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ABSTRACT 
When the same people interact frequently, they come to think 
alike, a phenomenon we call “collective cognitive convergence” 
(C3). We discuss instances and practical consequences of this 
phenomenon; review previous work in sociology, computational 
social science, and evolutionary biology that sheds light on C3; 
define a computational model and metrics for the convergence 
process; report on experiments with this model and metrics; and 
suggest how insights from the model can help manage C3.  

Categories and Subject Descriptors 
J.4 [Computer Applications]: Social and Behavioral Sciences – 
Sociology; I.6.3 [Simulation and Modeling]: Applications 

General Terms 
Measurement, Experimentation, Human Factors, Theory. 

Keywords 
Groupthink, cognitive convergence, modeling, social simulation. 

1. INTRODUCTION 
When the same people interact frequently, they come to think 
alike. We call this phenomenon “collective cognitive conver-
gence” (C3), since the dynamics of the collective lead to a conver-
gence in cognitive orientation.  

C3 is seen in many contexts, including research subdisciplines, 
political and religious associations, and even persistent adversar-
ial configurations such as the cold war. Tools that support col-
laboration, such as blogging, wikis, and communal tagging, make 
it easier for people to find and interact with others who share their 
views, and thus may accelerate C3. This efficiency is sometimes 
desirable, since it enables a group to reach consensus more 
quickly. For instance, in the academy, it enables coordinated re-
search efforts that accelerate the growth of knowledge.  

But convergence can go too far, and lead to collapse, reducing the 
diversity of concepts to which the group is exposed and thus leav-
ing the group vulnerable to unexpected changes. E.g.,  

• Academic specializations can become unintelligible to non-
specialists, and papers that do not fit neatly face difficulty be-
ing published. The subdiscipline is sustained more by its own 
interests than by the contributions it can make to the broader 
research community or to society at large.1  

• The force-on-force orientation of the Cold War left both the 
former Soviet Union and NATO ill-prepared to deal with in-
surgencies and asymmetric warfare.  

We became interested in this phenomenon by observing increas-
ing balkanization in MAS research. Since we do multi-agent 
simulation, we thought that a multi-agent model might illuminate 
the phenomenon, and show how it can be managed.  

Section 2 discusses previous work related to our effort. Section 3 
describes our model and metrics. Section 4 outlines experiments 
that exhibit C3 and explore techniques for managing it. Section 5 
suggests directions for further research, and Section 6 concludes. 
A long version of this paper is available.2. 

2. PREVIOUS WORK 
Our research on C3 builds on and extends previous work in soci-
ology (both empirical and theoretical) and evolutionary biology. 

Empirically, groups of people who interact regularly with one 
another tend to exhibit C3. One version of this phenomenon [10] 
is “group polarization”: a group with a slight tendency toward one 
position will become more extreme through interaction.  

For more than 50 years [4], computational social science has long 
been preoccupied with the dynamics of consensus formation [6]. 
Some studies are analytic, while others use simulation. They dif-
fer in the belief model and three characteristics of agent interac-
tion (topology, arity, and preference). Our work represents a 
unique combination of these characteristics. In particular, 

• We consider a vector V of m beliefs, rather than a single belief. 
This model lets an agent participate in different interest groups, 
but greatly complicates the dynamics. With one belief, indi-
viduals move along a linear continuum, and measures such as 
the mean and variance of their position summarize the system’s 

                                                                 
1 This paper was motivated by frustration voiced in the industry 

track at AAMAS07 about how some subdisciplines of agent re-
search were becoming so intellectually ingrown that it was dif-
ficult or impossible to apply them to real problems. 

2 www.newvectors.net/staff/parunakv/AAMAS2008M2C3.pdf 
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state. In our case, they live on 
the Boolean lattice {0,1}m of in-
terests, and our measures must 
reflect the structure of this lat-
tice.  

• We allow many agents to inter-
act concurrently. This model 
captures group interaction more 
accurately than does pairwise in-
teraction, but also means that 
agents interact with a distribu-
tion over belief vectors rather 
than a single selection from such 
a distribution. 

• We allow agents to modulate 
the likelihood of interaction 
based on how similar they are to 
their interaction partners. This 
kind of interest-based selection 
is critical to the dynamics of in-
terest to us, but makes the sys-
tem much more complex. 

Selecting the more complicated 
options along these dimensions 
makes analytic results, accessible 
with some (but not all) simpler 
models, elusive. We focus on 
simulation, developing intuitions for future analytical exploration. 

The subgroups that form and cease to interact when convergence 
turns to collapse resemble biological species, which do not inter-
breed. So we look for insight to research in the field of biological 
speciation (see [2, 5] for reviews). Our model resembles runaway 
sexual selection speciation with mutual mate choice. We assume a 
homogenous environment, no physical barriers for the exchange 
of ideas and a symmetric “mating system.” In our model, a pref-
erence for extreme traits is modeled as the probability of adopting 
an interest based on its prevalence in a given neighborhood. A 
successful runaway process in our model corresponds to the de-
velopment of specializations with little practical relevance.  

3. A MODEL AND METRICS 
We represent each agent’s interests as V ∈ {0,1}m. A ‘1’ at a posi-
tion means that the participant is interested in that topic, while a 
‘0’ indicates a lack of interest. At each step, each agent 

• identifies a neighborhood of other agents based on some crite-
ria (e.g., proximity between interest vectors, geographical prox-
imity, or proximity in a social network), 

• either learns from this neighborhood (by picking interest j at 
random, and if it is 0, setting it to 1 with probability pj = pro-
portion of neighbors with j = 1), or with equal probability,  

• forgets (by turning off an interest j currently at 1 to 0 with 
probability 1 – pj). 

We view interests as fundamentally social constructs, persisting 
only when maintained. Thus an isolated agent will eventually lose 
interest in everything. V tends to 0m, and pj to 0 ∀j. Alternative 
assumptions are possible. 

Sophisticated statistics can estimat-
ing a group’s consensus, based on 
questionnaires [9]. Our purposes 
require a mechanically computable 
measure of agent convergence. We 
perform single-linkage hierarchical 
clustering of the population based 
on the Jaccard distance between 
interest vectors, and measure each 
node’s diameter d, the distance at 
which it forms in the cladogram. In 
a random population, d of lower-
level nodes is not much less than 
the root’s d (Figure 1); in highly 
converged populations, lower-level 
nodes have d much less the root’s 
(Figure 2; agents grouped at d =  0 
have identical interest vectors). 
The ratio of a node’s d to the root’s 
is the node’s “min-max ratio” 
(M2R). The median of this ratio 
(M3R) measures system conver-
gence. M3R = 0 (Figure 2) means 
that more than half of the agents 
belong to groups with identical 
interest vectors. We also record the 
maximum diameter D of the clus-
tered population at each genera-

tion. Convergence can lead to a D = 1 (when the population frag-
ments into groups with orthogonal interest vectors that collec-
tively span the interest space), a low value, asymptotically 0 
(when all agents collapse toward a single point in the interest 
space), or intermediate values (when groups have overlapping 
interests but no way to communicate about them to drive further 
convergence). 

Figure 3 shows M3R over a run with 20 agents and interest vec-
tors of length 10, where the probability of learning and forgetting 
is equal, and where agents are considered to be in the same group 
if the similarity between their interest vectors is greater than θ = 
0.5. It takes only about 80 steps for M3R to reach 0. Figure 2 
shows this system at generation 300. By generation 370 it has col-
lapsed into two groups of completely homogeneous agents of 
sizes 3 and 17 respectively. Their interest vectors are orthogonal 
(D = 1), so the agents still cover the entire interest space, but be-
cause they interact only with the agents nearest themselves in that 
space, they form separate islands.  

4. EXPERIMENTS 
Forming neighborhoods based on similar interests leads to col-
lapse. Surprisingly, so do other sorts of neighborhoods. 

4.1 Things that Don’t Work 
Perhaps highly tolerant agents might be robust to convergence. 
Let two agents consider one another neighbors if their similarity 
is greater than 0 (they have at least one bit position in common). 
This configuration might model a conference with only plenary 
sessions. The population still collapses—this time, toward D = 0, 
with the entire population at a single point in interest space. 
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Figure 1 Random interest vectors  
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Figure 2 A highly converged population 



 

Perhaps the problem is that as 
agents converge, their neighbor-
hoods grow. So we define an 
agent’s neighborhood at each turn 
as the four closest agents. This 
configuration models a conference 
with separate topical tracks. It cor-
responds to sympatric speciation: 
the assortative component is pro-
vided by the preference for part-
ners with similar interests, while 
the limit on group size encourages 
diversity. Though agents base 
their adaptation at each turn on 
only 20% of the other agents, M3R 
still goes to zero, as agents form 
subgroups within which interests 
collapse. D freezes at an intermediate value (here, 0.6). The popu-
lation has lost some but not all variation, but the selection of part-
ners by interest proximity means that agents never interact with 
those who differ with themselves. 

Even more radically, let an agent’s neighbors at each step be four 
randomly chosen agents. Imagine a conference at which papers 
are assigned to tracks, not by topic, but randomly. In spite of the 
resulting mixing, the population again collapses to D = 0. 

These examples differ in how long it takes to converge to M3R = 
0. The time to convergence is highly variable, even within a sin-
gle configuration. The one constant across runs is that the system 
does converge, in fewer than 500 generations (often far fewer).  

4.2 Adding Variation 
So far, we have no mechanism for introducing variation. Once 
agents grow similar, they cannot diverge. We have explored three 
mechanisms for adding variation to the population: random muta-
tion, curmudgeons, and interacting subpopulations. 

The simplest approach is mutation. At each generation, with 
probability pm, after learning or forgetting, the active agent flips a 
randomly selected bit, modeling spontaneous agent curiosity. 
Figure 4a has the same parameters as Figure 3 (neighborhoods 
defined by θ = 0.5), but with pm = 0.03. Mutation reintroduces 
variation, but the level is critical. If mutation is too low (say, 1%), 
it is unable to keep up with the pressure to convergence, while if 
it is too high (10%), the community does not exhibit any conver-
gence at all (and in effect ceases to be a community). The nature 
of its contribution follows a clear pattern. When it is in the critical 
range, the system occasionally collapses to M3R = 0, but then dis-
covers new ideas. D converges to 1, since even when mutation is 
too low to avoid collapse within 
groups, it can introduce new in-
terest vectors orthogonal to the 
converged groups. 

A curmudgeon is someone who 
regularly questions the group’s 
norms and assumptions. Sunstein 
[10] observes that “group mem-
bers with extreme positions gen-
erally change little as a result of 
discussion,” restraining the po-

larization of the group. Ordinary 
agents learn by flipping a 0 bit to 1 
with probability pj, the proportion 
of neighbors with bit j on, and for-
get by flipping a 1 bit with probabil-
ity equal to 1 – pj. To model cur-
mudgeons, when an agent decides 
to learn or forget, with probability 
pcur,, it reverses these probabilities. 
Its probability of forgetting when it 
is curmudgeonly is pj (instead of 1 – 
pj in the non-curmudgeonly state), 
and its probability of learning is 1 – 
pj.  

Figure 4b has 10% curmudgeons, 
again with the configuration of 
Figure 3. The system converges, but 

seldom to M3R = 0. pcur achieves this balancing effect over a 
wider range than pm. D tends to 1. As much as researchers may 
resent reviewers and discussants who “just don’t get it,” cur-
mudgeons can effectively and robustly save a community from 
collapse. 

The third source of variation is even more robust, and endogenous 
rather than exogenous. So far, our agents choose new neighbors at 
every step. What if we assign each agent to a fixed group of ini-
tially nearby neighbors?  

The behavior depends on the structure of the graph induced by a 
given θ. The number of components in populations of 20 agents 
with 10 interests each shifts suddenly from many components at θ 
= 0.6 to a few at θ = 0.55, the well-known phase transition in ran-
dom graphs in which a giant connected component emerges as the 
number of links increases [3]. Consider four cases. 

• High θ yields 20 components, one per agent. As discussed 
above, all agents independently approach V = 0m. 

• For low θ, the agents form one large group and collapse.  
• At intermediate θ above the phase shift, the agents clump into 

small disjoint components. For example, one run at θ = 0.7 
yielded two groups of size 3, three of size two, and eight of size 
one. Each of these groups evolves independently, yielding high 
diversity among groups (D = 1) but collapse within groups 
(M3R = 0). This model corresponds to allopatric speciation, 
where physical separation allows separate evolution. 

• For intermediate θ below the phase shift, the agents form 
neighborhoods, but some agents (e.g., 20 in Figure 5) belong to 
more than one neighborhood. Because neighborhoods are fixed, 
each can converge relatively independently of the others, but 
bridging agents repeatedly displace each neighborhood’s equi-

librium with the emerging equi-
librium of another group.  

This interplay of separate but 
linked groups yields convergence 
without collapse (Figure 4c). Like 
curmudgeons and unlike mutation, 
it is robust to intermittent collapse. 
It reflects subdisciplines that rec-
ognize the value of members who 
bridge with other subdisciplines 
and exchange ideas between them. 
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Figure 3 Evolution of 20 agents with length-10 interest 

vectors, neighborhoods defined by similarity > 0.5 

 
Figure 4 Variation from mutation (a), curmudgeons (b), 

fixed groups (c) 



 

Such members are likely to be tolerated better 
than curmudgeons by subgroups, because the 
source of the variation introduced by the bridg-
ing individuals is perceived as resulting from 
multidisciplinary orientation rather than orneri-
ness. Under fixed groups, D tends to 1. 

5. FUTURE WORK 
Our simple model has shown a surprisingly rich 
space of behaviors. A number of directions for 
further work suggest themselves. 

• An analytical model of C3
 (cf. [8]) would 

suggest additional mechanisms for monitoring and avoiding 
collapse. Existing work on the mathematics of biological speci-
ation offers a promising foundation for this analysis. 

• How can convergence be monitored? Our metric, while effec-
tive for simulation, is impractical for actual groups of people. 
Explicit questionnaires [9] are appropriate for experimental set-
ting but cumbersome in monitoring groups “in the wild.” One 
might monitor the amount of jargon that a group uses, or lack 
of innovation, as indicators of convergence. A promising ex-
ample of initial work in this area is Schemer [1].  

• What is the ideal degree of convergence, to allow the produc-
tion of specialist knowledge without fostering collapse? 

• How does convergence vary with group size? Recent work [7] 
suggests that convergence requires specialized knowledge in 
small groups but more general knowledge in large ones. 

• We have assumed homogeneous tendencies to learn, forget, 
mutate, or behave curmudgeonly over all agents. How does the 
system respond if agents vary on these parameters? In particu-
lar, what is the impact of these parameters for bridging indi-
viduals in comparison with non-bridging individuals? 

6. CONCLUSION 
People naturally converge cognitively. This convergence facili-
tates mutual understanding and coordination, but can lead the 
group to collapse cognitively, becoming blind to viewpoints other 
than their own. Experiments with a simple agent-based model 
show that seemingly obvious mechanisms do not check this ten-
dency. In the domain of academic conferences, these well-
intended mechanisms include plenary sessions, special tracks, or 
even random mixing. A source of variation must counteract the 
natural tendency to converge. Mutation is effective if just the 
right amount is applied, but allows intermittentl collapse. Cur-
mudgeons are more robust, but socially distasteful. Perhaps the 
most desirable mechanism consists of bridge individuals who 
provide interaction between individually converging subpopula-
tions. These individuals arise when groups are well-defined, but 
have thresholds for participation low enough that some individu-
als can participate in multiple groups.  

Insights from this simple model can give guidance in monitoring 
and managing collaboration. For example, consider the problem 

of academic overspecialization. Topical confer-
ence tracks can contribute to collapse. Their 
narrow focus is enhanced by conventional prac-
tice in selecting reviewers for each paper who 
are experts in the domain of the paper. Papers 
must be well aligned with the subdiscipline to 
rank high with such experts, and bridging pa-
pers are at a disadvantage. One might require 
one reviewer for each paper to be a senior re-
searcher (thus capable of discerning high qual-
ity in problem formulation and execution) but 
not a member of the paper’s main topic (and 
thus more tolerant of cross disciplinary results). 

Such a scheme might encourage acceptance of quality papers that 
would otherwise fall in the cracks between subspecialties. The 
presence of these papers in topically-organized conference tracks 
would then provide the bridging function that avoids collapse in 
our experiments.  
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Figure 5 Agent graph, θ = 0.5 




