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ABSTRACT

When human-multiagent teams act in real-time uncertain domains,
adjustable autonomy (dynamic transferring of decisions between
human and agents) raises three key challenges. First, the human
and agents may differ significantly in their worldviews, leading to
inconsistencies in their decisions. Second, these human-multiagent
teams must operate and plan in real-time with deadlines with un-
certain duration of human actions. Thirdly, adjustable autonomy in
teams is an inherently distributed and complex problem that can-
not be solved optimally and completely online. To address these
challenges, our paper presents a solution for Resolving Inconsis-
tencies in Adjustable Autonomy in Continuous Time (RIAACT).
RIAACT incorporates models of the resolution of inconsistencies,
continuous time planning techniques, and hybrid method to address
coordination complexity. These contributions have been realized in
a disaster response simulation system.

1. INTRODUCTION

Adjustable autonomy, which is the dynamic transfer of control
over decisions between humans and agents [7], is critical in human-
multiagent teams. It has been applied in domains ranging from
disaster response[8] to multi-robot control [9]. In situations where
agents lack the global perspective or general knowledge to attack a
problem, or the capability to make key decisions, adjustable auton-
omy enables agents to access a human participant’s superior deci-
sions while ensuring that humans are not bothered for routine deci-
sions.

This paper focuses on time-critical adjustable autonomy, which
is adjustable autonomy in highly uncertain, deadline-driven do-
mains, where the domain complexity necessarily implies that hu-
mans may sometimes provide incorrect input to agents. In such
domains, the human may have a global perspective on the problem,
but it may be impossible to provide the human with a timely accu-
rate local perspective of individual agents in the team. An example
of this is seen when adjustable autonomy was used in disaster re-
sponse simulations [8]. Incorporating human advice degraded the
team performance, at times, and it was shown that an agent team
cannot blindly accept or blindly reject human input.

Previous work in adjustable autonomy [7, 10] has failed to ad-
dress these issues in time-critical domains. Previous work has re-
Cite as: RIAACT: A robust approach to adjustable autonomy for human-
multiagent teams (Short Paper), Nathan Schurr, Janusz Marecki and Milind
Tambe, Proc. of 7th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS 2008), Padgham, Parkes, Miiller and Parsons
(eds.),May,12-16.,2008,Estoril,Portugal,pp.1429-1432.

Copyright (©) 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Janusz Marecki
University of Southern
California
Los Angeles, CA

marecki@usc.edu

Milind Tambe
University of Southern
California
Los Angeles, CA

tambe@usc.edu

lied on techniques such as Markov Decision Problem (MDP) and
Partially Observable MDP (POMDP) for planning interactions with
humans [7, 10]. While successful in domains such as office envi-
ronments [7], they fail when facing time-critical adjustable auton-
omy. First, adjustable autonomy planning has, so far, assumed the
infallibility of human decisions, whereas these realistic domains
demand resolution of inconsistencies between human and agent
decisions. Second, previous work has utilized discrete-time plan-
ning approaches, which are highly problematic given highly un-
certain action durations and deadlines. For example, the task of
resolving the inconsistency between a human and an agent takes
an uncertain amount of time. Given deadlines, the key challenge is
whether at a given time to attempt a resolution. Discrete time plan-
ning with coarse-grained time intervals may lead to significantly
lower quality in such planning for adjustable autonomy because it
may miss a critical opportunity. Planning with very fine grained
intervals unfortunately causes a state space explosion, grinding the
MDPs/POMDPs down to slow speeds.

We have developed a new approach that addresses these chal-
lenges called RIAACT (Resolving Inconsistencies with Adjustable
Autonomy in Continuous Time). First, RIAACT extends existing
adjustable autonomy policies to overcome inconsistencies between
the human and the agents. This allows the agents to avoid a po-
tentially poor input from the human. The aim of this paper is an
overarching framework that stands above any particular inconsis-
tency resolution method that is chosen between an agent and a hu-
man. RIAACT provides plans that determine how long to allow a
human to ponder over a decision, whether to resolve any inconsis-
tency that may arise if the human provides a decision. Secondly,
RIAACT leverages recent work in Time-Dependent Markov De-
cision Problems (TMDPs) [4, 5]. Thus, by exploiting the fastest
current TMDP solution technique, we have illustrated the feasibil-
ity of applying this TMDP methodology to the adjustable auton-
omy problem. The result is a continuous time policy that allows
for actions to be prescribed at arbitrary points in time, without the
state space explosion that results from solving with fixed discrete
intervals.

Thirdly, to address the challenge of coordinating the interaction
of a team of agents with a human, RIAACT uses a hybrid approach
[6], using TMDPs for planning interaction with the human, but re-
lying on non-decision-theoretic approaches (e.g. relying on BDI-
logic inspired teamwork), thus significantly reducing the computa-
tional burden by not using distributed MDPs. RIAACT’s goal is
to incorporate these techniques into a practical solution for human-
multiagent teams. We illustrate RIAACT’s benefits with experi-
ments in a complex disaster response simulation.



2. BACKGROUND AND RELATED WORK
2.1 Adjustable Autonomy

Early work in mixed-initiative and adjustable autonomy inter-
actions suffered from two key limitations: (i) it only allowed for
one-shot autonomy decisions that were problematic given uncer-
tain human response times in time-critical domains or (ii) it allowed
for sequential transfer of control between humans and agents, but
would not scale up to our domains of interest. We elaborate on
some of the weaknesses of this prior works.

To remedy that sequential interactions [7, 10, 3, 9] that allow for
back-and-forth transfer of control have been proposed. However,
these techniques assume that time is discretized, and as a result, to
ensure high accuracy decisions, have to deal with large state spaces
that this discretization entails. Consequently, these techniques only
scale up to tiny domains with time horizons limited to few time
ticks — a restriction that is not acceptable for in the Disaster Rescue
domain. On the other techniques for planning with continuous time
that have been proposed [1, 4, 5] do not discretize time and as such
scale up to larger time horizons, but have traditionally not been
used in context of human-multiagent teams.

2.2 Time-Dependent Decision Making

Very often, agents that act in real environments have to deal with
uncertain durations of their actions. The semi-markovian decision
model allows for action durations to be sampled from a given dis-
tribution. However, the policy of a semi-markovian decision model
is not dependent on time, but only state and as a result, reasoning
about deadlines is problematic. To remedy that the Time-dependent
Markov Decision Process (TMDP) model was introduced in [1].
The TMDP’s solution to handle continuous time is to associate with
the discrete state a continuous function of the state value over time.
These functions, for different actions executed from the discrete
state, can then be compared and an optimal policy for each point in
time can be extracted from them.

Recently, there has been a significant progress on solving TMDPs
[1, 4, 5]. The primary challenge that any TMDP solver must ad-
dress is how to perform value iteration over an infinite number of
states because the time dimension is continuous. Consequently,
each TMDP solution technique must trade off between the algo-
rithm run time and the quality of the solution. We have chosen
to utilize the Continuous Phase (CPH) solver [5] as it has been
shown to be the fastest of the TMDP solvers available. Thus, the
TMDP model matches the requirement posed by adjustable auton-
omy problems: it allows for back-and-forth transfer of control and
returns time dependent policies, yet scales up to realistic domains
since it does not discretize time.

3. RIAACT

RIAACT has been designed to address the challenges that arise
from this time-critical adjustable autonomy problem. The focus
of RIAACT is an overarching framework that will determine ad-
justable autonomy policy in a time-constrained (deadline) environ-
ment where actions take an uncertain amount of time to execute.
The planner provides a policy that shows which action to take a
distributed team setting. In order to explain this, we will first recall
the TMDP model and then show how it can be applied to adjustable
autonomy.

The TMDP model [1] is defined as a tuple (S, A, P, D, R) where
S is a finite set of discrete states and A is a finite set of actions. P
is the discrete transition function, i.e., P(s,a, s’) is the probabil-
ity of transitioning to state s' € S if action a € A is executed in

state s' € S. Furthermore, each tuple (s, a, s’) has a correspond-
ing probability density function of action duration ds 4.y € D
such that d; o .y (t) is the probability that the execution of action a
from state s to state s’ took time ¢. Finally, R is the time-dependent
reward function, i.e., R(s, a, s',t) is the reward for transitioning to
state s’ from state s via action a completed at time ¢. The opti-
mal policy 7* for a TMDP then maps all discrete states s € .S and
times ¢ € [0, A] to actions 7% (s,t) € A where [0, A] is the desired
execution interval.

3.1 Adjustable Autonomy Using TMDPs

In order to address the challenges brought about by dealing with
time-critical adjustable autonomy, we model agent policies using
TMDP, and achieve coordination across agents by a hybrid ap-
proach described later. The RIAACT TMDP model (Figure 1) im-
proves on the previous techniques [7, 10, 3, 9] in two important
aspects: (i) it explicitly captures and resolves decision inconsis-
tencies, (ii) it extracts time from the adjustable autonomy problem
description, and hence, can take advantage of efficient TMDP algo-
rithms to solve the planning problem at hand. The RIAACT TMDP
model is illustrated in Figure 1. Here, single states now have poli-
cies that are functions over time. In addition, each arrow in Figure
1 represents not a constant duration, but an entire action duration
distribution that can be any arbitrary distribution. Note, that the
model in Figure 1 represents a single team decision, and one of
these would be instantiated for each team decision in a hybrid ap-
proach discussed later.

Figure 1: RIAACT TMDP model for adjustable autonomy.

We now describe how RIAACT is represented as a TMDP:

States - Each circle in Figure 1 represents the state that a team
decision can be in. To address the challenge of scale while develop-
ing an online solution, we have leveraged state abstractions. Each
of these state categories can be broken into sub-categories to more
accurately model the world, e.g. the state of an inconsistent human
decision, Hdi, can be split into several possible inconsistent states,
each with their own reward. The RIAACT policy in Figure 1 repre-
sents a single team decision in one of the following states: (i) Agent
has autonomy (Aa) - The agent team has autonomy over the deci-
sion. At this point, the agent team can either transfer control to the
human or try to make a decision. (ii) Human has autonomy (Ha) -
Human has the autonomy over the decision. At this point, the hu-
man can either transfer control to an agent or make a decision. (iii)
Agent decision inconsistent (Adi) - This state represents any state
in which the agent has made a decision and the human disagrees
with that decision. (iv) Agent decision consistent (Adc) - This state
represents any state in which the agent has made a decision and
the human agrees with that decision. (v) Human decision incon-
sistent (Hdi) - This state represents any state in which the human
has made a decision and the agent believes that the decision will
result in substantial decrease in average reward for the team. (vi)
Human decision consistent (Hdc) - This state represents any state
in which the human has made a decision and the agent believes that
the decision will either increase the reward for the team or does not



have enough information to raise an inconsistency about the deci-
sion. (vii) Task finished (Finish) - This represents the state where
the task has been completed and a reward has been earned. The
reward can vary based on which decision was executed.

Actions - The arrows in Figure 1 represent the actions that do
not take a fixed amount of time — each arrow also has a corre-
sponding function which maps time to probability of completion
that action after any time from [0, A]. There are four available ac-
tions: T'ransfer, Decide, Resolve, Execute. Trans fer results
in a shift of autonomy between a human and an agent. Decide al-
lows for a decision to be made and results in a transition to either
the consistent or inconsistent states (Adc, Adi if agent executed
action Decide or Hdc, Hdi if human executed action Decide).
Resolve is an action that attempts to resolve from an inconsistent
state Adi or Hdi to a consistent state Adc or Hdc, which yields
higher rewards. To Execute a particular decision results in the
implementation of that decision towards the F'inish state.

Rewards - The reward for a state is only received if that state is
reached before the deadline (time A). In previous adjustable auton-
omy work [8] the decisions made by either party were assumed to
have some average quality or reward. In our effort to try and model
the diverse perspectives that the agents and humans can have, we
extended the model to categorize the decision as either consistent
Adc or Hdc or inconsistent Adi or Hdsi. It is the case that there can
be a wide variety of both consistent and inconsistent team decisions
and the model allows for that.

3.2 Hybrid Coordination

In designing our approach for time-critical adjustable autonomy,
we treat the RIAACT policy as a team plan, composed of joint
actions [2]. Upon generation of the policy, an agent communicates
that policy to the rest of the team. The team now has access to
the team plan to be executed and the durations of joint actions.
This allows us to leverage existing team coordination algorithms
such as those based on [2, 8]. For example, suppose that all agents
jointly commit to transferring autonomy to the human, and after a
certain amount of time a decision is made. If any agent detects an
inconsistency, it invokes a joint commitment to the Resolve team
action. If an agent detects that this joint commitment is achieved
or unachievable (via resolution) then that agent will communicate
with the rest of the team. An added benefit of this approach is that
multiple agents will not simultaneously commit to resolve, thereby
preventing conflicting or redundant resolve team plans. This hybrid
approach avoid using computationally expensive distributed MDPs
for coordination [6].

4. EXPERIMENTS

We have conducted two sets of experiments to evaluate RIAACT:
First, to explore the advantages of its policies over policies returned
by previous adjustable autonomy models on a test bed domain and
second, to examine RIAACT policies in context of the DEFACTO
disaster simulation system [8]. This disaster response scenario in-
cludes a human incident commander collaborating with a team of 6
fire engine agents in a large scale disaster with multiple fires. These
fires are engulfing the buildings quickly and each have the chance
of spreading to adjacent buildings. A decision must be made very
quickly about how the team is to divide their limited resources (fire
engines) among the fires.

We instantiate the parameters of the RIAACT model as follows:
The probability of a consistent decision for the human and the agent
is P(c, H) = P(c, A) = 0.5. We measure the reward in terms of
buildings saved compared to the maximum of 10 building that can
catch fire. The reward for an agent decisions is 6 if the decision is
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Figure 2: RIAACT Model example policy output given that the
resolve action duration fits a Normal(9,5).

consistent with the human and 5 if not, whereas the reward for the
human decisions is 6 if the decision is consistent with the agents
and 7.5 otherwise. The durations of the Trans fer of autonomy
action and the Decide, Execute and Resolve actions for agents
are fast and follow an Exponential distribution with the mean of
0.5. In contrast, the Decide and Resolve actions for the human are
slow and follow a Normal Distribution with the mean of 3 and the
standard deviation of 1. Throughout all the experiments we focus
on the Resolve action as it allows us to demonstrate the unique
benefits of RIAACT: resolving inconsistencies and developing a
continuous time policy.

4.1 Testbed Policy Experiments

For these first experiments, we created a simple testbed domain
to construct a policy that included 6 agents, where the Resolve ac-
tion duration follows a Normal(9,5). The reason for the experiment
was to show the benefits in the theoretical model of (i) continuous
time, and (ii) the resolve action. The result of the experiment was
that each of the benefits are shown and this confirms the usefulness
of the RIAACT model in the testbed environment.

Figure 2 shows an example of a policy where the Resolve action
duration distribution is a Normal(9,5). The policies for states Adc
and Hdc have been omitted from the figure since they show only
one action over time to be taken from these consistent decisions,
Execute. For each general state, the policy shows the optimal
action to take and the expected utility of that action as a function
over time. Figure 2¢ and 2d include additional policies, but the
policy is the dominant action. On each x-axis is the amount of
time left until the deadline and on the y-axis is the expected utility.
Thus, if any state is reached, then the time to deadline is referred
to and the optimal policy is chosen. For example, if the human
has the autonomy (H a) and the time to deadline is greater than 3.6
seconds, then the optimal action is to attempt a human decision.
Otherwise, the optimal action is to transfer that decision over to the
agent in order to have the agent make a quicker, but lower average
quality decision. Figure 2a shows that the dominant action for the
agent has autonomy state, Aa, is to transfer the decision to the
human up until 3.9 seconds before the deadline.

Figure 2c and 2d show the times at which the Resolve action is
optimal. In order to show the benefit that the Resolve action pro-
vides, a new set of experiments was run. The results of this experi-
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Figure 3: Experiments given a simulated human.

ment can be seen in Figure 2c and 2d. The Execute line represents
the policy from previous work, where the inconsistent decision is
executed immediately. The Resolve line represents where the pol-
icy deviates from Execute if the Resolve action. As seen in both
charts, the Resolve action provides a higher expected reward over
time. For example, as seen in Figure 2c the policy for Adi is to at-
tempt to resolve an inconsistency if it is detected with at least 14.8
seconds if the Resolve.

4.2 DEFACTO Experiments

We have also implemented this in a disaster response simula-
tion system (DEFACTO), which is a complex system that includes
several simulators and allows for humans and agents to interact to-
gether in real-time [8]. In these experiments, a distributed human-
multiagent team works together to try and allocate fire engines to
fires in the best way possible. These experiments have been con-
ducted in the DEFACTO simulation in order to test the benefits
of the RIAACT policy output. In the scenario that we are using for
these experiments, the human had the autonomy and has made a de-
cision. However, this decision is found to be inconsistent (H di) and
now a RIAACT TMDP policy is computed to determine whether,
at this point in continuous time it is beneficial to either Resolve the
inconsistency or Ezecute the inconsistent human decision H ds.

The experiments included 6 agents and a simulated human. Sec-
tion 4.1 explained the complete RIAACT policy space for an ex-
perimental setting where the Resolve duration was kept as Nor-
mal(9,5). In these experiments, we create a different RIAACT
policy for each of the following Resolve duration distributions:
Normal(3,1), Normal(6,4), Normal(9,5), Normal(12,6), and Nor-
mal(12,2). This serves to explore the effects of modeling varying
resolve durations and how they effect the policy and eventually the
team performance. In each of the experiments, the deadline is the
point in time at which fires spread to adjacent buildings and be-
comes uncontrollable, which in the simulation is 8.7 seconds until
deadline.

Using the RIAACT policies, we conducted experiments where
DEFACTO was run with a simulated human. A simulated human
was used to allow for repeated experiments and to achieve statisti-
cal significance in the results. Experiments were conducted com-
paring the performance of the Resolve action following the RI-
AACT policy, Always Accept policy or the Always Reject policy
(see Figure 3). We assumed the probability that the detected incon-
sistency was useful, P(IU) = 0.5. The Resolve action duration
is sampled from the varying normal distributions, shown on the x-
axis. These are averaged over 50 experimental runs. The y-axis
shows performance in terms of amount of buildings saved. The Al-
ways Accept policy is the equivalent of previous work in adjustable
autonomy where a decision was assumed to be final, whereas the
decision was immediately rejected in the Always Reject policy.
The RIAACT policy improves over both of these static policies.

Figure 3 also shows that as the Resolve action duration increases,

the benefit gained from using RIAACT decreases. This is due
to the approaching deadline and the decreased likelihood that the
Resolve will be completed in time. Although, the difference in
performance for the Normal(12,2) case may be the smallest, the
results show statistical significance P < 0.05 (P = 0.0163).

S. CONCLUSION

In this paper, we have presented an approach to address the chal-
lenges that arise in time-critical adjustable autonomy for human-
multiagent teams acting in uncertain, deadline-driven domains, called

RIAACT. Our goal is to provide robust solutions for human-multiagent

teams in these kinds of environments. Our approach makes three
contributions to the field in order to address these challenges. First,
our adjustable autonomy framework models resolution of incon-
sistencies between human and agent view, rather than assuming
the human to be infallible. Second, agents plan their interactions
in continuous time, avoiding a discretized time model, while re-
maining efficient. Third, we have created a hybrid approach that
combines non-decision-theoretic algorithms for coordination with
the decision theoretic planning, to avoid the complexities of the
distributed problem. We have conducted experiments that both ex-
plore the RIAACT policy space and apply these policies to an urban
disaster response simulation. These experiments have shown how
can RIAACT can provide improved policies that increase human-
multiagent team performance.
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