Goals in Agent Systems: A Unifying Framework

M. Birna van Riemsdijk
LMU Munich
Germany

riemsdijk@pst.ifi.Imu.de

ABSTRACT

In the literature on agent systems, the proactive behavior of agents
is often modeled in terms of goals that the agents pursue. We re-
view a number of commonly-used existing goal types and propose
a simple and general definition of goal, which unifies these goal
types. We then give a formal and generic operationalization of
goals by defining an abstract goal architecture, which describes the
adoption, pursuit, and dropping of goals in a generic way. This
operationalization is used to characterize the discussed goal types.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; 1.2.5 [Artificial In-
telligence]: Programming Languages and Software; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Constructs; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Theory, Languages

Keywords

Agent Programming, Goals, Formal Semantics

1. INTRODUCTION

A key property of software agents is that they are proactive, and
consequently goals are a vital concept for agents. There has been
much work in recent years on how goals can be used in agent pro-
gramming frameworks to allow an agent to be proactive (see, e.g.,
[30, 11, 27, 20, 23, 2, 12, 15, 7, 4]). Agent programming frame-
works in which goals play a central role, are generally so-called
cognitive agent programming frameworks [26]. In these frame-
works, agents are endowed with high-level mental attitudes such
as beliefs, goals, and plans. The idea is then that an agent should
try to reach its goals by executing appropriate plans, given its be-
liefs. Beliefs thus form the informational component of the agent,
goals form the motivational component, and plans are the means
for achieving the goals.

Various aspects of goals in agent systems have been investigated
in recent years, with many different variations of goals appearing.
We therefore believe that it is now useful to try and structure this
Cite as: Goals in Agent Systems: A Unifying Framework, M. Birna van
Riemsdijk, Mehdi Dastani, Michael Winikoff, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Miiller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal,pp.713-720.

Copyright (©) 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

713

Mehdi Dastani

Utrecht University

The Netherlands
mehdi@cs.uu.nl

Michael Winikoff
RMIT University, Melbourne
Australia
michael.winikoff@rmit.edu.au

collection of approaches. We do this by investigating commonali-
ties among the various kinds of goals and proposing a unifying per-
spective. Such a unifying perspective provides a basis for a com-
mon understanding of goals in agent systems, and has, to the best of
our knowledge, not yet been proposed in the literature. It facilitates
a more structured and systematic study of goals in future research,
and allows comparing different variations of goals by investigating
how these instantiate the unifying framework. Moreover, it helps
to identify aspects of goals that have been overlooked so far in the
literature.

Oulr investigation of the notion of goal focuses on two key as-
pects :

1. What is a goal, and what types of goals are there?

2. How are goals operationalized in agent systems, i.e., how are
goals pursued by agents?

We address the first issue by proposing a unifying abstract defini-
tion for the concept of goal (Section 2). While most people seem
to have an intuitive idea of what a goal is, such a unifying view that
encompasses the various kinds of goals has not been proposed yet.
We arrive at this generic definition through analyzing important ex-
isting goal types and relating them by providing a taxonomy of goal
types. The operationalization of goals is investigated in Section 3
by proposing an abstract goal architecture in which the most im-
portant aspects of operationalizing goals are captured. On the basis
of this abstract goal architecture, we propose a new generic goal
construct with formal semantics that can be used to model existing
goal types.

Our work is from a language and architecture perspective, that is,
we are interested in how goals are defined and used in agent pro-
gramming, i.e., in languages and architectures. We do not address
how goals are used in agent logics (see, e.g., [3]) or in philoso-
phy [1]. While we thus do not investigate agent logics for defining
goals, we do make use of simple logics as a tool for illustrating our
ideas and making them more precise.

2. AN ABSTRACT VIEW OF GOALS

In this section, we briefly discuss what types of goals have ap-
peared in the literature (Section 2.1), we propose a unifying abstract
definition of a goal that aims at capturing the essential aspects of
what a goal is (Section 2.2), and we conclude with a discussion
thereof (Section 2.3). In this section, we are interested solely in
getting a better high-level understanding of the notion of goal. In
Section 3 we will address in more detail how goals are used in agent
systems by investigating how agents pursue goals.

'For reasons of space, we will in each case provide only some ex-
ample references, rather than trying to be complete.

2.1 Goal Types

Existing approaches to goals typically focus on one or several
types of goals. One of the main distinctions among goals that has
been made is the one between declarative and procedural goals [30,
11, 27, 12, 15]. Roughly speaking, a procedural goal is the goal to
execute actions, and a declarative goal is the goal to reach certain
states of affairs, i.e., it describes desired situations [26, Chapter 5].
Declarative goals have also been termed goals-to-be and procedural
goals have been called goals-to-do [10, 27]. Declarative goals thus
focus on the result of the execution of actions, while procedural
goals focus on the actions themselves.

Other frequently used goal types are achievement goals [18, 30,
11, 27, 2, 6, 15], maintenance goals [2, 7, 6, 9], perform goals [2,
6] and query or test goals [18, 2]. Broadly speaking, an achieve-
ment goal is the goal to achieve a certain state of affairs (which is
typically not reached yet), and a maintenance goal is the goal to
maintain a certain state of affairs. A perform goal is the goal to ex-
ecute actions, and a query or test goal is the goal to have a certain
piece of information. Often, a query goal reduces to a simple test
on the state of the agent. This is why some agent programming lan-
guages, which have a construct for testing [10, 27], do not call this
a test goal. Achievement goals have received the most attention in
the literature.

A further distinction between kinds of goals has appeared in
work on goal-oriented requirements engineering: the distinction
between system goals and individual goals [25]. System goals rep-
resent high-level goals the software system needs to achieve to fulfil
the system requirements, while individual goals are goals of single
actors in the system.

In order to get a better understanding of these goal types, and to
pave the way for a unifying definition of what a goal is, we will
discuss these goal types and relate them. We first consider the dis-
tinction between system goals and individual goals. A system goal
can be viewed as an organizational goal, while an individual goal
would be the goal of a single agent. We believe that the investiga-
tion of organizational goals is important, but in this paper we re-
strict our attention to individual goals and will from now on, when
using the term “goal”, mean “individual goal”.

We continue our analysis by investigating whether there is a re-
lation between the goal types that have appeared in the agent pro-
gramming literature. As explained above, declarative goals are
about situations or states, and procedural goals about actions. From
the definitions of achievement and maintenance goals, we can see
that these are declarative goals as both refer to situations, rather
than to actions. A query goal can also be viewed as a declarative
goal, as it is the goal to be in a situation in which a piece of in-
formation is available. Looking at the definitions of the procedural
goal and the perform goal, we can see that they are identical, i.e.,
both are defined as “the goal to execute actions”. Nevertheless, the
notion of procedural goal is generally used in contrast with declar-
ative goals, while the perform goal is a particular kind of concrete
goal type. We thus have goals referring to states and goals referring
to actions, i.e., referring to transitions between states, whereby the
former can again be subdivided and contain goals referring to sin-
gle states (achievement goals and query goals) and goals referring
to multiple states (maintenance goals).

These considerations lead to the taxonomy of Figure 1. We de-
pict the perform goal as a kind of procedural goal, to reflect that
generally they are used on different abstraction levels. Also, ex-
tending this taxonomy with several kinds of perform goal is more
natural than if we would have equated procedural goals and per-
form goals.

714

goal

/\

state-based action-based
(declarative) (procedural)

s

perform

single state multiple states
query achieve maintenance

Figure 1: Goal Taxonomy

2.2 A Unifying Definition

Based on the discussion of Section 2.1, we propose the follow-
ing as a first attempt to define what a goal is: a goal is a mental
attitude representing preferred progressions of a particular multi-
agent system. Defining a goal as a mental attitude accounts for
the fact that we are interested in individual goals. Further, as the
notion of progression encompasses both states and transitions be-
tween states,” defining a goal as representing preferred progres-
sions accounts both for goals referring to actions as well as to those
referring to states. Moreover, it accounts for goals referring to sin-
gle states (in which case the preferred progressions would contain a
state in which the goal is achieved), and for goals referring to mul-
tiple states. Although goals as used in agent programming com-
monly represent preferred progressions of the agent itself and pos-
sibly of its environment, goals may in general also refer to other
agents. For example, an agent may have the goal that another agent
believes a certain proposition.’ Therefore, we define a goal as pro-
gressions of a particular multi-agent system, where this multi-agent
system may consist of the agent itself, but may also contain an en-
vironment and possibly other agents.

In order to make the definition abstract and general enough, we
have chosen the wording such that no technical terms are used that
refer to a particular multi-agent system formalization or implemen-
tation. Nevertheless, if the multi-agent system is a computational
system, the definition can be applied in a natural way. In that case,
the preferred progressions are formed by the preferred computa-
tions of the multi-agent system. A goal is then a set of computa-
tions that the agent wants to realize. These computations can be
represented by, e.g., computation traces or computation trees.

Our definition of goal naturally leads to a notion of goal fulfill-
ment. As goals are preferred progressions of a system, they can
be compared to actual progressions of the system, whereby a goal
would be fulfilled, loosely speaking, if the actual progression is one
of those that the agent prefers. This brings us to an aspect of goals
that is not reflected in the discussion of goal types and that is not
yet captured by our definition of goals.

If an agent has a goal, it will typically not sit still and hope for
the system to progress as it prefers. On the contrary, having a goal
generally means that the agent tries to realize this goal. In particular
if the goal refers to the agent itself, the agent will typically have to
do something to realize its goal. In order to take this into account,
we refine our definition of goals as follows: a goal is a mental

20On Dictionary.com, a progression is defined as “a passing succes-
sively from one member of a series to the next”, i.e., a repeated
passing from one to the next.

*Note that a goal about another agent is still an individual goal
and not a system goal, as a particular agent wants another agent to
behave in a certain way.

attitude representing preferred progressions of a particular multi-
agent system that the agent has chosen to put effort into bringing
about. This is also what distinguishes a goal from a specification
of desired behavior as used commonly in software verification. A
goal, in contrast with a behavior specification, is something which
an agent pursues proactively, which is facilitated by the fact that
goals are a mental attitude which the agent can use in its decision
making. We believe that this definition captures the essential as-
pects of what a goal is.

2.3 Discussion

Our definition of a goal aims to unify the various goal types that
have appeared in the literature. However, this is not the only aim:
now that we have a general definition, we can investigate whether
there are other goal types than the ones discussed above that fit this
definition.

As we consider a goal as a set of computation traces or a com-
putation tree, it can naturally be specified by a logical formula. For
example, we may consider (a variant of) Linear Temporal Logic
(LTL) [8], which has computation traces as models, for the spec-
ification of goals. A trace in LTL is a sequence of system states
S0, 81, - - -, which can be enriched with the representation of which
actions are executed to get from a state s; to the next state S;1.
A state then represents a configuration of the multi-agent system,
typically consisting of a representation of the environment and of
the local states of the agents.

Loosely speaking, an achievement goal for ¢ can then be repre-
sented by the LTL formula $¢, specifying that the agent prefers
computations in which ¢ holds eventually. The formula ¢ may be
an atomic proposition p, indicating that the property should hold
in the environment, but might also refer to the beliefs of the agent
itself or of other agents (which could be expressed by a formula
©B;p, where 7 is the name of an agent*). A maintenance goal for
¢ can be represented by [J¢, specifying that ¢ should always hold.
A perform goal of agent ¢ to do the action a could be represented by
Odone;(a),’ specifying that the agent wants to have executed the
action a eventually, and a query goal for ¢ could be represented by
O(Bi¢ vV Bi—¢), specifying that agent ¢ wants to know (believe)
the truth of ¢, i.e., wants to believe that ¢ holds or to believe that ¢
does not hold.

By looking at goals in this way one can see that in principle any
property characterizing sets of computations can be a goal. In par-
ticular, one may consider other variants of the goal types of Figure
1. For example, an agent may want to maintain a certain situation
for a limited time period, rather than throughout the execution of
the agent. This type of maintenance goal could be expressed by
¢U1), which informally means that ¢ should be maintained until 1)
becomes true. Another type of maintenance goal is what is called
a reactive maintenance goal [7]: the agent waits for things to go
wrong and then fixes them. This type of maintenance goal can be
expressed by a formula of the form O(—¢p — <¢).

Furthermore, one may consider various variants of procedural
goals, e.g., expressing that if an action a is executed by agent ¢, ac-
tion b should eventually also be executed (done;(a) — <Cdone; (b)),
rather than just saying that some (sequence of) actions should be

*We will sometimes omit the name i, here and in other kinds of
formulas, for reasons of presentation.

*Informally, the formula done;(a) holds in a state s; if the action
a has been executed by agent ¢ to get from s;_1 to s;. This might
also be extended to arbitrary plans (sequences of actions) 7, where
the formula done;(7) holds in a state s; if the actions of 7 have
been executed one by one to get from s;_; (where k is the length
of 7) to s;.

715

executed. A final interesting goal type that has not been addressed
often in the literature so far, is goals about other agents. We see this
aspect as orthogonal to the distinction between declarative and pro-
cedural goals, i.e., both “internal” goals (goals referring only to the
agent itself and possibly to its environment) and “external” goals
(goals referring to other agents) may be procedural or declarative.

While in principle any property characterizing sets of computa-
tions can be viewed as a goal, this does not mean that it is feasible
to endow the agent with mechanisms for the effective realization
of each of these goal types. In Section 3, we present an abstract
goal architecture for operationalizing goals, that is general enough
to capture a range of goal types that have been discussed here.

Another point for discussion is the relation between plans and
procedural goals. In some literature, plans have been put on a par
with procedural goals [30; 26, Chapter5]. However, taking into ac-
count our analysis in Sections 2.1 and 2.2, we suggest that proce-
dural goals are not necessarily the same as plans, as the former are
in general more high-level. A procedural goal does not necessarily
represent a particular complete plan, i.e., it may, for example, ex-
press that if some action is executed, another action should also be
executed, or it may express that either action a or action b should be
executed (O(done(a) V done(b)), etc. Such procedural goals can
then be fulfilled, just like declarative goals, through the adoption of
a concrete plan. That is, a plan should be viewed as a means for
fulfilling a goal, be it a procedural or a declarative goal.

3. OPERATIONALIZING GOALS

In Section 2, we have discussed what a goal essentially is, and
provided a unifying abstract definition of a goal. The purpose of
a proactive agent is to put effort into bringing about its goals. In
principle, an agent may consist of only a set of plans that are pro-
grammed such that they bring about its goals, i.e., to realize a pre-
ferred progression of the system. The goals are then nothing more
than a specification of the desired behavior of the agent.

However, such a simple model of goal-directed behavior is often
not flexible enough (see also [26, Chapter 5]) if agents are required
to operate in dynamic environments that may also contain other
agents. For example, it may be the case that a plan fails, e.g., due
to environmental circumstances that were not foreseen at design
time.

More flexible goal-directed behavior can be obtained if goals are
represented explicitly in agent programs. In this section, we discuss
how explicitly represented goals can be used effectively to guide
the agent’s behavior towards the realization of its goals. That is,
the goals should be operationalized such that the progression of the
agent fulfills the goals, if at all possible.

In Section 3.1, we discuss aspects of operationalizing goals, and
give a simple and generic abstract goal architecture. Section 3.2
presents a formalization of this architecture, and in Section 3.3 we
show how the goal construct proposed in 3.2 can be used to model
a range of goal types.

3.1 An Abstract Architecture

Many different approaches for explicitly representing goals in
agent programming frameworks have been proposed, with each of
them focussing on particular aspects of the issue. Here, we pro-
pose an abstract view on how goals are used in agent programming
frameworks. Our aim is to capture the essential aspects of oper-
ationalizing goals in agent programming frameworks, abstracting
away from particular goal types.

The basic schema that most goal-oriented agent programming
frameworks adhere to, is that goals are adopted for some reason,
they are used for generating the agent’s plans, and then they may

Activate Generate

-

Suspend Execute
plan

suspended

Figure 2: Goal Abstract Architecture

be dropped for several reasons. This schema does not follow im-
mediately from our discussion of goals in Section 2, and one might
also consider other ways of operationalizing goals. However, exist-
ing agent programming frameworks typically implement (parts of)
this schema, and using these kinds of mechanisms for operational-
izing goals has proven to be effective.

An explicit representation of goals allows the agent to adopt and
handle new goals that may present themselves because of, e.g., re-
quests of other agents or of the owner of the agent. This thus pro-
vides for added flexibility, compared to a situation in which goals
are not represented explicitly.

Once a goal is adopted, it can be used by the agent to generate
plans that are aimed at fulfilling the goal. However, if a goal is
adopted, the agent will in general not start pursuing the goal imme-
diately. It can, for example, be the case that the agent is currently
pursuing other goals, and does not have the resources to pursue
the adopted goal right away. We call goals that the agent is not
currently pursuing suspended goals (see also [2]).* Once an agent
starts pursuing a suspended goal, the goal becomes active. If a goal
is active, it can be used for generating plans for fulfilling it. Once a
plan is generated, it can be executed. In some cases, e.g., because
a more important goal has just been adopted that needs to be pur-
sued, an active goal may have to be suspended again. Alternatively,
an agent may drop an active goal, e.g., because it is deemed to be
impossible or because it is no longer relevant (e.g., because it has
been achieved). This abstract architecture is depicted in Figure 2.

A similar goal architecture has been described by [2] in the con-
text of the Jadex framework. A key difference between our work
and theirs is that our work is more abstract and aims at unifying var-
ious approaches to operationalizing goals that have appeared in the
literature. By contrast, the Jadex framework was proposed as one
particular approach to the operationalization of goals. Moreover,
we provide a formalization of this abstract architecture that can be
instantiated to model various goal types. In the Jadex framework,
no generic formalization is provided, and the goal architecture is
specialized for each goal type separately without investigating a
common representational framework of goals.

We believe that the goal architecture of Figure 2 captures the
essential aspects of operationalizing goals in agent programming
frameworks, as existing goal-oriented agent programming frame-
works generally instantiate parts of this architecture, or refine it. An
aspect of the architecture which is not always provided in existing
agent programming frameworks, is a mechanism for goal adoption.
If this is the case, the agent is endowed with a set of (suspended)
goals at start-up (see, e.g., [27, 5]). An example of a framework
that does allow goal adoption through communication is [14].

Also, the distinction between suspended and active goals is not

®The notion of suspended goals might seem contradictory with
our definition of goals of Section 2.2, since goals are mental at-
titudes that the agent puts effort into bringing about. However, the
idea is that suspended goals become active as soon as possible and
needed/useful. That is, suspended goals are in principle also goals
that the agents puts effort into bringing about, but temporarily sus-
pending them is useful for operationalization.

716

always made explicit. In some frameworks, goals are suspended
automatically if a plan for pursuing the goal has finished and the
goal cannot be dropped [27, 5]. An example of a framework that
does incorporate suspension explicitly, is the Jadex framework [2].
We believe that making the distinction between suspended and ac-
tive goals explicit in the goal architecture, highlights and clarifies a
mechanism that is often implemented in agent programming frame-
works in some way, but is generally not explicitly addressed as
such. In Jadex, also an additional distinction is made between
so-called option goals, and suspended goals. In that framework,
suspended goals are goals that should not be activated. In order
to activate a suspended goal, it should first become an option, and
then it may be activated. However, for our purposes this distinction
is not necessary: it is simpler to just consider all suspended goals
as candidates for being activated.

In order to generate a plan for trying to fulfill a goal, the agent
typically performs means-end reasoning. Several mechanisms can
be used for performing means-end reasoning. A common mech-
anism, which is used in many agent-oriented programming lan-
guages, including JAM, JACK, AgentSpeak(L), 3APL, CAN, and
Jadex, is to have a library of plan “recipes” where each plan recipe
specifies in which circumstances the plan may be used, and for the
fulfillment of which goal the plan can be used. Another mecha-
nism that may be used is planning from first principles. The two
mechanisms can also be used in combination [19]. In the abstract
framework that we consider in this paper, we do not require any
particular representation of the plan, nor do we constrain how it is
derived. The plan could be a single action, a sequence of actions (a
plan in the classical sense), a program, or a BDI plan set.

3.2 Formalization

In this section, we make the ideas presented in Section 3.1 more
precise by providing a formalization of the abstract goal architec-
ture. The basic idea is that a goal contains a set of conditions
that govern the transitions SUSPEND, ACTIVATE, and DROP (as
depicted in Figure 2) which change the state of a goal. This repre-
sentation allows for the framework to be instantiated with a range
of different goals types, by varying the conditions under which the
transitions can take place. The instantiation of the framework with
particular goal types will be discussed in Section 3.3.

As will become clear in Section 3.3, it is useful to make a dis-
tinction between conditions that are checked during plan execution,
i.e., when a non-empty plan is associated with a goal, or only when
a plan completes or has not been generated yet. In order to be able
to check this, we have to represent which plan aimed at fulfilling
the goal is currently associated with the goal. Also, we need to
represent in which state a goal currently is (in the ACTIVE or SUS-
PENDED state).

We thus define a generic goal construct as g(C, E, S,), where
C and FE are sets of conditions of the form (condition, action)
with action € {SUSPEND, ACTIVATE, DROP}, S € {ACTIVE,
SUSPENDED} represents the state of the goal, and 7 is the plan of
the goal. The conditions in E' are tested when the plan is empty,
and those in C are tested only when the plan is not empty. If a
condition should be tested in both situations it is placed in C' and
in . We use € to denote the empty plan. We do not define a
particular language for expressing conditions, but we assume that
conditions can be checked on the beliefs of the agent. In order to
express that a condition c is true with respect to the agent’s beliefs
B, we use the notation B = c.

As explained in Section 3.1, we do not require a particular mech-
anism for doing means-end reasoning (mer for short), nor do we
require a particular representation of plans. In our formalization,

we only require the existence of a function mer which takes a goal
and the agent’s beliefs, and returns a plan 7 # €. All we require of
7 is that we can execute it (step by step) and that executing it one
step results in a residual plan 7" (where 7’ may be the empty plan
€).

We now give the operational semantics for this goal construct in
terms of a set of transition rules. In these transition rules, the state
of an agent is a tuple (B, G), where B is the agent’s belief base
and G is its goal base consisting of a set of goals. A transition
rule represents how the state of the agent can evolve one step as
represented by the transition below the line, under the conditions
expressed above the line.

We define how a goal base containing a set of goals evolves,
by means of defining how single goals evolve. That is, we define
when transitions (B, g) — (B’, g’) where g is a single goal may
occur, and lift this to transitions over the goal base by means of the
following transition rule. This rule indicates that if an agent can
make a transition by processing one of its goals, then the agent can
process its goal base in which only the single goal is processed.

(B,g) = (B',g") ge€G G =(GU{g'})\{g}
(B,G) — (B',G")

In this paper, we abstract away from the mechanism used for
adopting new goals. We define goal adoption formally by assum-
ing that the initial goal base of an agent includes a set of goals of
the form g(C, E), representing the goals that the agent may adopt
during its execution. If such a goal is adopted, its state will become
SUSPENDED as suggested in Figure 2, and the plan assigned to it
will be an empty plan.

(B,9(C, E)) — (B,g(C, E, SUSPENDED, €))

The next two rules specify how a goal can move from SUS-
PENDED to ACTIVE. The first rule indicates that a suspended goal
of an agent can be activated if the plan associated with the goal
is non-empty and the agent believes the corresponding activation
condition ¢ in (¢, ACTIVATE) € C. The second rule is analogous,
but covers the case for a condition ¢ in {c, ACTIVATE) € E, in
which case the plan should be empty.” The result of activating a
suspended goal is that the goal is in the active state and can be ex-
ecuted, as also suggested in Figure 2.

m#¢e (c,ACTIVATE) € C Bfc
(B,g(C, E,SUSPENDED, 7)) — (B,g(C, E, ACTIVE, 7))

(¢, ACTIVATE) € E Bl=c
(B,9(C, E, SUSPENDED, €)) — (B,g(C, E, ACTIVE, ¢))

The next two rules specify how a goal can move from ACTIVE
to SUSPENDED. They are analogous to the rules for moving in the
other direction. The result of suspending a goal is that the goal is
in a suspended state and cannot be executed, as also suggested in
Figure 2.

m#e (c,SUSPEND) € C Bl=c
(B,9(C, E, ACTIVE, 7)) — (B,g(C, E, SUSPENDED, 7))

(c,SUSPEND) € E B¢
(B,9(C, E, ACTIVE, €)) — (B,9(C, E, SUSPENDED, €))
Note that when a goal is suspended, the associated plan is also

suspended (a detailed mechanism for goal suspension and resump-
tion is described in [21]). When a (suspended) goal is activated

"Note that merging transition rules for C' and E is not possible as
we also need to check whether the plan is empty or not.

77

again, the associated plan is also activated, which allows the agent
to continue executing the plan where it stopped when it was moved
to the SUSPENDED state. It might also be the case that the sus-
pended plan is no longer useful. In this case, the agent will want to
drop the plan and generate another one. This will be addressed in
the sequel.

The following two transition rules specify dropping of an active
goal. An agent can drop its active goal if it believes the correspond-
ing drop condition ¢ in (¢, DROP) € C' or in (¢, DROP) € E. Note
that if a condition in C is used to drop a goal, the plan related to
the goal is not executed completely, in which case the goal together
with its not fully executed plan is removed from the agent’s goal
base. Moreover, note that the conditions for dropping a goal de-
termine the level of commitment an agent has towards its goal [3,
30]. Typically, an agent is expected to have some commitment to
its goals, which means that it should have a good reason for drop-
ping a goal (e.g., having achieved the goal or believing it is not
achievable anymore).

m#¢€¢ g(C,E,ACTIVE,m) € G (c,DrROP) € C Blc
(B.G) — (B,G\ {g(C. E, ACTIVE, m)})

9(C,E,ACTIVE,e) € G (¢,DROP) € E Bl=c¢
(B.G) — (B,G\ {g(C. E, ACTIVE, 0)})

Finally, we come to transition rules for plan generation and plan
execution. These rules need to be given a lower priority than the
condition rules above, as an agent should not continue executing
the plan of goal that should be dropped or suspended. This is done
by adding an additional condition to the premise of the rules be-
low that specifies that the goal has no conditions that hold. This
formalization makes sure that plan generation and plan execution
can occur for active goals, unless one of the conditions of the goal
specifies that it should move to another state.

The first rule states that if an agent has an active goal with empty
plan (¢) and there is no suspend or drop action for which the agent
believes the corresponding condition, then the agent can perform
means-end reasoning to generate a plan for the active goal. We
assume that means-end reasoning takes into consideration the ex-
isting goals and their assigned plans when it generates a new plan,
in order to ensure that the newly generated plan does not interfere
with the plans of the existing (active) goals.

—3(c,a) € E. (B |=c¢) A (a # ACTIVATE)
(B,9(C, E, ACTIVE, €)) — (B,g(C, E, ACTIVE, mer(g, B)))

Our next transition rule states that the plan assigned to an active
goal can be executed.

(B,m) = (B',n"Yy —3(c,a) € C. (B [c) A (a # ACTIVATE)

(B,9(C, E, ACTIVE, 7)) — (B’,9(C, E, ACTIVE, ')

Note that when a plan completes, a new plan is generated by
default, because the goal is only moved out of the active state if the
relevant conditions apply. This is important to ensure that an agent
keeps putting effort into reaching its goals, if this is still useful.
This will be discussed in more detail in Section 3.3. Also, note
that we assume that an additional transition system is defined to
derive transitions for the execution of plans (B,7) — (B’ ')
(see, for example, [30]). We also assume that it is not possible to
derive (B, €) — (B’,), i.e., once a plan has completed it cannot
progress any further.

A final transition rule deals with the case that a plan for an active
goal is no longer useful. This can be the case if a suspended goal
with a non-empty plan is activated, as already mentioned above.

Also, it may be the case that a plan that is being executed gets
stuck, e.g., because the first action of the plan cannot be executed
due to environmental circumstances. A typical way of dealing with
this, is to drop a plan so that a new plan can be generated [28]. This
is modeled in the next transition rule. The rule expresses that a plan
can be dropped if it cannot be executed any further. In some cases,
an agent may want to drop its plan even if it can still be executed.
This can be incorporated by adapting the premise of the transition
rule.

n#e (Bm) A (BT
(B,g9(C, E, ACTIVE, 7)) — (B,g(C, E, ACTIVE, ¢))

Summarizing, we have specified for each transition depicted in
Figure 2 one or two transition rules. These express exactly when a
goal can move from one state to another (as governed by the con-
ditions of the goal), and when a plan can be generated or executed.

3.3 Instantiation with Goal Types

In this section, we investigate how the proposed goal construct
of Section 3.2 can be used to model a range of goal types. The goal
types we consider are those of Figure 1. They can be modeled by
making particular choices for the conditions of the goal. As will
become clear, the instantiations are such that the agent puts effort
into bringing about its goals, thereby doing what it can to make
sure that its actual progression is one that is preferred.

3.3.1 Achievement Goals

The first goal type we address is the achievement goal. In Sec-
tion 2.1, we have defined an achievement goal as the goal to achieve
a certain state of affairs ¢ ($¢ in LTL). The idea is that the instan-
tiation of the abstract goal architecture with an achievement goal to
reach a state of affairs ¢, should facilitate the effective fulfillment
of this goal. For this, we at least need ¢ to be purely propositional,
i.e., ¢ should not contain temporal operators.

In the literature, an achievement goal in agent programming frame-
works typically contains at least a description of the state of affairs
that is to be achieved. This description is often called the success
condition s (which would be equal to ¢, in case of the example
above). In addition, achievement goals are sometimes endowed
with a so-called failure condition f [30, 2, 6]. If the failure con-
dition comes to hold, the success condition is assumed not to be
achievable anymore.

The purpose of the success condition is to allow the agent to
generate plans for reaching the state of affairs represented by the
condition. Moreover, the success condition is used to monitor the
execution of plans generated for achieving the success condition. In
particular in dynamic environments, it may be the case that a plan
that was meant to achieve the success condition, fails to achieve it.
The fact that the success condition is represented, then allows the
agent to generate another plan for trying to achieve it. This idea has
been referred to as the decoupling between plan execution and goal
achievement [30]. If a plan is successful in reaching the success
condition, the goal has been achieved (i.e., the agent has produced
a trace in which ¢ holds). In that case, the goal is no longer of
use, and is typically dropped. Another reason to drop the goal is if
the failure condition becomes true. In that case, the goal is assumed
not to be achievable anymore, which means it does not make sense
to hang on to the goal.®

In our abstract goal architecture, we model an achievement goal

81t is the job of the programmer to choose appropriate failure con-
ditions.

718

with success condition s and failure condition f as follows.
A(s, f) = 9g({(sVf,DRrROP)}, {(sV f, DROP), (true, ACTIVATE)})

The conditions express that if the failure condition or the success
condition come to hold (either during plan execution or afterwards),
the goal should be dropped. Moreover, we need to add a condi-
tion (¢rue, ACTIVATE) in order to activate an adopted achievement
goal. The activation is not governed by any special conditions on
the belief base, which is why we use the condition true. We add
it to the £’ component, as an adopted achievement goal which is
added to the SUSPENDED state will have an empty plan.

Modeling achievement goals in this way makes sure that the
agent keeps trying to realize its achievement goal (once it has been
activated). It will only stop trying if it has reached the goal (note
that it is dropped immediately after activation if the success or fail-
ure condition is already true upon activation), or if it is no longer
reachable. In this way, it does what it can to make sure that its
actual progression is one that is preferred, i.e., one in which the
success condition of the achievement goal is fulfilled. However,
whether the agent indeed does fulfill the achievement goal also de-
pends on the effectiveness of the mechanism for plan generation
and on environmental circumstances.

In the above definition of an achievement goal, the goal is dropped
regardless of whether the associated plan is executed completely
(as the condition (s V f, DROP) occurs both in C' and in E). One
may redefine the achievement goal to force the complete execution
of plans even when an agent comes to believe the success or fail-
ure conditions during execution of a plan for the achievement goal.
This version of achievement goals can be defined in a simple way
in our framework as follows.

A(s, f) =9({},{(sV f,DROP), (true, ACTIVATE) })
3.3.2 Perform Goals

The second goal we address is the perform goal, which was de-
fined in Section 2.1 as the goal to execute actions. This type of
goal is typically used in combination with plan recipes for means-
end reasoning. The plan recipes then specify which plan may be
executed for a particular perform goal. The perform goal itself is
usually only a name by means of which the appropriate plan recipe
can be selected. In such a setting, it is natural to interpret the per-
form goal as having succeeded in case one of the plans of the cor-
responding plan recipes executes completely (see also [2]).” If P is
the perform goal under consideration and 71, . . . , 7, are the plans
of the plan recipes corresponding to P, this perform goal could be
expressed in LTL as done(w1) V. ..V done(m,) (assuming that the
logic allows us to use complex plan statements as the arguments of
the done operator).

This behavior can be modeled in our abstract goal architecture by
assuming that an agent’s belief base is updated with succeeded(Q)
or failed(Q) after the plan associated to a goal g has been executed
completely, expressing that the plan has been executed completely
without exceptions occurring, or that it has not, respectively. We
also assume that these formulas are removed from the agent’s be-
lief base as soon as a new plan for the same goal is generated. We
can then specify by means of the condition (succeeded(g), DROP)
that a perform goal should be dropped when a plan has been exe-
cuted successfully for this goal.'” This condition is placed in the

This is a different interpretation than the one of [6], in which a
perform goal is considered to have been successful as soon as a plan
is selected for it. However, considering the discussion in Section 2,
we maintain that our interpretation is more appropriate.

"Note that if a perform goal has been adopted twice, both goals

set I, as it should not be checked during plan execution (in that
case the condition succeeded(g) would always be false). The tran-
sition rules for plan generation and plan execution make sure that
new plans are generated until the goal is dropped because a plan has
been executed completely. As in the case of achievement goals, the
agent does what it can to make sure that its actual progression is
one that is preferred, i.e., one in which a plan corresponding to the
perform goal is executed completely.

P = g({}, {(succeeded(g), DROP), {true, ACTIVATE) })

Note that perform goals have no special argument associated
with it because the only thing that needs to be done is to drop the
goal when its generated plan is completely executed. Further, a per-
form goal is a special case of the second version of the achievement
goal, where the failure condition is just false and the success con-
dition is succeeded(Q), i.e., where P = A’(succeeded(g), false).

3.3.3 Maintenance Goals

In Section 2.1, a maintenance goal has been defined as the goal
to maintain a certain state of affairs, which could be expressed by
the LTL formula O¢ (if ¢ is the state of affairs to be maintained).
The ideal situation, given this goal, would thus be that the agent
prevents ¢ from becoming false. This may not only involve tak-
ing action, but the agent may also need to refrain from executing
certain actions. Realizing this kind of behavior involves advanced
reasoning mechanisms [7, 9] that are not easily represented by our
conditions of goals.

A kind of maintenance goal that can be operationalized easily
within our framework, is the reactive maintenance goal. In the case
of a reactive maintenance goal, the agent takes action if a main-
tenance goal is violated in order to re-establish the condition that
is to be maintained. This can be represented by the LTL formula
O(—¢ — <¢), and modeled in our goal architecture as follows.

M(#) = g({}, {(#, SUSPEND), (—¢, ACTIVATE) })

According to this definition of the maintenance goal, the agent
should activate its maintenance goal when the agent believes the
condition ¢ is false. An agent can suspend a maintenance goal
only if its corresponding plan is executed completely and the agent
believes that condition ¢ now holds. The fact that maintenance
goals are not dropped, makes sure that they can be used through-
out the execution of the agent. This is in line with the O operator
of the LTL property, which expresses that a property should hold
throughout the execution of the agent.

The above definition of maintenance goal can be easily adapted
to make it correspond to a maintenance goal (O(—¢ — <¢))Urb,
which expresses that ¢ should be re-established if it becomes false,
until 1 comes to hold (see Section 2.3). All we need to do is
to add a condition (¢), DROP) both to C' and E, and to change
(¢, SUSPEND) to (¢ A —p, SUSPEND). We also need to have
(1, ACTIVATE) in C and in E. This is because we cannot drop a
suspended goal, so if) becomes true while the goal is suspended,
we activate it first, and then drop it.

3.3.4 Query Goals

In Section 2.1, a query/test goal is the goal to have a certain piece
of information. This can be concretized in LTL as ¢(B¢ V B—¢),
which expresses that the agent wants to find out whether a formula
¢ is true or false. In order to model this goal, we define B |

will be dropped if a plan for one of them has been executed. If this
is not desired, it would require distinguishing between instances
when adopting goals, e.g., by introducing a unique identifier during
adoption.

719

known(¢) as B |= ¢ or B |= ¢ to indicate that an agent knows
the truth of ¢. A query/test goal can then be modeled as a kind of
achievement goal, where known(¢) is the success condition.

4. CONCLUSION AND FUTURE
RESEARCH

In this paper, we have investigated the notion of goal as used in
agent systems by focussing on two issues: what is a goal, and how
are goals operationalized? In order to address the first issue, we
have proposed a unifying abstract definition of the notion of goal
on the basis of an analysis of commonly-used existing goal types.
We have addressed the second issue by proposing a unifying ab-
stract goal architecture with a formalization that we have used to
model a range of goal types. Through this, we have gotten a better
understanding of what are essential aspects of goals in agent sys-
tems. In the following, we discuss an important aspect of goals that
we have not covered in detail in this paper, and point to directions
for future research.

Our formalization of the abstract goal architecture uses simple
conditions on the beliefs of the agent to govern the state changes
of the goals. We have shown that this framework is general enough
to model a range of goal types. In future work, we will explore
the limits of our framework in more detail, e.g., by investigating
whether variants of these goal types are also easily expressible. Ex-
amples of such variants are a repetitive achievement goal of achiev-
ing ¢ every day, or a combination of a perform or achievement
goal and a maintenance goal where one should maintain 1 while
achieving ¢ (expressible in LTL as o A ((Ov)U¢)). An apparent
limitation of the framework in its present form is that it does not
capture more advanced usages of goals in which sophisticated rea-
soning techniques are used to determine how to pursue goals. In the
sequel, we briefly mention some of these kinds of reasoning tech-
niques and indicate how they could be incorporated into our formal
framework. In future work, we will investigate the incorporation of
these techniques in more detail.

In general, various advanced reasoning techniques could be used
at any stage of goal pursuit. In particular, in order to determine
whether a goal can move from SUSPENDED to ACTIVE, an agent
can use reasoning to determine whether the goal that is to be acti-
vated is “compatible” with the existing active goals. A goal is com-
patible with a set of other goals, if the agent can simultaneously
pursue all of these goals without undesirable interferences occur-
ring. For example, interference may occur because of resource
conflicts, or because actions of different plans interfere by, e.g.,
undoing each other’s results.

In order to represent whether goals (and their corresponding plans)
interfere, an agent can be endowed with advanced representational
structures that are typically not part of the belief base (see, e.g., [23,
29, 17, 24]). Reasoning then involves these structures and existing
active goals, i.e., modeling it as a simple check on the belief base
does not faithfully capture these kinds of mechanisms. However,
they could be introduced in our framework by adding a require-
ment for compatibility to the premise of the transition rules that
govern activation.

A kind of reasoning that may be used to govern plan execution,
is reasoning about maintenance goals. In order to prevent a mainte-
nance goal from being violated, an agent sometimes has to refrain
from doing a particular action (see [7, 9]). Moreover, an agent
could reason about priorities among goals for determining whether
a goal needs to be suspended. If a goal is adopted that has a higher
priority than some active goal and is incompatible with this goal,
this can be reason to force the lower priority goal to be suspended

in favor of the higher priority one (see [17]). Capturing this in our
abstract goal architecture would require the addition of a transition
rule for goal suspension.

Besides the incorporation of advanced reasoning techniques in
our formal framework, we see several other opportunities for fu-
ture research. In particular, the analysis in Section 2 has shown
that it can be interesting to consider other (variants of) goal types
than have been considered in the literature so far. Extending agent-
oriented programming languages with richer forms of goals will
thus be an important issue for future research. Moreover, as pointed
out in Section 2.1, we have in this paper only considered individ-
ual goals. In future work, we aim to explore the relationship be-
tween individual, group, and system/organization goals. We envis-
age that these are potentially useful as “stepping stones” between
goal-oriented requirements engineering and the design of individ-
val agents. Another important area that we did not cover in this
paper, is the investigation of the use of goals in agent development.
Although some aspects (such as goal-oriented requirements engi-
neering) have been explored, other aspects remain to be explored
in more detail, such as goal-oriented design [13], and the use of
goals as a basis for modularization in agent programming [28].

Acknowledgements

We would like to thank the RMIT agent group (in particular Lin
Padgham, Jennifer Sandercock, Sebastian Sardina, and John
Thangarajah) for their useful comments. M. Birna van Riemsdijk
has been sponsored by the project SENSORIA, IST-2005-016004.

S. REFERENCES

[1] M. E. Bratman. Intention, plans, and practical reason.
Harvard University Press, Massachusetts, 1987.

[2] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal
representation for BDI agent systems. In ProMAS’04,
volume 3346 of LNAI, pages 44—65. Springer, Berlin, 2005.

[3] P.R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213-261, 1990.

[4] M. Dastani and J.-J. Meyer. A practical agent programming
language. In Proc. of ProMAS 07, volume 4908 of LNAI
Springer, 2008.

[5] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch.
Meyer. A programming language for cognitive agents: goal
directed 3APL. In ProMAS’03, volume 3067 of LNAI, pages
111-130. Springer, Berlin, 2004.

[6] M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Goal
types in agent programming. In Proc. of ECAI’06, volume
141 of Frontiers in Artificial Intelligence and Applications,
pages 220-224. 10S Press, 2006.

[7] S. Duff, J. Harland, and J. Thangarajah. On proactivity and
maintenance goals. In Proc. of AAMAS’06, pages
1033-1040, Hakodate, 2006.

[8] E. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, pages 996-1072. Elsevier,
Amsterdam, 1990.

[9] K. Hindriks and M. B. van Riemsdijk. Satisfying
maintenance goals. In Proc. of DALT 07, 2007.

[10] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch.
Meyer. Agent programming in 3APL. Int. J. of Autonomous
Agents and Multi-Agent Systems, 2(4):357-401, 1999.

[11] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch.
Meyer. Agent programming with declarative goals. In Proc.
of ATAL’2000), Lecture Notes in Al. Springer, Berlin, 2001.

720

[12] J. F. Hiibner, R. H. Bordini, and M. Wooldridge. Declarative
goal patterns for AgentSpeak. In Proc. of DALT 06, 2006.

[13] J. Khallouf and M. Winikoff. Towards goal-oriented design
of agent systems. In Proc. of ISEAT’05, 2005.

[14] A.F. Moreira, R. Vieira, and R. H. Bordini. Extending the
operational semantics of a BDI agent-oriented programming
language for introducing speech-act based communication.
In Proc. of DALT’03, volume 2990 of LNAI, pages 135-154,
London, UK, 2004. Springer-Verlag.

[15] V. Nigam and J. Leite. A dynamic logic programming based
system for agents with declarative goals. In Proc. of
DALT’06, volume 4327 of LNAI, pages 174—190, 2006.

[16] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications.
Springer, Berlin, 2005.

[17] A.Pokahr, L. Braubach, and W. Lamersdorf. A goal
deliberation strategy for BDI agent systems. In MATES 05,
volume 3550 of LNAI, pages 82-93. Springer-Verlag, 2005.

[18] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. van der Velde and J. Perram,
editors, Agents Breaking Away (LNAI 1038), pages 42-55.
Springer-Verlag, 1996.

[19] S. Sardina, L. P. de Silva, and L. Padgham. Hierarchical
planning in BDI agent programming languages: A formal
approach. In Proc. of AAMAS’06, pages 1001-1008,
Hakodate, Japan, 2006. ACM Press.

[20] S. Sardina and S. Shapiro. Rational action in agent programs
with prioritized goals. In Proc. of AAMAS’03, pages
417-424, 2003.

[21] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith.
Suspending and resuming tasks in intelligent agents. In Proc.
of AAMAS’08, 2008.

[22] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer.
Avoiding resource conflicts in intelligent agents. In Proc. of
ECAI'02, Lyon, France, 2002.

[23] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
avoiding interference between goals in intelligent agents. In
Proc. of JCAI’03, 2003.

[24] N. Tinnemeier, M. Dastani, and J. Meyer. Goal selection
strategies for rational agents. In Proc. of LADS 07, 2007.

[25] A.van Lamsweerde. Goal-oriented requirements
engineering: A guided tour. In Proc. of RE’01, pages
249-263. IEEE, 2001.

[26] M. B. van Riemsdijk. Cognitive Agent Programming: A
Semantic Approach. PhD thesis, 2006.

[27] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer.
Agent programming in Dribble: from beliefs to goals using
plans. In Proc. of AAMAS’03, pages 393—400, 2003.

[28] M. B. van Riemsdijk, M. Dastani, J.-J. Ch. Meyer, and F. S.
de Boer. Goal-oriented modularity in agent programming. In
Proc. of AAMAS’06, pages 1271-1278, Hakodate, 2006.

[29] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer.
Semantics of declarative goals in agent programming. In
Proc. of AAMAS’05, pages 133-140, Utrecht, 2005.

[30] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative and procedural goals in intelligent agent systems.
In Proc. of KR’02, Toulouse, 2002.

