
Integrating Heterogeneous Agent Programming Platforms
within Artifact-Based Environments

Alessandro Ricci
DEIS

Università di Bologna
Via Venezia 52

47023 Cesena (FC), Italy
a.ricci@unibo.it

Michele Piunti
ISTC-CNR, Roma

DEIS, Univ. di Bologna
michele.piunti@istc.cnr.it

L. Daghan Acay
DIS

The University of Melbourne
111 Barry Street Victoria

3010, Australia
lacay@pgrad.unimelb.edu.au

Rafael H. Bordini
Dept. of Computer Science

University of Durham
Durham DH1 3LE, UK

R.Bordini@durham.ac.uk

Jomi F. Hübner
ENS Mines Saint-Etienne

158 Cours Fauriel
42023 Saint-Etienne, France
Jomi.Hubner@emse.fr

Mehdi Dastani
Intelligent Systems Group

Utrecht University
3508 TB Utrecht, Netherlands

mehdi@cs.uu.nl

ABSTRACT
“Agents and Artifacts” (A&A) and CARTAGO are becoming
increasingly popular as, respectively, a general-purpose pro-
gramming model and a related infrastructure for developing
shared computational environments in agent-based software
systems. However, so far there has been no work on devel-
oping multiagent systems (MAS) where agents implemented
and deployed in different agent-programming platforms can
interact as part of the same MAS with a shared environ-
ment. Due to the generality of CARTAGO environments
and its Java-based implementation, we have successfully im-
plemented an open multi-agent system where heterogeneous
agents developed with different platforms—namely Jason,
2APL as BDI-based approaches and simpA as an activity-
oriented approach rather than BDI-based—work together in
shared workspaces where they interact and cooperate by dy-
namically creating and using shared artifacts, analogously to
human working environments. This paper shows how this
was achieved by first presenting a general model for incor-
porating a theory of use and observation of artifacts in cog-
nitive agents, then describing a general approach for devel-
oping such heterogeneous MAS using CARTAGO integrated
with existing agent-oriented programming platforms.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; D.1.m [Programming Techniques]: Miscella-
neous; D.2.11 [Software Engineering]: Software Archi-
tectures

General Terms
Design, Languages, Theory

Keywords
Artifact-based computational environments, Multi-agent
systems platforms, CARTAGO
Cite as: Integrating Heterogeneous Agent Programming Platforms
within Artifact-Based Environments, Ricci et al., Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16.,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Recent papers appearing in the agent literature have high-

lighted the important role that the notion of environment
can play in designing and engineering Multi-Agent Systems
(MAS), being a suitable locus to encapsulate services and
functionalities in order to improve agent interaction, coordi-
nation, and cooperation (see [12] for a survey). The “Agents
and Artifacts” (A&A) meta-model in particular has been
proposed as a general-purpose approach to conceive com-
putational environments in MAS, modelled as workspaces
where agents can share, use, and manipulate artifacts. Arti-
facts are first-class entities in such design approaches, mod-
elling tools and resources that agents can exploit to support
their individual and social activities [8]. From a technolog-
ical point of view, CARTAGO is an infrastructure for MAS
supporting the creation and execution of artifact-based en-
vironments [8].

In this paper, we describe the integration of A&A and
CARTAGO with existing agent-oriented programming lan-
guages and platforms, both cognitive/BDI—taking Jason [2,
1] and 2APL [4] as main representative examples—and non-
cognitive/activity-oriented— here we consider the simpA
platform [9]—enabling heterogeneous agents belonging to
different platforms to participate in the same work environ-
ments, and then interact and cooperate by means of instan-
tiating, sharing, and using artifacts. In fact, current BDI
agent-oriented programming platforms recognise the bene-
fits of providing some kind of support to define MAS com-
putational environments. However, the provided support
typically lacks clear conceptual foundations, and is typi-
cally realised by means of an API which enables the in-
teraction between agents and entities belonging to a differ-
ent level of abstraction with respect to agents, such as Java
objects, without clear principles. Thanks to the integra-
tion described in this paper, some of the best-known agent
platforms are extended with a general-purpose, high-level
approach to model and implement those parts of the MAS
which are not agents, such as passive and function-/service-
oriented entities. Such entities are useful for building clear,
sophisticated, open work environments (to be shared by mul-
tiple agents) which are built up by resources and tools that

225

2008,Estoril,Portugal,pp. 225-232.

are naturally part of the MAS, possibly wrapping resources
developed in other languages (such as Java) or interfaces to
the external MAS environment.

The remainder of the paper is organised as follows:
Section 2 briefly provides background on A&A, including
the notion of artifacts and their use as an abstraction, and
on the CARTAGO infrastructure. Section 3 describes a
general model of integration with existing agent-oriented
programming models, both cognitive (BDI in particular)
and non-cognitive agent programming platforms. Section 4
highlights some practical benefits of artifact use, describing
a simple scenario, designed with CARTAGO, where hetero-
geneous agents (i.e. Jason, 2APL, simpA) can fully interact
in an open system, where shared artifacts can be used
for cooperation and to facilitate achieving goals. Finally,
Section 5 concludes the paper, discussing future work and
providing some final remarks.

2. BACKGROUND: THE A&A MODEL
A&A aims at introducing the notion of artifacts as first-

class abstraction along with agents when modelling, design-
ing, and developing MAS [8]. The main inspiration of A&A
comes from Activity Theory [6], a psychological conceptual
approach started in the Soviet Union at the beginning of
the 20th century, and more recently was further developed,
in northern Europe in particular, remarking the power and
importance of culture and artifacts to enhance human abil-
ities. One of the main concepts put forward by Activity
Theory—along with Distributed Cognition and other move-
ments within cognitive science—is that, in human societies,
properly designed artifacts and tools play a fundamental
(mediation) role in coping with the scaling up of complex-
ity in human activities, in particular when social activities
are concerned. As remarked in [7], tools (artifacts) shape
the way human beings interact with reality, being designed
for simplifying the execution of tasks, improving problem-
solving capabilities, and for enabling efficient coordination
and cooperation in social contexts. In fact, the concept of
tool in Activity Theory is broad and embraces both techni-
cal tools, which are intended to manipulate physical objects
(e.g., a hammer), and psychological tools, which are used by
human beings to influence other people or themselves (e.g.,
the multiplication table or a calendar).

By analogy, the basic idea of A&A is to define a notion
of artifacts, also in MAS, as basic building blocks to de-
sign and engineer those parts of the MAS that we call here
work environment. Such building blocks can be programmed
by MAS designers and dynamically instantiated, discovered,
shared, used and manipulated by agents while performing
their tasks. In other words, artifacts represent the func-
tional part of the MAS environment, while agents represent
the goal- or task -oriented part. As noted by Norman [7] on
the relationship between (cognitive) artifacts and humans,
artifacts change the way a task gets done. In particular, arti-
facts can: (i) distribute the actions across time (precompu-
tation); (ii) distribute the actions across agents (distributed
cognition); (iii) change the actions required of the individu-
als doing the activity. So, adopting an A&A approach to de-
sign a MAS means to design and program agents, as well as
computational work environments in terms of specific types
of artifacts, to help in agent activities. Different kinds of
functionalities can be encapsulated in suitably programmed

artifacts: communication and coordination functionalities
(e.g., a blackboard, a map), purely synchronising function-
alities (e.g., a clock, a calendar, a workflow engine), resource
access functionalities (e.g., a database, a wrapper for a web-
service) and so on. Then, by generalising existing indirect
communication models —tuple spaces, as a main example—
artifacts extend agent communication and cooperation, be-
sides direct language-based communication, towards forms
of mediated interaction (with artifacts functioning as medi-
ators).

Besides artifacts, the notion of workspace plays an impor-
tant role in A&A. A workspace is a logic container of agents
and artifacts, and can be used to structure the overall sets
of entities, defining a topology of the work environment and
providing a way to frame and rule the interaction within
it. More specifically, the notion of workspace has a twofold
purpose. First, it is useful to explicitly define the distribu-
tion model of the MAS. A complex MAS can be organised
in a dynamic set of workspaces, typically distributed among
multiple nodes of the network, with agents possibly join-
ing in and working simultaneously at multiple workspaces.
Second, a workspace is meant to be the conceptual locus
where to define the set of security and organisational rules
constraining agent access to the workspace and to artifacts
belonging to it. For this purpose, a Role-Based Access Con-
trol model (RBAC) is adopted [10]. In particular, for each
workspace a dynamic set of roles and related control policies
ruling artifact usage can be defined and changed at runtime,
both by human and agent administrators, the latter by us-
ing specific pre-defined artifacts. This makes it possible to
develop truly open systems on the one hand, being the set
of agents, roles, and policies fully dynamic, and to avoid
related security problems on the other hand, by means of
access control policies enforcement.

2.1 A Programming Model for Artifacts
The development model introduced with A&A and ap-

plied in related technologies such as CARTAGO aims at both
capturing the function-oriented nature of artifacts and the
notion of artifact use, as well as being sufficiently general-
purpose to be used in programming any type of artifact that
might be useful in MAS applications. An artifact is essen-
tially a passive, dynamic, stateful entity, designed to encap-
sulate and provide some sort of function. The functionality
of an artifact is structured in terms of operations, whose
execution can be triggered by agents through an artifact’s
usage interface. Analogously to usage interface of artifacts
in the real world (think, for example, of a coffee machine),
an artifact usage interface in A&A is composed of a set of
operation controls that agents can use to trigger and control
operation execution (such as the control panel of a coffee
machine). Each operation control is identified by a label
(typically equal to the operation name to be triggered) and a
list of input parameters. The usage interface can change dy-
namically, according to state of the artifact; in other words,
it is possible to design artifacts that expose a different us-
age interface according to their functioning stage. Besides
the operation control, the usage interface might contain also
a set of observable properties (think of the coffee machine
display); that is, properties whose dynamic values can be
observed by agents without necessarily interacting with (or
operating upon) the artifact.

An operation is the basic unit upon which artifact func-

226

tionality is structured. The execution of an operation upon
an artifact can result both in changes in the artifact’s inner
(i.e., non-observable) state, and in the generation of a stream
of observable events that can be perceived by agents that are
using or simply observing the artifact. It is worth remark-
ing here the differences between observable properties and
observable events. The former are (dynamic, persistent) at-
tributes that belong to an artifact and that can be observed
by agents without interacting with it (i.e., without using the
operation controls)—for example, the display of a coffee ma-
chine. The latter are non-persistent information, as signals
carrying also an information content—as the sound emitted
by a coffee machine when the coffee is ready, for example.

Operation execution can be conceived as a process (from
a conceptual point of view) combining the execution of pos-
sibly multiple guarded operation steps, where guards relate
to the inner artifact state. In order to avoid interferences,
the execution of a single operation step is atomic. This ap-
proach, overall, makes it possible to support the execution of
multiple operations concurrently within the artifact, main-
taining mutual exclusion to access the artifact state.

Analogously to artifacts in the human case, in A&A each
artifact is meant to be equipped with a “manual” describ-
ing the artifact’s function (i.e., its intended purpose), the
artifact’s usage interface (i.e., the observable “shape” of the
artifact), and the artifact’s operating instructions (i.e., us-
age protocols or simply how to correctly use the artifact so
as to take advantage of all its functionalities). An artifact
manual is meant to be inspected and used at runtime by
agents, in particular intelligent agents, for reasoning about
how to select and use artifacts so as to best achieve their
goals. This is a fundamental feature for developing open
systems, where agents cannot have a priori knowledge of
all the artifacts available in their workspaces since new in-
stances and types of artifacts can be created dynamically, at
runtime. Currently, no commitments towards specific mod-
els, ontologies, and technologies to be adopted for manual
description have as yet been made, as this is part of ongoing
work.

Finally, as a principle of composition, artifacts can be
linked together, in order to enable artifact–artifact interac-
tion. This is realised through link interfaces, which are anal-
ogous to interfaces of artifacts in the real world (e.g., link-
ing/connecting/plugging the earphones into an MP3 player,
or using a remote control for the TV). Linking is supported
also for artifacts belonging to distinct workspaces, possibly
residing on different network nodes.

The programming model of A&A includes also a set of
predefined artifacts available by default in each workspace,
providing essential functionalities for managing artifacts and
workspaces themselves. Among others, we mention here: a
factory artifact, providing basic functionalities for dynami-
cally creating and disposing of artifacts; a registry artifact,
for looking up and discovering the set of artifacts currently
available in the workspace; a security-registry artifact, for
managing the set of roles and related access control policies
currently defined in the workspace.

2.2 The CARTAGO Infrastructure
CARTAGO (Common ARtifact infrastructure for AGent

Open environment) is a platform/infrastructure for pro-
gramming and executing artifact-based work environments
for MAS [8]. It provides: (i) an API for defining new types

of artifacts, using the A&A programming model; (ii) an
API to be used in agent-oriented programming platforms as
an interface to interact with CARTAGO environments; (iii)
a runtime environment, supporting the execution of possi-
bly distributed work environments, by managing workspace
and artifact lifecycles; (iv) a library with a predefined set
of general-purpose artifacts, providing different kinds of
functionalities, such as coordination functionalities (black-
boards, message boxes, tuple spaces, tuple centers, etc.),
GUI functionalities (GUI frames and components can be
modelled in CARTAGO as artifacts, mediating human–agent
interactions), resources (databases, legacy system wrappers,
etc.), and so on. CARTAGO1 technology is open source and
completely based on Java.

3. INTEGRATION WITH AGENT PRO-
GRAMMING PLATFORMS

The main contribution of this work is the definition and
implementation of a general model for integrating A&A and
CARTAGO with existing cognitive agent-oriented platforms
so as to extend their programming model for MAS in order
to have a uniform high-level general purpose programming
model for: (i) implementing MAS environments in general,
enabling, mediating, and controlling the access, for instance,
to a real physical or computational environment; and (ii)
designing and programming suitable work environment for
agents, with artifacts and tools useful to organise complex
applications. An important result of the integration is intro-
ducing a new simple way of enabling basic interoperability
among agents of different platforms, by creating distributed
applications with agents from different platforms participat-
ing in the same workspaces and interacting with the same
artifacts.

In order to make it easier to define such integration, in
spite of the specific agent model (BDI or not) considered,
we introduce the notion of an agent body as that part of an
agent which conceptually belongs to a workspace, contain-
ing effectors to act upon artifacts and sensors to perceive
artifacts’ observable events. Sensors in particular play here
a fundamental role: that of perceptual memory, whose func-
tionality accounts for keeping track of stimuli arrived from
the environment, possibly applying filters and specific kinds
of “buffering” policy. According to the specific interaction
modality adopted for using and observing artifacts, as de-
scribed later in this section, it might be useful to provide
agents with basic internal actions for managing and inspect-
ing sensors, as a kind of private memory. In particular, it
could be useful for an agent to organise in a flexible way
the perception of observable events, possibly generated by
multiple different artifacts that an agent can be using for
different, even concurrent, activities.

The notion of agent body makes it easier to realise the in-
tegration also from an engineering point of view, by provid-
ing a clear way to separate the part of an agent governed by
a cognitive agent platform (which we could call the “agent
mind”) and the part that is managed by CARTAGO (i.e.,
the agent body, situated in workspaces); from a develop-
ment point of view, the integration accounts for defining a
suitable low-level interface enabling the mind to control the
body and perceive stimuli collected by body’s sensors.

1Available at http://www.alice.unibo.it/cartago.

227

(1) lookupWsp(WName,?Wid,+Node)
(2) joinWsp(Wid)
(3) quitWsp(Wid)
(4) createWsp(WName,+Node)
(5) removeWsp(WName,+Node)

(6) lookupArtifact(AName,?Aid)
(7) use(Aid,OpCntrlName(Params),+Timeout,+Filter)
(8) use(Aid,OpCntrlName(Params),Sid,+Timeout,+Filter)
(9) sense(Sid,?Perception,+Filter,+Timeout)
(10) makeArtifact(Aid,+ATemplate,+AConfig)
(11) disposeArtifact(Aid)

(12) focus(Aid,+Filter)
(13) focus(Aid,Sid,+Filter)
(14) stopFocussing(Aid)
(15) observeProperty(Aid,PFilter,?AProperty)

Table 1: Basic set of actions to interact with A&A
work environments. + is used for optional parame-
ters, ? for input/output parameters.

3.1 Incorporating a Theory of Use and Obser-
vation of Artifacts into Cognitive Agents

Realising the integration aimed in this work means, first
of all, incorporating a theory of use and observation of ar-
tifacts into cognitive agents. At the base (enabling) level,
such a theory is based on a new set of basic actions that
makes it possible for an agent to: (i) dynamically create,
join, leave, remove workspaces; (ii) use an artifact, by acting
on its usage interface and perceive observable events gener-
ated by artifacts; (iii) observe an artifact. Table 1 provides
a synthetic view of the set of actions, grouped into three
main groups. As for the syntax, a pseudo-code first-order
logic-like syntax is adopted, with the semantics described in-
formally. Following the semantics adopted in the cognitive
agent-oriented programming approaches considered here, an
action consists in the atomic execution of a statement which
can result in changing the agent’s state and/or interacting
with the agent’s environment, and can succeed or fail.

The first group (labelled 1–5) is composed by actions for
managing workspaces, and starting and finishing a working
session inside a workspace. Intuitively, lookupWsp obtains
a workspace unique identifier given its name and possibly
its location; joinWsp makes it possible to “enter” logically
a workspace, whose identifier is specified as a parameter;
quitWsp to leave a workspace; createWsp and removeWsp to
respectively create a new workspace, specifying its name and
location, and remove an existing one, specifying its identi-
fier.

The second group of actions (labelled 6–11) concerns the
use of artifacts. Two basic interaction modalities are sup-
ported, relating to the ways in which observable events gen-
erated by artifacts are perceived and processed by agents.
In the first modality, events generated by an artifact are
made observable to agents as new beliefs about the occur-
rence of the event, without the mediation of sensors. The
use action labelled (7) supports this modality. The action
accounts for using the artifact identified by Aid, by acting on
the usage-interface operation control (OpCntrlName), speci-
fying some parameters (Params), and optionally specifying
a filter (Filter) and a timeout (Timeout). The action suc-
ceeds if the specified artifact exists and its usage interface
actually has the specified control, and as a result the related
operation is triggered for execution. Then, every observable
event subsequently generated by the artifact, as effect of the
operation execution, is made observable to the agent as a

new belief artifact_event(Aid,Event) in the agent’s be-
lief base. The filter can be used to specify which types of
events the agent is interested in perceiving. If the usage in-
terface of the artifact is disabled when executing the action,
for instance because the artifact is executing an operation
(step), then the agent action is suspended until the usage
interface is enabled again; the timeout specifies how long
the agent can wait before considering the action as failed.

In the second modality, events generated by an artifact
do not cause the direct creation of new beliefs, but are col-
lected instead in agent sensors. The use action labelled (8)
supports this modality. It has the same semantics of the
previous one, with the difference that the agent specifies the
identifier Sid of the sensor to be used to collect the events
generated by the artifact. In this case, the belief base of the
agent is not updated. However, in this modality, a sense

action is provided (9) to inspect the content of a sensor (i.e.,
the perceptual memory), so that the agent can become aware
of any new percepts (hence updating the belief base). In
particular, the action succeeds if within Timeout time an
event (stimulous) matching the specified Filter is found in
the specified sensor Sid. In that case, Perception is uni-
fied with such event. Both the timeout and the filter can be
omitted. The same sensor can be used for collecting events
of different usage interactions, possibly with different arti-
facts.

It’s worth noting that in both modalities the execution
(and completion) of the use action is completely asyn-
chronous with respect to the execution of the operation by
the artifact and to the possible consequent generation of
events. It is synchronous, however, with respect to the in-
teraction with the specified operation control in the usage
interface: if the action succeeds, then it means that such
operation control was part of the usage interface, that it has
been activated (as when we “press a button”), and that the
related operation has been triggered for being executed (as
soon as its guard is satisfied). More details about this point
can be found in [8].

Besides use and sense actions, the other actions of this
group are useful for getting the identifier of an artifact
given its name (lookupArtifact), for creating new in-
stances of an artifact (makeArtifact) specifying the name
and the template, and for disposing of an existing one
(disposeArtifact). Actually, these actions are not prim-
itive but realised on top of the basic use and sense actions
working on predefined artifacts: in particular, makeArtifact
concerns the use of factory, and lookupArtifact and
disposeArtifact of registry. The same applies also for
lookup, create, and dispose actions of the first group (la-
bels 1, 4, and 5).

The third group of actions (labelled 12–15) concerns con-
tinuous observation, i.e., the capability of perceiving arti-
facts observable events without interacting with them. Also
in this case the two modalities are supported, with and with-
out sensors. The focus actions can be used to observe an
artifact (intuitively, to focus one’s attention on that artifact
so as to observe any changes that occur on it over time).
The first focus action (label 12) corresponds to the first
modality: the action succeeds if the Aid artifact exists, and
as an effect every observable event generated by the artifact
(despite the specific operation that caused it, possibly exe-
cuted by any other agent) is made observable to the agent as
a new belief artifact_event(Aid,Event) in agent’s belief

228

Gameboard Usage Interface
Operations and Observable Events possibly generated:
move(X,Y,X1,Y1):
{move_ok(X,Y,X1,Y1),wrong_move(X,Y,X1,Y1),
winner(Who)}

getContent(X,Y):{cell_content(X,Y,{white|black|empty})}
isMoveAllowed(X,Y,X1,Y1):{yes,no}

No Observable Properties

Lamp Usage Interface
No Operations
Observable Properties:
turn({black|white|none})

Table 2: Usage interface of the gb game-board (top)
and of the lamp artifact (bottom).

base. In the second case, the event is instead collected in
the specified sensor. Also for focus, a filter can be specified
in order to select which types of event to actually observe.
stopFocussing is used to stop observing the artifact. It is
worth mentioning here the differences between focus and
sense actions: sense is an internal action, since it inspects
a sensor (which is considered part of the agent); focus, in-
stead, is external, enabling continuos observation of events
that directly cause belief base update in the first modality,
and sensor content update in the second modality. Finally,
observeProperty concerns the capability to inspect observ-
able properties of artifacts without interacting with them,
specifying a filter for selecting the property to observe. Anal-
ogously to events, a property is represented as a tuple of
possibly typed information.

3.2 Integration with Existing Agent-Oriented
Programming Platforms

In the remainder of this section we briefly describe how
such general integration model has been applied in the con-
text of two well-known cognitive agent-oriented program-
ming languages and platforms based on the BDI model,
namely Jason [2, 1] and 2APL [4], as well as an agent-
oriented framework used for programming concurrent ap-
plications, called simpA [9]. To give a taste of the integra-
tion, for each one we provide excerpts of the code where
most of the CARTAGO actions are used. The excerpts re-
fer to a toy but quite illustrative example, the game Oth-
ello (also called Reversi), programmed with agents and arti-
facts. The game is modelled as a workspace with two agents,
playing the role of game players, and two artifacts, a game
board called gb and a lamp lamp, used to model respec-
tively the game board and a coordination artifact defining
the player’s turn for the next move. The game board ar-
tifact is designed with the purpose of keeping the (shared)
state of the game, providing an interface for agents to play,
encapsulating and enforcing the rules of the game. Here
we consider a simple usage interface (see Table 2, top). It
provides a move operation to make a move. The opera-
tion can generate different kinds (and numbers of) events:
move_ok if it is a valid move, wrong_move if the move is
not valid. When the move succeeds, another event might
be generated: winner(Who) specifying the winner, if there
is one. The getCellContent operation control is used to
inspect the content of a specific cell, creating an observable
event cell_content(X,Y,PieceType), and isMoveAllowed

to check if a move is valid. The usage interface has no
observable properties; as a design alternative, we could

have provided a set of cell_content(X,Y,PieceType) ob-
servable properties, then using the observeProperty ac-
tion to inspect their values, without the need of having
getCellContent operation.

The artifact lamp is used to indicate the player’s turn. Its
usage interface (see Table 2, bottom) accounts for just an
observable property turn(Turn), that indicates the current
turn: black, white, or none. The game board and the lamp
are linked so that every time a new turn is established, the
observable property turn of the lamp is updated and the
related event generated. Essentially, player agents observe
the lamp to know when it is their turn and interact with the
game board to make their move.

In a more articulated version of the example, multiple
matches can take place in different workspaces, created, and
destroyed dynamically, with a tournament manager agent
(role) in charge of running the tournament, configuring the
workspaces and starting the matches.

3.2.1 Integration with Jason and 2APL
The integration with the Jason and 2APL platforms has

been quite straightforward, since both platforms are fully
Java based, and both provide direct support for: (i) extend-
ing the basic set of agent actions, and (ii) for defining new
customised environments (as a source of events). In the Ja-
son case, new internal actions can be implemented extending
the InternalAction class, while customised environments
can be realised by extending the Environment class, both
provided by the core API. Similarly, in 2APL new internal
actions can be implemented extending the Plan class pro-
vided in the core package, and customised environments can
be defined by extending the Environment class.

Then, CARTAGO actions have been integrated by defining
new (internal) actions, since these actions are meant to be
independent of the specific (CARTAGO) environment used,
and can be thought as basic capabilities provided natively to
agents. For Jason in particular, internal actions are prefixed
by a library name and a dot (e.g., cartago.use).

The following code excerpts provide a brief overview or
the use and observation of artifacts both in Jason and in
2APL, taking the game Othello as example. The game
player starts observing the lamp artifact by means of a focus

action; gb is the game board artifact. As soon as it observes
an event property_changed(turn(Who)) with Who matching
its colour, it selects and performs a move. The Jason version
is as follows:

myColour(white). // an initial belief

+!play
<- ...

cartago.focus(lamp);
...

+artifact_event(lamp,property_changed(turn(Who)))
: myColour(Who)
<- ...

// inspect the gameboard at X,Y
cartago.use(gb,getContent(X,Y),s0) ;
cartago.sense(s0,cell_content(X,Y,Content),1000)) ;
...
<decide to place a piece in some position MX,MY>
...
// note that MX and MY are now already bound
!perform_move(Who,MX,MY).

In the excerpt above, in order to select a move the agent
may need to interact with the game board in order to re-
trieve the content of cells. This is realised by use, acting

229

on the getContent operation control and a related sense,
using s0 as sensor. Note that this example shows the use of
both modalities of observation, the first with artifact events
which becomes implicitly part of the belief base of the agent,
and the second where such observable events are managed
through sensors (i.e., the perceptual memory as previously
described). The 2APL version is as follows:

Beliefs:
myColour(white).

PC-rules:
play <- true |
{ ...

focus(lamp);
...

}
event(lamp,property_changed(turn(Who))) <- myColour(Who) |
{ ...

// inspect the gameboard at X,Y
use(gb, getContent(X,Y), s0);
sense(s0, cell_content(X,Y,Content), 1000);
...
<decide to place a piece in some position MX,MY>
...
// note that MX and MY are now already bound
perform_move(Who,MX,MY)

}

Since both agent languages are logic-based, the integration
style is very similar.

Then, in order to move, the agent performs a simple move

action. Here is the Jason version:

+!perform_move(C,X,Y)
<- ...

cartago.use(gb,move(C,X,Y)).

+artifact_event(gb,wrong_move(C,X,Y)
<- ...

<select another move>
...

+artifact_event(gb,winner(Who))
: myColour(Who)
<- cartago.use(console,print("I won!")).

+artifact_event(gb,winner(Who))
: not myColour(Who)
<- cartago.use(console,print("Damn it.")).

Note that no sensors are specified: in this case we want to
process observable events as beliefs about perceptual infor-
mation added to the belief base (in this case, wrong_move,
move_ok, and winner(Who)). As soon as the agent observes
a winner event, it uses a console artifact to print a message.
The 2APL version is similar:

PC-rules:
perform_move(C,X,Y) <- true |
{ ...

use(gb,move(C,X,Y))
}

event(gb,wrong_move(C,X,Y)) <- true |
{ <select another move> }

event(gb,winner(Who)) <- myColour(Who) |
{ use(console,print("I won!") }

event(gb,winner(Who)) <- not myColour(Who) |
{ use(console,print("Damn it.")) }

3.2.2 Using Artifacts in simpA

simpA is a framework for programming concurrent/multi-
core applications introducing an agent-oriented abstraction
layer based on the A&A programming model, on top of the

basic object-oriented layer. Currently, it is implemented as
a framework on top of Java, and it provides a simple API to
program agents and artifacts as basic building blocks for
structuring a concurrent software system. The model of
agents supported in simpA is activity-oriented (not cognitive
or BDI): a programmer defines the agent’s active behaviour
by specifying the agenda of activities that the agent has
to do at runtime. As a long-term memory, each agent has
a memo space, an associative data structure where agents
can dynamically store/remove useful information for their
activities, in terms of “memos” (which are called tuples of
data), possibly partially specified. simpA natively supports
CARTAGO actions. Details about the simpA programming
model can be found in [9] and in the simpA website2. Here
we use simpA as an example of non-cognitive agent-oriented
platform, so as to emphasise the integration of heterogeneous
types of agents working together in shared workspaces.

Differently from the cognitive platform cases, here we sup-
port only one interaction modality, based on sensors. In the
following excerpt, the same Othello player is shown. Follow-
ing the simpA model, the behaviour of the player agent is
defined by a main activity, composed by a init subactivity,
a persistent play activity, which starts as soon as the init

activity is completed, and it is executed repeatedly until a
memo won or lost is found in the memo space. In the init

activity, the agent uses the focus action to start observing
the lamp artifact:

public class OthelloPlayer extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="init"),
@TODO(activity="play", pre="completed(init),

!memo(won),!memo(lost)", persistent=true),
@TODO(activity="enjoy", pre="memo(win)"),
@TODO(activity="cry", pre="memo(lost)"),

}) void main(){}

@ACTIVITY void init() throws ActivityFailure {
memo("myColour","white");
focus("lamp","s0");
...

}

Similarly to the behaviour of Jason and 2APL agents, play-
ing means waiting for the turn and then selecting and per-
forming a move. In the waitTurn activity, the agent per-
forms a sense action on the sensor used for observing the
lamp, waiting to perceive an event indicating its turn. As
soon as such event is perceived, in the selectMove activity
the agent interacts with the game board artifact to check
the content of cells (by executing getCellContent).

@ACTIVITY_WITH_AGENDA({
@TODO(activity="waitTurn"),
@TODO(activity="selectMove", pre = "completed(waitTurn)"),
@TODO(activity="performMove",

pre = "memo(new_move_selected,_,_))")
}) void play(){}

@ACTIVITY void waitTurn() throws ActivityFailure {
Memo m = getMemo("myColour");
sense("s0",new PropertyChanged("turn",m.stringValue(0)));

}

@ACTIVITY void selectMove() throws ActivityFailure {
...
use("gb",new Op("getCellContent",x,y),"s1");
try {

...
Perception p = sense("s1","cell_content",1000);

2http://www.alice.unibo.it/simpa

230

String content = p.stringContent(2);
...
memo("new_move_selected",x,y);

} catch (NoPerceptionException ex){ ... }
}

In simpA, the sense action directly returns the event fetched
from the sensor (in the case of a successful action) as an
object of type Perception. In fact, it can be used just
as a synchronisation point: in the waitTurn activity the
sense action suspends the execution of the activity until an
event matching property_changed(turn(Who)) is found in
the sensor, where Who stands for the agent’s color.

As soon as a memo about the new move selected is cre-
ated, the performMove activity starts and makes the move
by using the move operation. Differently from Jason and
2APL, also in this case we use the sense action to retrieve
observable events generated by the move.

@ACTIVITY void performMove() throws ActivityFailure {
Memo move = delMove("new_move_selected");
String turn = getMemo("myColour").stringContent(0);
int x = move.intContent(0);
int y = move.intContent(1);
use("gb",new Op("move",turn,x,y),"s2");
Perception p = sense("s2","move_ok|wrong_move|winner");
if (p.getLabel().equals("winner") {
String winnerName = p.stringContent(0);
if (winnerName.equals(myName)){
memo("won");

} else {
memo("lost");

}
} else if (p.getLabel().equals("wrong_move") {
...

}
}
@ACTIVITY void enjoy() throws ActivityFailure {
use("console",new Op("print","I won!");

}
@ACTIVITY void cry() throws ActivityFailure {
use("console",new Op("print","Damn it.");

}
}

Similarly to the previous cases, a console artifact is used to
print out a message as soon as a memo about winning (win)
or losing (lost) is added to the agenda.

4. BENEFITS OF ARTIFACTS IN PRAC-
TICE: AN OPEN SYSTEM EXAMPLE

In order to provide an example explaining some of the
practical benefits in integrating agent platforms within a
CARTAGO infrastructure, we here briefly describe a simple
experiment that we have conducted. Built with CARTAGO
technology, the RoomsWorld scenario realises an open sys-
tem where heterogeneous agents have the possibility to join,
test and interact with CARTAGO environments. The work
environment is composed by a number of rooms and corri-
dors separated by walls and doors. Once a room is entered,
agents should achieve the goal to find and clean trash objects
which may appear in the rooms with arbitrary frequencies.
To find a trash, an agent has to enter a given room and
then perform epistemic actions which are assumed to allow
agents to know the exact location of the trash (provided in
the form of percepts). Besides, a set of particular artifacts
are supplied to agents in order to support their activities.
In the example described here, agents have the possibility
to use checklist artifacts which are placed at the entrance
of each room. Also, agents may observe a watch artifact,

which provides them with a symbolic record of the ongoing
simulated time.

In this experiment, we deploy in the RoomsWorld agents
with two different strategies for achieving their goals. The
“normal cleaners” simply look for trash exploring the rooms
randomly. Once they get the percept of a trash, they reach
its location and adopt a “clean” goal. The second type of
agents use a more complex strategy, taking advantage of
artifacts placed in the environment. This strategy assumes
that, once some agent has cleaned a room, it puts a time
record in the related checklist, by retrieving the actual time
from the watch. This gives subsequent agents the possibility
to use the information contained in the checklist, to avoid
cleaning rooms that have recently been cleaned by other
agents.

For simplicity we here show a part of the code for the
cleaner agent—written in Jason in this case—using the
checklist strategy:

+!useChecklist
<- ?target_check_list(N);

goToChecklist(N);
-target_check_list(N);
cartago.use(checklist(N), readLastNote,s0);
cartago.observeProperty(watch,current_time(_),s0);
cartago.sense(s0,last_note(LastTime)),
cartago.sense(s0,current_time(CurrentTime)),
!decide(N,LastTime,CurrentTime).

+!decide(N,LastTime,CurrentTime)
: threshold(D) & (D < CurrentTime - LastTime)
<- cartago.use(console,"I’VE DECIDED TO ENTER!");

!clean(N).

+!decide(N,LastTime,CurrentTime)
<- cartago.use(console,"INTENTIONS RECONSIDERED: EXPLORING!");

!explore.

Once a cleaner has decided which room it is interested
in, it first reaches the related checklist (determined by the
target_check_list belief, which is removed after the agent
locates the checklist), and uses it to read the latest time
record. This is done by executing the readLastNote oper-
ation and perceiving the last_note event through a sensor
(s0), carrying information about the last time-stamp left by
some other agent at the end of its cleaning activity. In order
to know the current time, the agent observes the watch ar-
tifact, getting the content of the current_time(Time) prop-
erty.

Once the agent has both information about the checklist
time stamp and the current time, it can decide what to do.
If the difference between the actual time and the time-stamp
retrieved in the checklist is beyond the threshold (say, a day’s
time), it keeps its intention of going into the room that was
previously selected, otherwise it reconsiders its intentions
and goes on to access another checklist.

The experiment shows that cognitive agents using check-
list outperform normal agents in terms of achieved goals. We
compared the performances of two teams of agents situated
in environments with four rooms 3. Whereas normal agents
in the first team waste time and resources looking for trash
in rooms that have just been cleaned, the team of agents
exploiting the checklists is better able to balance activities
aimed at achieving the clean goals.

This simple case study makes it possible to highlight some
of the benefits of using artifacts as mediating tools for in-
teractions. In general terms, the use of tools is a suitable
3The experiment is available at CARTAGO website

231

strategy to simplify choices and ease computational burden.
From the point of view of an outside observer, the checklist
plays the role of enhancing and distributing information.
The knowledge which is acquired at the subjective level by
agents during their tasks can be shared by checklists, which
allow the overall society to benefit from that information.
From the point of view of the agents, artifacts allow them
to externalise activities in order to reach desired states [3].
Their use changes the task as well as enhances agent’s cog-
nitive abilities, while the means to achieve goals is dramat-
ically simplified [7]. In particular, checklists can be viewed
by agents as useful tools for representing the problem space
in their situated contexts. Agents may rely on checklist in-
formation to improve their practical behaviour, thus saving
exploration and epistemic activities [5]. In so doing, agents
can take advantage of the information left by other agents
without the need for mutual presence within location and
time, nor the need for message broadcasting.

Checklists organise and make available relevant informa-
tion as a permanent modification of their state, persist-
ing even when an agent who produced it decides to leave
the environment. This has a multifaceted importance in
the context of an open system, where different agents may
asynchronously operate, with interleaved presence in spe-
cific rooms. With respect to a solution based on message
exchange, here agents locally recur to information concern-
ing their actual purposes. Although a message based broad-
cast to the whole society would allow agents to maintain an
updated knowledge of the entire environment, this would
require agents to waste their computational resources to
continually process messages which are not strictly relevant
for their current needs. Messages would allow agents to
know exactly what is happening in the overall environment,
but the information coming from far rooms is unlikely to
be relevant for agents. Moreover, an open-system assump-
tion may imply the presence of agents with arbitrary archi-
tectures, hence without the necessary abilities for message
passing/broadcasting, nor a shared semantic to understand
their contents.

5. CONCLUDING REMARKS
In this paper we described a general approach for inte-

grating the A&A programming model with existing agent-
oriented platforms—cognitive/BDI in particular—enabling
MAS engineers to (i) have a high-level and general-purpose
programming model to develop agent environments, and (ii)
to design and develop MAS in which (possibly heteroge-
neous) agents dynamically create, share, and use artifacts
to improve their work, in particular their cooperation.

We think that this integration could be a first step to-
wards a novel form of interoperability in open multi-agent
systems, based on agents working in the same workspace(s),
and sharing and using the same artifacts with a common
understanding of such use (possibly using artifact “manu-
als” if necessary). Currently, CARTAGO lacks a reference
model and ontologies for defining the machine-readable con-
tent of artifact manuals, and this partially limits the level
of inter-operability and openness that can be achieved. Ac-
cordingly, some planned future work is in this direction: to-
wards the definition of a common model for manuals, with a
shared semantics of the description of artifact purpose and
usage. For this purpose, existing work on related research
domains, such as the Semantic Web, will be an important

reference [11].
Besides open systems and interoperability, the integration

presented here makes it possible to easily create testbeds
for benchmarking and comparing different agents and MAS
models and their design solutions, possibly developed with
different agent-oriented languages and platforms. Future
work will also account for exploring how the different cog-
nitive models may differ in their performances given their
different reasoning processes and problem-solving styles.

6. REFERENCES
[1] R. Bordini and J. Hübner. BDI agent programming in

AgentSpeak using Jason. In F. Toni and P. Torroni,
editors, CLIMA VI, volume 3900 of LNAI, pages
143–164. Springer, Mar. 2006.

[2] R. Bordini, J. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd, 2007.

[3] A. Clark and D. Chalmers. The extended mind.
Analysis, 58: 1:7–19, 1998.

[4] M. Dastani and J.-J. Meyer. A practical agent
programming language. In Proceedings of the fifth
International Workshop on Programming Multi-agent
Systems (ProMAS’07), 2007.

[5] V. Kaptelinin, B. A. Nardi, and C. Macaulay. Methods
& tools: The activity checklist: a tool for representing
the “space” of context. interactions, 6(4):27–39, 1999.

[6] B. A. Nardi. Context and Consciousness: Activity
Theory and Human-Computer Interaction. MIT Press,
1996.

[7] D. Norman. Cognitive artifacts. In J. Carroll, editor,
Designing interaction: Psychology at the
human–computer interface, pages 17–38. Cambridge
University Press, New York, 1991.

[8] A. Ricci, M. Viroli, and A. Omicini. The A&A
programming model & technology for developing
agent environments in MAS. In M. Dastani,
A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff,
editors, Post-proceedings of the 5th International
Workshop “Programming Multi-Agent Systems”
(PROMAS 2007), volume 4908 of LNAI, pages
91–109. Springer, 2007.

[9] A. Ricci, M. V. Viroli, and G. Piancastelli. simpA: A
simple agent-oriented java extension for developing
concurrent applications. In M. Dastani, A. E. F.
Seghrouchni, J. Leite, and P. Torroni, editors,
Workshop on Languages, Methodologies and
Development Tools for Multi-Agent Systems
(LADS’007), pages 176–191, Durham University, U.K,
Sept. 2007.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[11] N. Shadbolt, T. Berners-Lee, and W. Hall. The
semantic web revisited. IEEE Intelligent Systems,
21(3):96–101, 2006.

[12] D. Weyns, A. Omicini, and J. Odell. Environment as a
first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, Online
First, July 2006. Special Issue: Environment for
Multi-Agent Systems.

232

