

In our model we have a central authority (called the prin-
cipal) interested in successfully completing the common project.
The principal attempts to make sure a certain subset of
agents exerts effort, and needs to reward the agents so that

they will exert effort despite their cost of doing so. He thus
designs a reward scheme, but attempts to minimize his costs.

Let C ⊂ I be the coalition of agents that have exerted ef-
fort, and T ′ be the set of achieved tasks. On the one hand,
T ′ may not contain all the tasks of the agents that have ex-
erted effort, since if βi < 1, a task has a probability of failing
even when the agent exerts effort. On the other hand, T ′

may contain some tasks for which agents did not exert effort,
since if αi > 0, a task has a probability of succeeding even
if an agent does not exert effort. We assume that the prin-
cipal knows whether the project succeeded or not (whether
v(T ′) = 1 or v(T ′) = 0), knows ci, αi, βi of all agents, but
does not know whether an agent ai has exerted effort (so
ai ∈ C) or shirked (so ai /∈ C). Thus the principal cannot
reward only those agents that have exerted effort. It can
only promise each agent ai a certain reward ri if the project
succeeds, and a reward of 0 if it does not. The principal can
choose among various reward vectors r = (r1, . . . , rn).

Given the reward vector r = (r1, . . . , rn), and given that
the agents that exert effort are C ⊂ I, ai’s expected reward
is ei(C) =

P
Tw∈Twin PrC(T ′) · ri. Agent ai has a cost ci

of exerting effort. It can choose between two strategies—
exert effort, or shirk. Exerting effort increases the expected
reward, but has a cost ci. If ai shirks he does not incur the
cost ci, but his expected reward is smaller. The effort game
is the normal form game obtained due to a certain reward
vector r chosen by the principal.

Definition 5. An Effort Game is the normal form game
Ge(r) defined on the above domain with a simple coalitional
game G and a reward vector r = (r1, . . . , rn), as follows.

In Ge(r) agent ai has two strategies: Si = {exert, shirk}.
Denote by Σ the set of all strategy profiles Σ = S1× . . .×Sn.
Given a strategy profile σ = (s1, . . . sn) ∈ Σ, we denote the
coalition of agents that exert effort in σ by Cσ = {ai ∈
I|si = exert}. To fully define the game, we must also define
the payoff function of each agent Fi : Σ → R. The payoffs
depend on the reward vector r = (r1, . . . , rn): the payoff of
each agent in strategy profile σ is his expected reward minus
the cost of the effort exerted. Thus:

Fi(σ) =

(
ei(Cσ)− ci if si = exert

ei(Cσ) if si = shirk

Ge depends on r, so we denote it as Ge(r).

Given a simple coalitional game G, each reward vector r
defines a different effort game Ge(r). In this domain, the
principal may want to make sure a certain subset of the
agents exert effort, and it is up to him to choose a reward
vector that achieves this, under certain assumptions on the
rational behavior of these agents. The strategies used by the
agents are determined by a certain game theoretic solution
concept. Such solution concepts typically define different
possible strategy profiles. A reward vector that guarantees
that a certain coalition C′ exerts effort, under a certain so-
lution concept, is an incentive inducing scheme for C′.1

Although there may be many possible incentive inducing
reward vectors, the principal is self-interested, and attempts
to minimize the total rewards it pays,

Pn
i=1 ri.

1Several papers regarding “combinatorial agency” [1] have
focused on a Nash equilibrium domain. We survey some of
this work in Section 3. In this paper, we focus on a dominant
strategy implementation, and on an iterated elimination of
dominant strategy implementation.



Definition 6. An Iterated Elimination of Dominated Strate-
gies Incentive Inducing Scheme for C′ is a reward vector
r = (r1, . . . , rn), such that in the effort game Ge(r), after
any sequence of eliminating dominated strategies, for any
ai ∈ C′, the only remaining strategy for ai is to exert effort.

We define the following relation regarding effort exertion
in strategy profiles. Let D be an effort game domain, and
r = (r1, . . . , rn) be a reward vector. Let σ1, σ2 ∈ Σ be two
strategy profiles in Ge(r), so σ1 = (s1,1, s1,2, . . . , s1,n) and
σ2 = (s2,1, s2,2, . . . , s2,n). We say σ1 is more exerting than
σ2, and denote σ1 >e σ2, if the following holds: all the
agents that exert effort in σ2 also exert effort in σ1, and at
least one agent that exerts effort in σ1 does not exert effort
in σ2. We can prove the following:

Theorem 1. Let D be an effort game domain, r = (r1, . . . , rn)
be a reward vector, and ai be an agent in that domain. Let
σ1, σ2 ∈ Σ be two strategy profiles in Ge(r) so that σ1 >e σ2,
and so that σ1,i = σ2,i. Then ei(Cσ1) ≥ ei(Cσ2).

Proofs are omitted due to lack of space.

Corollary 1. If σ1, σ2 ∈ Σ are strategy profiles such
that for all aj 6= ai we have that σ1,j = σ2,j, and that
σ1,i = exert and σ2,i = shirk, then for all j we have thatP
Tw∈Twin PrCσ1 (Tw) ≥

P
Tw∈Twin PrCσ2 (Tw). If σ1, σ2 are

strategy profiles such that σ1 >e σ2 and such that σ1,i = σ2,i,
then

P
Tw∈Twin PrCσ1 (Tw) ≥

P
Tw∈Twin PrCσ2 (Tw).

2. THE COMPLEXITY OF INCENTIVES
Given an effort game, agents naturally consider whether

they should exert effort, and the principal naturally consid-
ers how it should incentivize a certain subset of the agents
to exert effort, while minimizing the sum of rewards it must
give. We now consider an effort game domain D, with
agents I = {a1, . . . , an}, where ai is responsible for task
ti. The underlying coalitional game is G, with the value
function v : 2T → {0, 1}. The set of success probabili-
ties is (α1, β1), . . . , (αn, βn), and the effort exertion costs
are c1, . . . , cn. Several natural problems arise:

1. DSE — Dominant Strategy Exert: Given Ge(r), is
“exert” a dominant strategy for ai?

2. IEE — Iterated Elimination Exert: Given Ge(r), is
“exert”the only remaining strategy for ai after iterated
elimination of dominated strategies? This means that
if Σ′ is the set of strategy profiles remaining after a
sequence of iterated eliminations, then for any strategy
profile σ′ = (σ′1, . . . , σ

′
n) ∈ Σ′ we have σ′i = exert.

3. IE-INI — Iterated Elimination Inducing Incentives:
Given D, compute an iterated elimination of domi-
nated strategies incentive inducing scheme r = (r1, . . . , rn)
for C (see Definition 6).

The computational complexity of these problems is investi-
gated in the following sections.

2.1 Rewards and the Banzhaf Power Index
We now show the relation between the complexity of the

above problems, and power indices in the underlying coali-
tional game.

Theorem 2. Let D be an effort game domain, where for
ai we have αi = 0 and βi = 1, and for all aj 6= ai we have
αj = βj = 1

2
. Let r = (r1, . . . , rn) be a reward vector, so

that for ai exerting effort is a dominant strategy in Ge(r).
Then, ri >

ci
βi(v)

(where βi(v) is the Banzhaf power index

of ti in the underlying coalitional game G, with the value
function v).

Consider an effort game domain D, the reward vector r,
and the resulting effort game Ge(r). We show that minimal-
DSE, testing whether a certain reward vector is the minimal
reward vector that makes exerting effort a dominant strat-
egy for a certain agent ai, is at least as hard computationally
as calculating the Banzhaf power index in the underlying
coalitional game G. Since calculating the Banzhaf index
is #P-hard in various domains (see Section 3),2 this shows
that, in general, minimal-DSE is also #P-hard. The proof
for the next theorem is based on showing that being able to
answer minimal-DSE queries in polynomial time allows cal-
culating the Banzhaf index in polynomial time (a reduction
from Banzhaf to minimal-DSE).

Theorem 3. Minimal-DSE is at least as hard computa-
tionally as calculating the Banzhaf power index of its under-
lying coalitional game G.

One domain of coalitional games where calculating the
Banzhaf power index is known to be NP-hard is weighted
voting games [5]. Thus, in an effort game where the un-
derlying coalitional game is a weighted voting game, it is
NP-hard to test if exerting effort is a dominant strategy.

2.2 Inducing Incentives in Unanimity Weighted
Voting Games

We now consider a restricted class of effort games in weighted
voting domains, and show how to find a dominant strat-
egy incentive inducing scheme, or an iterated elimination
of dominated strategies incentive inducing scheme. In our
domain, voters decide on a course of action using weighted
voting. Each voter has a weight, and a decision passes if
the total weight of agents that vote for it exceeds a cer-
tain threshold. We consider a restricted case where the vot-
ers may have different weights (voter i has weight wi), but
the quota is so high that the decision only passes when all
agents vote for it. Such games are called unanimity voting
games, and in such games the quota for passing the decision
is q =

Pn
i=1 wi. Thus, in this restricted setting, all voters

have equal power (so the Banzhaf power index is the same
for all the agents, even though they have different weights).

Suppose each voter has a probability of α to vote in favor
of the decision. An agent ai may increase the probability
of voter vi voting in favor of the decision to β > α, at a
certain cost of exerting this effort, ci. In our domain, we
will assume the effort exertion cost is proportional to the
voter’s weight, so ci = wi. Consider a principal that wants
all the agents to exert effort. We model this situation as an
effort game domain D. The underlying coalitional game G

2The complexity of calculating the power index depends on
the representation of the game. Most of these hardness re-
sults assume a polynomial algorithm that returns the value
of any coalition (or gives a concise representation which al-
lows doing so), and show that in some domains, even with
access to such an algorithm, calculating the power index is
computationally hard.



has the tasks T = (t1, . . . , tn). A coalition of tasks C ⊆ T
wins in G if it contains all the tasks and loses otherwise, so
v(T ) = 1, and for all C 6= T we have v(C) = 0. The success
probability pairs are identical for all tasks: (α1 = α, β1 =
β), (α2 = α, β2 = β), . . . , (αn = α, βn = β). Agent ai is in
charge of ti, and the effort exertion costs are the weights in
the underlying weighted voting game, so ci = wi.

Consider the above effort game domain D. Given a re-
ward vector r = (r1, . . . , rn) we get the effort game Ge(r).
We show how to compute both a dominant strategy incen-
tive inducing scheme (D-INI) and an iterated elimination of
dominated strategies incentive inducing scheme (IE-INI) in
this domain. We also show how to find such an IE-INI vec-
tor that minimizes

Pn
i=1 ri. We first show how to calculate

the minimal reward that makes exerting effort a dominant
strategy for ai.

Lemma 1. If ri >
ci

αn−1·(β−α)
, then exerting effort is a

dominant strategy for ai.

The above lemma allows us to solve D-INI in this domain
in polynomial time—we have a simple formula for the mini-
mal reward vector r which is a dominant strategy incentive
inducing scheme.

Corollary 2. D-INI is in P for the effort game in the
above specific weighted voting domain. The following reward
vector is a dominant strategy incentive inducing scheme:
r∗ = ( c1

αn−1·(β−α)
, . . . , cn

αn−1·(β−α)
).

We now consider IE-INI, computing an iterated elimina-
tion of dominated strategies incentive inducing scheme in
this domain. We show that such a scheme can significantly
reduce the total rewards

Pn
i=1 ri. We suggest an IE-INI

procedure for this domain.
Due to Lemma 1, if ri >

ci
αn−1·(β−α)

, then exerting effort

is a dominant strategy for ai. Thus, after one step of elim-
ination of dominated strategies, ai is sure to exert effort.
Consider aj , who knows ai would exert effort.

Lemma 2. Let ai, aj be two agents,and ri, rj be their re-
wards so that ri >

ci
αn−1·(β−α)

and that rj >
cj

αn−2·β·(β−α)
.

Then under iterated elimination of dominated strategies, the
only remaining strategy for both ai and aj is to exert effort.

We now consider an iterated elimination of dominated
strategies incentive inducing scheme (IE-INI). First choose
an ordering of the agents; then go through the agents in
that order, and find the minimal reward required to make
exerting effort a dominant strategy for each of them, given
that its predecessors exert effort as well. Denote by π a
permutation (reordering) of the agents. We denote the set
of all such permutations Π. π(i) is the location of ai in the
new ordering of the agents. In the generated reward scheme,
the strategy “shirk” for aπ(i) is eliminated during round i of
strategy elimination.

Theorem 4. IE-INI is in P for the effort game in the
abovementioned specific weighted voting domain. For any
reordering of the agents π ∈ Π, a reward vector rπ, where
for all agents ai we have: rπ(i) >

cπ(i)

αn−π(i)·βπ(i)−1·(β−α)
, is

an iterated elimination incentive inducing scheme.

We note that each reordering π of the agents results in a
different reward vector. The principal is interested in mini-
mizing

Pn
i=1 ri. We show that the best ordering is according

to the agents’ exertion costs ci = wi.

Lemma 3. The reward vector rπ that minimizes
Pn
i=1 ri

is achieved by sorting agents by their weights wi = ci, from
smallest to biggest.

We have thus shown that in this domain we can find an
IE-INI by sorting the agents according to their weights (and
thus costs of exerting efforts), and then using the equation
from Theorem 4 to construct the reward vector.

3. RELATED WORK
The computational complexity of iterated elimination of

dominated strategies has been studied in [6, 4]. The Banzhaf
index originated in [3]. [7] showed that calculating the Banzhaf
index in weighted voting games is NP-complete, and [2]
showed that calculating it in network flow games is #P-
complete.

A model similar to ours appeared in [8]. However, it de-
fined a very restricted effort game, where only the grand
coalition I wins, where α is the same for all agents, and
where a task is always completed when the agent in charge
exerts effort, so β = 1. For that domain, it shows an easily
calculable reward vector which is an iterative elimination of
dominated strategy implementation. [8] focused on the eco-
nomics of discrimination, whereas this paper concentrates on
the computational features of effort games. Another model
similar to ours is given in [1]. However, [1] focused on a
Nash Equilibrium, while this paper focuses on the stronger
notion of a dominant strategy equilibrium and on iterated
elimination of dominated strategies equilibrium.
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