
Not All Agents Are Equal:
Scaling up Distributed POMDPs for Agent Networks

Janusz Marecki*, Tapana Gupta*, Pradeep Varakantham+, Milind Tambe*,
Makoto Yokoo++

*University of Southern California, Los Angeles, CA 90089, {marecki, tapanagu, tambe }@usc.edu
+Carnegie Mellon University, Pittsburgh, PA 15213, pradeepv@cs.cmu.edu
++Kyushu University, Fukuoka, 819-0395 Japan, yokoo@is.kyushu-u.ac.jp

ABSTRACT
Many applications of networks of agents, including mobile sen-
sor networks, unmanned air vehicles, autonomous underwater ve-
hicles, involve 100s of agents acting collaboratively under uncer-
tainty. Distributed Partially Observable Markov Decision Prob-
lems (Distributed POMDPs) are well-suited to address such ap-
plications, but so far, only limited scale-ups of up to five agents
have been demonstrated. This paper escalates the scale-up, pre-
senting an algorithm called FANS, increasing the number of agents
in distributed POMDPs for the first time into double digits. FANS
is founded on finite state machines (FSMs) for policy representa-
tion and expoits these FSMs to provide three key contributions:
(i) Not all agents within an agent network need the same expres-
sivity of policy representation; FANS introduces novel heuristics
to automatically vary the FSM size in different agents for scale-
up; (ii) FANS illustrates efficient integration of its FSM-based pol-
icy search within algorithms that exploit agent network structure;
(iii) FANS provides significant speedups in policy evaluation and
heuristic computations within the network algorithms by exploit-
ing the FSMs for dynamic programming. Experimental results
show not only orders of magnitude improvements over previous
best known algorithms for smaller-scale domains (with similar so-
lution quality), but also a scale-up into double digits in terms of
numbers of agents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Multi-agent Systems

General Terms
Algorithms, Theory

Keywords
Multi-agent systems, Partially Observable Markov Decision Pro-
cess (POMDP), Distributed POMDP, Finite State Machines

Cite as: Not All Agents Are Equal: Scaling up Distributed POMDPs for
Agent Networks, Janusz Marecki, Tapana Gupta, Pradeep Varakantham,
Milind Tambe, Makoto Yokoo, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Many current and proposed applications of networks of agents,

including mobile sensor networks, autonomous underwater vehi-
cles, involve 100s of agents acting collaboratively under uncer-
tainty [8, 10]. Distributed Partially Observable Markov Decision
Problems (Distributed POMDPs) are ideally suited to plan for such
agent networks, given their ability to plan in the presence of tran-
sitional and observational uncertainty in teams [9, 5, 1, 2, 13].
Unfortunately, the problem of finding the optimal joint policy for
general distributed POMDPs is NEXP-Complete [3].

While this negative complexity result has not deterred some re-
searchers from continuing to pursue global optimality in the general
case [13, 7], a more popular approach has been to focus on tradeoffs
for the sake of efficiency. Two types of tradeoffs have been exam-
ined. First, researchers have examined approximate techniques that
sacrifice global optimality for efficiency [2, 9, 11, 5]. Second, re-
searchers have focused on finding relevant subclasses of the general
distributed POMDPs which would fit key real-world situations [1,
10]. Such real-world inspired restricted versions of the general dis-
tributed POMDPs have led to more efficient algorithms.

This paper follows the latter approach by focusing on network
distributed POMDPs (ND-POMDPs) that are inspired by real-world
domains, such as sensor agent networks [8, 10] or mobile WiFi
router networks [4]. In particular, the paper provides a new al-
gorithm called FANS (FSM-based Agent Network Search for poli-
cies) for ND-POMDPs. FANS exploits finite state machines (FSMs)
for compact policy representation [2, 12], and uses three key novel
ideas. First, a key insight in FANS is that not all agents in a net-
work require the same expressivity in policy representation; hence,
FANS introduces several heuristics to automatically vary the FSM
sizes in different agents for scale-up. These heuristics also pro-
vide FANS with anytime properties. Second, FANS integrates its
FSM-based policy search within algorithms that exploit agent net-
work structure. Third, FANS shows that FSMs enable dynamic
programming in policy evaluation and heuristic computation within
the agent network algorithms.

We experimented with the sensor network domain, a domain
representative of an important class of problems with networks
of agents working in uncertain environments. FANS provides or-
ders of magnitude improvement over SPIDER [14] as well as LID-
JESP [10], two competing algorithms for ND-POMDPs, without
significant loss in solution quality. Furthermore, our experimental
comparison of different heuristics illustrates that smarter heuristics
perform better in smaller scale domains, but their overheads over-
whelm computation as we scale up.

485

Müller and Parsons(eds.), May,12-16.,2008,Estoril,Portugal,pp. 485-492.

2. DOMAIN: AGENT NETWORKS
Our work is motivated by agent networks that need to coordinate

locally to achieve a global goal. Distributed sensor networks belong
to this category of domains. Sensor networks have traditionally
been used to track weather phenomenon, moving targets etc [8].
Recently, LANdroids [4] has been established as a significant do-
main, where within a sensor network, agents (each of which can
only communicate with its neighbors) must position themselves to
build a communication network with a strong signal strength. In
this paper, we focus on an agent (sensor) network that is used for
tracking targets [8]. We use the specifications of this domain pro-
vided in [10].

Figure 1 shows a specific problem instance consisting of four
sensors. Here, each sensor node can scan in one of four directions:
North, South, East or West (see Figure 1). To track a target and ob-
tain associated reward, two sensors with overlapping scanning ar-
eas must coordinate by scanning the same area simultaneously. In
Figure 1, to track a target in location1, sensor1 needs to scan ‘East’
and sensor2 needs to scan ‘West’ simultaneously. Thus, sensors
have to act in a coordinated fashion. There are typically multiple
independent targets, and each target’s movement is uncertain and
unaffected by the sensor agents [8]. Based on the area it is scan-
ning, each sensor receives observations that can have false positives
and false negatives. Each agent incurs a cost for scanning whether
the target is present or not, but no cost if it turns off.

sensor 1 sensor 2 sensor 3 sensor 4

EW
N

S
EW

N

S
EW

N

S
EW

N

S
location 1 location 2 location 3

Figure 1: A 4-chain sensor configuration

3. NETWORK DISTRIBUTED POMDPS
Distributed POMDPs are well-suited to model the sensor net-

work problems introduced in the previous section, given the sen-
sors’ observational uncertainty, the targets’ uncertain transitions
and the distributed nature of the nodes. However, instead of a gen-
eral distributed POMDP model [3], a model tailored to such net-
works allows for more efficiency. In particular, akin to other sensor
networks deployed for tracking phenomenon or targets, the sen-
sor nodes are primarily independent. The only dependence arises
from the fact that to track a target, two agents must coordinate by
scanning the same region. Thus, when modelling the sensors as
distributed POMDPs, the independence of sensor nodes translates
into the sensors’ observations and transitions being independent of
each other’s actions, while the dependence (arising from the need
to track targets) translates into a joint reward function.

Thus to model such agent networks, the ND-POMDP model was
introduced in [10]. Formally, for a group of n agents an ND-
POMDP is defined as the tuple 〈I, S,A, P,Ω, O,R, b〉, where I =
{1, ..., n} is a set of agent indices and S = ×i∈ISi × Su is the set
of world states. Si refers to the set of local states of agent i and Su

is the set of unaffectable states. Unaffectable state refers to that part
of the world state that cannot be affected by the agents’ actions (e.g.
environmental factors like target locations that no agent can con-
trol [1]). A = ×i∈IAi is the set of joint actions, whereAi is the set
of actions for agent i. Ω = ×i∈IΩi is the set of joint observations
where Ωi is the set of observations for agent i. To model the in-
dependence of transitions, the transition function in ND-POMDPs
is defined as P (s, a, s′) = Pu(su, s

′
u) ·

Q
i∈I Pi(si, su, ai, s

′
i),

where a = 〈a1, . . . , an〉 is the joint action performed in state s =

〈s1, . . . , sn, su〉 and s′ = 〈s′1, . . . , s′n, s′u〉 is the resulting state.
Similarly, to model the independence of observations, the observa-
tion function is defined as O(s′, a, ω) =

Q
i∈I Oi(s

′
i, s
′
u, ai, ωi),

where s′ = 〈s′1, . . . , s′n, s′u〉 is the world state that results from the
agents executing a = 〈a1, . . . , an〉 in the previous state, and ob-
serving ω =〈ω1, . . . , ωn〉∈ Ω in state s′. This implies that each
agent’s observation depends only on the unaffectable state, its local
action and on its resulting local state.

Coordination among agents is achieved by the joint reward func-
tion, R, decomposable into reward functions Rl for all possible
groups l ⊂ I of agents whose joint action yields a reward spec-
ified for the domain (e.g. a reward for tracking a target). Pre-
cisely, R(s, a) =

P
l∈E Rl((si)i∈l, su, 〈ai〉i∈l) where E is a set

of hyper-links1 and I is the set of vertices in a domain hyper-
graph G = (I, E) that we simply refer to as the interaction graph.
For example, in Figure 1, I = {sensor1, sensor2, sensor3, sen-
sor4 } and E = {(sensor1), (sensor2), (sensor3), (sensor4), (sen-
sor1,sensor2), (sensor2,sensor3), (sensor3,sensor4)}.

The initial belief state b = (bu, b1, ..., nn) is the initial distri-
bution over s = (s1, ..., sn, su) ∈ S defined as b(s) = bu(su) ·Q

i∈I bi(si), where bu and bi are the initial distributions over Su

and Si respectively. The goal in ND-POMDP is to compute the
joint policy π = 〈π1, ..., πn〉 that maximizes agent group’s ex-
pected reward over a finite action horizon T starting from the belief
state b.

4. FANS
Previous work on distributed POMDPs, including ND-POMDPs

[14, 10], has provided policies of equal expressive power to all
agents. However, in agent networks, not all agents may be bur-
dened with tasks of the same complexity. For example, in the sen-
sor network domain to track targets, agents in some areas of the
network may face far fewer targets to track than other areas of the
network. If observing scientific phenomena, not all agents in the
network face observation tasks of equal complexity.

Thus, the key insight in our work is that not all agents be pro-
vided policies of the same expressive power, and such “inequality”
may be accomplished without any significant loss in solution qual-
ity. A centralized planner can thus focus its available planning time
on agents that require careful planning with more detailed plans,
and less on agents which do not, whereas a distributed policy gen-
eration algorithm [6] can benefit from the reduced communication
burden across the network. In order to realize our insights we
choose to represent agent policies with finite-state machines and
vary their expressivity by varying the number of FSM nodes. In
this section we explain this process in detail.

4.1 FANS algorithm
At a basic level, the FANS algorithm repeatedly searches for a

best joint policy in the space of deterministic FSMs of given sizes.
To this end, at each iteration it (i) uses heuristics to identify the
agents whose policies will gain expressivity, (ii) expands the FSMs
of these agents with additional FSM nodes and finally (iii) calls a
joint policy search function to find the best joint policy in the space
of deterministic FSMs of new sizes — this iteration is repeated
until the gain in reward from expanding FSMs in one iteration is
below a certain threshold. Before we describe the FANS algorithm
in detail, we first formalize the class of FSMs that FANS operates
on.

1In general, E can contain hyper-links l such that |l| 6= 2. For ex-
ample, when sensors triangulate target’s position, |l| = 3 whereas
if a single sensor can track a target, |l| = 1.

486

While both stochastic and deterministic controllers have been
used for single-agent POMDPs [2, 12], FANS uses deterministic
FSMs. A deterministic FSM of agent i is defined as the tuple:
〈Qi, ψi, ηi, q

0
i 〉whereQi is the finite set of FSM nodes, ψi : Qi →

Ai is an action selection function, ηi : Qi × Oi → Qi is an FSM
transition function, and q0i ∈ Qi is the starting node of the FSM
which allows FANS to uniquely determine an action of agent i at
every time step t given its observations (ω1, ..., ωt−1) ∈ Oi re-
ceived at times 0, ..., t − 1. |Qi| denotes the set of FSM nodes in
the policy for agent i.

Algorithm 1 FANS(Q)

1: π ← JOINT-POLICY-SEARCH(root, null,−∞, Q)
2: Vmax ← V (π)
3: improving ← True
4: while improving do
5: Q← EXPAND-FSMS(Q)
6: π ← JOINT-POLICY-SEARCH(root, null,−∞, Q)
7: if V (π)− Vmax > δ then
8: Vmax ← V (π)
9: else

10: improving ← False
11: return π

The FANS algorithm (Algorithm 1) is called with the initial vec-
tor |Q| = (|Q1|, ..., |Qn|) of agent FSM sizes which may or may
not be uniform — |Qi| are initially small. First, JOINT-POLICY-
SEARCH (further discussed in Section 4.3), which takes Q as in-
put, provides the optimal joint policies in space of FSMs of sizes
|Q|. FANS then iterates: in each iteration it uses heuristics to
choose which FSMs will be expanded and then expands these FSMs
(line 5), and given the new FSM sizes, again searches for a new op-
timal joint policy (line 6). This iteration continues until FANS’s
convergence criterion is met, which is when the expected value
V (π) of the joint policy π obtained in the current iteration does
not exceed the maximum expected value Vmax obtained thus far
by δ. Notice, that because FANS always has an optimal joint pol-
icy π given current Q, it has the anytime property.

4.2 Not All Agents are Equal: Heuristics
This section focuses on the heuristics used for the EXPAND-

FSMS function of Algorithm 1 that decide which agents’ FSMs
should be provided with more nodes. We start with simpler, low-
overhead heuristics and gradually increase the complexity. A key
question we wish to ask is how much computational investment
should FANS make in intelligently selecting the FSMs to expand.
Through these heuristics, we address the trade-off between the run-
time necessary to execute each heuristic and runtime necessary to
execute the JOINT-POLICY-SEARCH function.

Equality: This heuristic is a baseline for comparison: it has no
selectivity and simply adds one node to the FSMs of all agents, i.e.,
it sets |Qi| ← |Qi|+ 1 for all agents i ∈ I .

Greedy: In this heuristic we greedily add nodes to FSMs of
agents that have more connectivity with other agents, since more
connectivity usually requires additional coordination that can be
achieved by more complex policies. Formally, for the interaction
graph G = (I, E) defined earlier, let Ni = {j ∈ I : 〈i, j〉 ∈ l,
l ∈ E} denote the set of neighbors of agent i. Also, let

−→
I =

(i1, ..., in) denote a list of agents i ∈ I arranged in decreasing
number of their neighbors, i.e., |Nik | ≥ |Nik+1 | and p ∈ {1, ..., n}
be a pointer to a position on the list

−→
I (p ← 1). Now, each time

EXPAND-FSMS is called, it greedily expands FSMs of agents
with higher number of neighbors, yet does not discriminate agents
with lower number of neighbors. That is, for a pointer p from the

previous call of EXPAND-FSMS, the function increases by one
node FSMs of agents ip, ..., ip+k that have the same number of
neighbors, i.e., |Nip | = ... = |Nip+k | > |Nip+k+1 |; FSMs of
other agents remain intact. The function then sets p to point to the
next agent on the list

−→
I whose FSM did not receive an additional

node, i.e., it updates p← (p+ k + 1) mod n.
Node: The Node heuristic does not use connectivity information

at all. In particular, the Node heuristic asks the question: what is the
gain in the joint expected utility if we enable one particular agent to
compute its best policy, assuming full observability and unbounded
FSM size, given the fixed policies of all other agents (from a pre-
vious iteration of JOINT-POLICY-SEARCH). In other words,
we use an MDP to obtain an upper-bound on the expected util-
ity gained by increasing the FSM size of a particular agent while
keeping the policies of other agents fixed (from previous FANS it-
eration). We use this upper-bound as an indicator of how deserving
that particular agent is of an additional FSM node. Thus, for each
agent i ∈ I , we first compute the upper bound on the utility gain
gi (using a method described in Section 4.4) and then construct a
list
−→
I = (i1, ..., in) of agents i ∈ I sorted in decreasing value of

their upper bounds, i.e., gim ≥ gim+1 . We finally add an additional

node to FSMs of first bknc agents in list
−→
I , where k ∈ (0, 1].

Link: This heuristic is similar to the Node heuristic above, ex-
cept that instead of considering individual agents when choosing
which FSM should get additional nodes, it considers agent links.
Formally, for each link l ∈ E in the interaction graph G = (I, E)
the Link heuristic computes the upper bound on link l, denoted
as gl, understood as the maximum utility gained by increasing the
FSM size of each agent i ∈ l by one additional node while keeping
the policies of other agents fixed (from previous FANS iteration).
The Link heuristic then selects the link l with the highest gl and
sets |Qi| ← |Qi|+ 1 for FSMs of all agents i ∈ l.

Searcher: The most complex of our heuristics, Searcher attempts
a more systematic search of the FSM space using ideas from the
Node heuristic, but goes one step further by attempting to very
precisely estimate the gain by adding FSM nodes before assign-
ing an additional node to an agent. In other words, by running
JOINT-POLICY-SEARCH for itself, Searcher attempts to verify
that adding one FSM node to an agent while keeping the FSM size
of all other agents the same will actually provide benefits in terms
of expected value before increasing the FSM size of that agent.
Thus, we iterate over all agents i ∈ I . During each iteration, we set
|Qi| ← |Qi| + 1 and obtain Vi ← JOINT-POLICY-SEARCH
(root, null,−∞, Q), which provides the highest Vi possible given
this Q (as described in Section 4.3). Now, if Vi ≤ Vmax(computed
in the last iteration of FANS), we reset |Qi| ← |Qi| − 1, i.e., if
adding one additional node to agent i did not increase the expected
value, the size of its FSM stays the same as before. However, if
the additional node did result in an increase in expected value, we
keep it. Searcher returns the updated vector Q after iterating over
all i ∈ I .

Fairness: This heuristic is a compromise between Greedy and
Searcher. In particular, rather than terminating where Greedy would
terminate, it continues down the sorted agent list

−→
I , offering each

agent one additional chance to increase the size of their FSMs, until
the end of the sorted list is reached.

4.3 Joint Policy Search
In solving an ND-POMDP, the goal is to compute a joint policy

that maximizes the overall expected joint reward. The Joint Policy
Search within FANS uses the idea from SPIDER [14] of branch
and bound search with upper bounds. To this end, as in SPIDER,

487

a DFS tree is constructed [14] corresponding to the reward interac-
tion structure, to exploit the locality in interactions among agents.
In short, if agent i needs to coordinate with agent j, i.e., there exist
l ∈ E in the interaction graph G = (I, E) such that 〈i, j〉 ∈ l then
either i is an ancestor of j or j is an ancestor of i in the correspond-
ing DFS tree.

However, a fundamental difference from SPIDER is that the pol-
icy representation in FANS is based on FSMs of varying sizes in-
stead of policy trees. In this paper, we employ the following nota-
tion to denote agents in the DFS tree, their policies and expected
values:
Ai ⇒ ancestor agents, i.e. agents from i to the root (excluding i) .
Si ⇒ agents in the sub-tree (excluding i) for which i is the root.
π ⇒ joint policy of all agents.
πi− ⇒ partial joint policy of agents that are in Ai.
πi+ ⇒ partial joint policy of all agents in Si ∪ i.
πi ⇒ policy of the ith agent.
v̂[πi, π

i−] ⇒ upper bound on the expected value for πi+ given πi

and policies of ancestor agents i.e. πi−.
v̂[πi, π

i−, j] ⇒ upper bound on the expected value for πi+ from
the jth child of i.
v[πi, π

i−]⇒ expected value for πi given policies of ancestor agents,
πi−.
v[πi+, πi−] ⇒ expected value for πi+ given policies of ancestor
agents, πi−.
v[πi+, πi−, j]⇒ expected value for πi+ from the jth child of i.
Πi ⇒ set of all possible FSMs of agent i.

Algorithm 2 JOINT-POLICY-SEARCH(i, πi−, threshold,Q)

1: πi+,∗ ← null
2: Πi ← GET-ALL-FSMS (T,Ai,Ωi, |Qi|)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: v[πi, π

i−]← JOINT-REWARD-DP (πi, π
i−)

6: if v[πi, π
i−] > threshold then

7: πi+,∗ ← πi

8: threshold← v[πi, π
i−]

9: else
10: Π̃i ← UPPER-BOUND-SORT-DP(i,Πi, π

i−)

11: for all πi ∈ Π̃i do
12: π̃i+ ← πi

13: if v̂[πi, π
i−] < threshold then

14: Go to line 11
15: for all j ∈CHILDREN (i) do
16: threshold(j)← threshold− v[πi, π

i−]
17: −Σ

k∈CHILDREN(i)\j v̂k[πi, π
i−]

18: πj+,∗ ←JOINT-POLICY-SEARCH(j, πi− ∪ πi,
19: threshold(j), Q)
20: π̃i+ ← π̃i+ ∪ πj+,∗

21: v̂j [πi, π
i−]← v[πj+,∗, πi ∪ πi−]

22: if v[π̃i+, πi−] > threshold then
23: threshold← v[π̃i+, πi−]
24: πi+,∗ ← π̃i+

25: return πi+,∗

Algorithm 2 shows the algorithm for Joint Policy Search within
FANS. We illustrate the key ideas in its execution using Figure 2
on the four agent example from Figure 1. Agents are arranged in
a DFS tree with agent 3 as the root. For simplicity of exposition
we consider the case where we have assigned two node FSMs for
agents 2 and 3, and 1 node for agents 1 and 4. The algorithm begins
with no policy assigned to any of the agents (Level 1 of the search
tree in Figure 2). In the next step (Level 2 of the search tree),
there is a search node corresponding to each policy of the root agent
(i.e. agent 3). Except for the root agent, no other agent is assigned

any policies. These new nodes in the search tree (corresponding to
each of root agents policies) are sorted based on upper bounds (on
expected value) of the partial joint policies (line 10 of algorithm
2). This upper bound computation will be discussed in the next
section. The search node with the highest upper bound is further
expanded. In Figure 2, this corresponds to the search node on Level
2 with upper bound 250 (number on top right hand corner of the
search node). Expansion here implies creation of new search nodes
corresponding to policies of children agents (in the DFS tree) to
the root agent (line 18). Upper bounds are computed for these new
nodes and the nodes are sorted based on these upper bounds. This
process continues until a complete joint policy (a policy assigned
to each of the agents) is obtained. We must run a policy evaluation
algorithm to obtain the value of this joint policy (line 5), which is
described in the next section. Level 4 of the search tree provides a
search node with a complete joint policy and expected value of 244.
This value of the best known complete joint policy can be used to
prune out search nodes with upper bounds less than it. For instance,
all the nodes at Level 3 and Level 2 can be pruned out since their
upper bounds are less than or equal to 244.

…

…

Level 1

Level 2

Level 3

Level 4

…

E E

E E

E

EE

W

WWW

E W

W W

Pruned

242

!

250

244

244

Search Tree

node

Agent Tree for

Figure 1 sensor

network

FSM

1

2

3

4

Figure 2: Execution of Joint Policy Search, an example

4.4 FANS: Dynamic programming
In this section, we describe evaluation of the joint policy (JOINT-

REWARD-DP) and computation of the upper bound for partial
joint policies using an MDP heuristic (UPPER-BOUND-SORT-
DP). These are two major steps in joint policy search that can be
significant bottlenecks. These bottlenecks result from the fact that
joint policy trees have to be constructed and evaluated for all agents
for policy evaluation and all agents inAi for the MDP heuristic. We
first describe these computations and then explain how FSMs can
help speed them up using dynamic programming.

Let i be an agent on the DFS tree, Ei− denote the set of links
connecting agents in Ai ∪ i with agents in Si, and Ei+ denote the
set of links connecting agents in Si. Furthermore, for each link l in
eitherEi− orEi+, let l(1), l(2) ∈ l denote the agents at the ends of

488

l; assume WLOG that for l ∈ Ei−, agent l(1) is in Ai ∪ i whereas
agent l(2) is in Si. Also, let z = 〈su, (si)

n
i=1, (qi)

n
i=1〉 denote the

current multiagent state where su is the current unaffected state,
(si)

n
i=1 : si ∈ Si is the vector of current agent states and (qi)

n
i=1 :

qi ∈ Qi is the vector of current nodes of agent FSMs.
We now recall how [14] derives vt

z := the total expected reward
for all agents if they execute a joint policy π (specified by a joint
action selection function (ψ1, ..., ψn) of agent FSMs) from time
t ∈ [0, ..., T] until time T from the multiagent state z. To this end,
we first show how to derive vt

z[πi−, πi+] := the expected reward
for agents in Si if they execute a partial joint policy πi+ from time
t ∈ [0, ..., T] until time T from the multiagent state z. We can
derive vt

z[πi−, πi+] using the following recursive equations:

vt
z [πi−, πi+] =

X
l∈Ei−

vt
z,l +

X
l∈Ei+

vt
z,l

where

vt
z,l =Rz,l +

X
z′=〈s′u,(s′i)

n
i=1,(q′i)

n
i=1〉

pl(1) · pl(2) · pu · ol(1) · ol(2) · vt+1
z′,l

(1)

whereRz,l = Rl((sl(1), sl(2)), su, 〈ψl(1)(ql(1)), ψl(2)(ql(2))〉) and:

oi =Oi(s
′
i, s
′
u, ψi(qi), ω

′
i)

pi =Pi(si, su, ψi(qi), s
′
i)

pu =P (su, s
′
u)

And the recursion continues until t = T . Observe that to calculate
vt

z we then simply need to calculate vt
z[∅, πj+] where j ∈ I is the

root agent in the DFS tree.
On the other hand, to derive the upper bounds on expected values

vt
z[πi−, πi+] of partial joint policies πi+, denoted as v̂t

z[πi−, πi+],
[14] uses an MDP based heuristic that we now briefly discuss.
Given fixed policies of agents in Ai ∪ i, this heuristic computes
an upper bound on the expected value obtainable from the agents
in Si (Step 10 of Algorithm 2). The sub-tree of agents is a dis-
tributed POMDP in itself and the idea here is to construct a cen-
tralized MDP corresponding to the (sub-tree) distributed POMDP
and obtain the expected value of the optimal policy for this central-
ized MDP. In Equation 1, the pi and oi terms refer to the transition
and observation probabilities respectively for agent i, when it tran-
sitions from state si to s′i . Upper bound on the expected value for
a link l ∈ Ei−∪Ei+ can be computed by modifying Equation 1 to
reflect the full observability assumption which involves removing
the observational probability term for agents in Si and maximizing
the future value v̂t

z,l over the actions of those agents (in Si). Thus,
we compute the upper bound on a link l as follows: If l ∈ Ei− then

v̂t
z,l = max

a∈Al(2)
{Rz,l +

X
z′

pl(1) · pl(2),a · pu · ol(1) · v̂t+1
z′,l

Whereas if l ∈ Ei+ then

v̂t
z,l = max

a′∈Al(1),a′′∈Al(2)

{Rz,l +
X
z′

pl(1),a′ · pl(2),a′′ · pu · v̂t+1
z′,l }

Where pi,a = Pi(si, su, a, s
′
i).

We now show our next contribution: the application of dynamic
programming for policy evaluation and upper bound computation
when agent policies are represented using FSMs. Such dynamic
programming was not feasible using the traditional representation
[10, 14], since the size of the joint policy tree grows exponentially
in |Ω| = | ×1≤i≤n Ωi|. Hence, both the policy evaluation and
the upper bound computation were slow. On the other hand, with
FSMs, the policy of agent i at time t is uniquely determined by

ψi(qi) where qi ∈ Qi is the current node of the FSM of agent i
(at time t) as opposed to agent i’s observation history up to time t.
In general, joint agent policy is determined by the current nodes of
agents’ FSMs, i.e., (qi)

n
i=1 as opposed to joint observation histories

of all agents up to time t. The following theorem shows how to per-
form both the policy evaluation and the MDP heuristic computation
without considering joint observation histories of all agents:

THEOREM 1. Let V (t) be the set of values vt
z for all possible

multiagent states at time t. It then holds that:
(i) Size of V (t) only depends on |S| and

Q
i∈I |Qi| and thus,

does not increase with the planning horizon T .
(ii) V (t) can be derived from V (t+ 1) for all t ∈ [0, ..., T]

PROOF. Statement (i) holds because |V (t)| ≤ |S|
Q

i∈I |Qi| =
K. We prove statement (ii) by induction on t from T to 0:

Induction base: Assume t = T . In this case, for all vT
z ∈ V (T),

vT
z =

P
l∈E Rl because T is the planning horizon after which no

reward can be earned.
Induction step: Suppose that the theorem holds for t and we

want to prove it for t − 1, i.e. derive the values vt−1
z ∈ V (t− 1)

in terms of values vt
z ∈ V (t) that have already been found. Let

vt−1
z ∈ V (t− 1) be a value to be derived for some multiagent

state z = 〈su, (si)
n
i=1, (qi)

n
i=1〉 at time t. We know that the joint

action a = (ai)
n
i=1 = (ψi(qi))

n
i=1 will be executed from state

s = 〈s1, ..., sn, su〉 and with probability p(s, a, s′) = Pu(su, s
′
u) ·Q

1≤i≤n Pi(si, su, ai, s
′
i) the system will transition to a new state

s′ = 〈s′1, ..., s′n, s′u〉. Then, agents will observe ω = (ω1, ..., ωn)
with probability o(s′, a, ω) =

Q
1≤i≤n Oi(s

′
i, s
′
u, ai, ωi) and con-

sequently agent FSMs will transition to nodes (q′i)
n
i=1, where FSM

i transitions under observation ωi from node qi to node q′i. At
this point reward Rl is earned and the system finds itself the mul-
tiagent state z′ = 〈s′u, (s′i)n

i=1, (q
′
i)

n
i=1, 〉 for which (from the in-

duction assumption) we already know the total expected reward
vt

z′ ∈ V (t). Consequently, we have shown how to derive the values
vt−1

z ∈ V (t− 1) in terms of values vt
z′ ∈ V (t).

The immediate consequence of Theorem 1 is that the expected
value of a policy π started from a belief state b is given by:X

(su,s1,...,sn)∈S

bu(su)
Y

1≤i≤n

bi(si) · v0
z0(s)

Where z0(s) = 〈su, (si)
n
i=1, (q

0
i)n

i=1〉 is the starting multiagent
state for s ∈ S.

We can now more clearly see the reason why policy evaluation
given FSM representation of agent policies is much faster than pol-
icy evaluation given observation histories representation of agent
policies: In the former case policy evaluation is done by calculat-
ing vt

z ∈ V (t) for all t ∈ [0, ..., T] which can be done in poly-
nomial time O(KT) whereas in the latter case policy evaluation
runs in exponential time O(| ×1≤i≤n Ωi|T). Finally, our dynamic
programming technique differs significantly from [7] as we are not
backing up policy trees.

5. EXPERIMENTAL RESULTS
This section provides six sets of experimental results on FANS.

The first three experiments focus on runtime and scale-up, compar-
ing FANS with SPIDER (a globally optimal algorithm) [14] and
LID-JESP (a locally optimal algorithm) [10], which are competing
algorithms for ND-POMDPs; while the remaining results focus on
solution quality and analysis. All our experiments were conducted

489

on the sensor network domain provided in Section 2. Our first ex-
perimental result focuses on providing a head-to-head comparison
of FANS with different heuristics, against SPIDER, since SPIDER
is the latest algorithm for ND-PODMPs, and also because it uses
branch-and-bound search using an MDP heuristic. The comparison
uses some of the sensor network configurations presented in [14],
and an additional “7-H” configuration as shown in Figure 3. In this
experiment, we limit the number of agents to less than 10, in order
to allow SPIDER to run.

4-Chain

5-Star 5-P

7-H 11-Helix15-3D

Figure 3: Sensor network configurations

Figure 4 shows a comparison of runtime of SPIDER vs. FANS
with different heuristics. The x-axis shows the different sensor net-
work domain configurations, and the y-axis plots the runtime in
log-scale (in all our experiments, we imposed a 10000 second cut-
off on runtime). Also, we chose a time horizon of 3 for policy
computation, to be consistent with the results shown in [14]. For
the node heuristic, we chose k = 1/2; we discuss this choice of k
later on. We can observe that (i) SPIDER is the slowest of all of
the different algorithms considered and it hits the 10000 sec cut-
off in the 5-P and 7-H cases; (ii) The Node and Link heuristics
are the two fastest in all cases; (iii) Unfortunately, Searcher’s extra
search over FSMs appears have a significant runtime penalty; (iv)
The Equality and Fairness heuristics are the two worst perform-
ing heuristics; (v) Surprisingly, the Greedy heuristic matches the
performance of the Link heuristic for the 5-P and 7-H cases. The
key conclusion from this graph is that FANS with either the Node,
Link or Greedy heuristic is able to provide more than two orders of
magnitude speedup over SPIDER.

Figure 4: Runtime comparison of SPIDER vs. FANS

Next, we show scale up in terms of time horizon for policy com-
putation, and also provide a comparison of FANS against the LID-
JESP algorithm, a locally optimal algorithm for ND-POMDPs [10].
Runtime results for LID-JESP are available up to T=6, as shown
below. Figure 5 shows a plot of the runtime as we increase the

time horizon. The x-axis shows the time horizon, and the y-axis
plots the runtime in log-scale. Runtime values for different time
horizons are shown for LID-JESP and FANS with Node heuristic
(k = 1/2), for the 4-chain and 5P configurations. The key obser-
vations here are that FANS is able to provide orders of magnitude
speedup over LID-JESP for higher time horizons. For example, for
the 4-chain configuration with T=6, LID-JESP runs for 309 s, while
FANS terminates in 0.73 s, thus providing a 423-fold speedup over
LID-JESP. Moreover, for the 5-P configuration, a speedup of more
than 1 order of magnitude is visible for T=5. We discuss solution
quality in detail later, but for both 4-chain and 5-P, the Node heuris-
tic with k = 1/2 appears to match the quality of the global optimal
solution.

Figure 5: Runtime comparison of FANS with LID-JESP

Figure 6(a) shows a comparison of runtime of FANS with dif-
ferent heuristics as we scale-up the number of agents. The x-axis
shows the different sensor network domain configurations2 (see
Figure 3), and the y-axis plots the runtime in log-scale (again, in
all our experiments, we imposed a 10000 second cutoff on run-
time). Also, the time horizon for policy computation is 3 and we
again choose k = 1/2 for the Node heuristic. We can make the
following observations: (i) The Equality and Searcher heuristics
are not able to terminate within the cutoff time of 10000 s; (ii)
The Node heuristic still remains the best for all configurations, but
Greedy beats Link in the 15-3D domain. Thus FANS can scale up
to as many as 15 agents, triple the number of agents SPIDER could
handle.

The next set of experiments examine tradeoffs in solution quality
and provide analysis of these speedups. Table 1 shows a compar-
ison of solution quality for SPIDER and FANS with select heuris-
tics. The rows show all agent configurations considered so far while
the columns show the algorithm used to obtain the solution quality.
We can observe the following:(i) For the 4-chain and 5-star do-
mains, FANS (even with its faster Greedy heuristic) is able to reach
the same quality as SPIDER, which is the global optimum. For
the 5-P configuration, only an upper bound on the solution quality
is provided in [14], and FANS is able to obtain a solution quality
within 5% of the upper bound obtained by SPIDER. (ii) The Equal-
ity heuristic obtains the highest solution quality in all cases; (iii)
For domains of less than 10 agents, the Link heuristic matches the
quality of the Equality heuristic (it loses less than 1% quality and
less than 10% of quality in the 5-star and 7H domains respectively);
(iv) As we scale up the Network, none of the three fastest heuristics
(Link, Node, Greedy) can keep up to the solution quality provided
by Equality or Searcher; (v) Even though the Equality and Searcher

2Configuration 15-mod is a modification to the 15-3D configura-
tion with different target paths.

490

Figure 6: (a) Runtime comparison of FANS using different heuristics for larger domains using T=3, (b) runtime performance of Node Heuristic with
varying ’k’, (c) solution quality of node heuristic with varying ’k’

heuristics do not terminate within the cutoff time limit for the larger
domains, we still are able to provide quality results (marked with
*) — this is due to the anytime nature of FANS (discussed later).
We simply provide the solution quality obtained from the last itera-
tion of FANS that terminated within the cutoff time limit. Overall,
taking into account both runtime and solution quality, for smaller-
scale networks, the Link heuristic may provide the best tradeoff of
time to solution quality; while the Greedy heuristic might be pre-
ferred for the larger networks. The Node heuristic is always the
fastest, but may lose upto 35% of solution quality.

Table 1: Comparison of solution quality
SPIDER Equality Link Node Greedy Searcher

4-chain 226.6 226.6 226.6 226.6 226.6 226.6
5-star 114.4 114.4 113.8 90.1 114.4 114.4
5-P - 143.9 143.9 143.9 143.9 143.9
7-H - 142.8 132.3 106.7 106.7 106.7

11-helix - 113.3* 80.8 32.2 80.8 113.3*
15-3D - 332.4* 332.4 278.2 332.4 332.4*

15-mod - 322.7* 207.2 207.2 304.9 322.7*

So while the Node heuristic is the fastest, it loses in solution
quality. Our next experiment illustrates that varying k provides
us solution time vs quality tradeoffs in the Node heuristic. Figure
6(b) shows how k affects the runtime of the Node Heuristic for
different configurations (k=1 is the Equality heuristic). The x-axis
shows the different sensor network domain configurations, and the
y-axis plots the runtime in log-scale. It is easy to see that for each
example, the runtime decreases as we decrease k from 1 to 1/4.
For k = 3/4, the runtime for 11-helix and 15-3D is comparable to
the Greedy heuristic. Figure 6(c) shows how k affects the solution
quality of the Node Heuristic for different configurations. From this
graph, we can observe that k=3/4 may provide the desired increase
in solution quality. Thus, k=1/2 may be appropriate where speed
is of the essence, but increasing k is valuable if solution quality is
critical.

As noted in the previous experiment, for larger scale domains,
the runtimes for Node and Link start approaching the Greedy heuris-
tic. Our next experiment explains why. Figure 7(a) shows the time
overhead to compute the upper bound using an MDP for the Node
and Link heuristics. The x-axis shows the different sensor net-
work domain configurations, and the y-axis plots the runtime in
log-scale. Node (Overhead) denotes the overhead for upper bound
computation (described in Section 4.4, while Node (Total) denotes
the total time taken by the Node heuristic. Link (Overhead) and

Link (Total) should be interpreted similarly. Also, k=1/2 for the
node heuristic. We can observe that the overhead percentage over
the total runtime increases as we scale up the number of agents, for
both the Node and Link heuristic. For example, for the Link heuris-
tic, the overhead is 0.6% for the 5-P domain as compared to 83%
for the 15-3D example. Thus, as we increase the number of agents,
the Link and Node heuristics suffer due to the time overhead for
upper bound computation.

In the next set of results, we provide a comparitive analysis of the
performance of the different heuristics for FANS. It has been shown
that the Equality heuristic is the slowest among all heuristics, while
the heuristics that assign FSMs of varying size to different agents
are faster. Figure 7(b) shows the size of FSMs for each agent using
different heuristics for the 5-star configuration. The x-axis shows
the different agents, and the y-axis shows number of nodes in an
FSM. It may be recalled that all three heuristics shown here reached
the same solution quality (Link loses less than 1%), with the Link
heuristic being the fastest followed by Searcher and Equality. We
observe that the Equality heuristic assigns 3 nodes to each agent
while, the Link and Searcher heuristics assign FSMs of different
sizes to each agent. The Link heuristic assigns the least number of
nodes per agent and performs the best. Thus, not all agents require
the same expressivity as far as FSM size is concerned.

Our final result examines the anytime nature of FANS. Figure
7(c) shows a plot of quality vs. runtime for different heuristics,
for the 7-H domain. The x-axis shows runtime in seconds on log
scale while the y-axis shows solution quality. The lines plotted in
each of these graphs show the progression of different heuristics
over time in terms of solution quality, illustrating that FANS can
return progressively improved policies as we let it run longer before
interruption; and we need not run it to completion. For example,
interrupting a run of the Equality heuristic at 10 seconds would still
return a plan of quality 106.7; and interrupting it at 90 seconds will
yield a plan of quality 132.3, etc.

These experiments illustrate that FANS with heuristics is able
to outperform its competitors SPIDER and LID-JESP by orders of
magnitude in runtime, while showing promising scale-up beyond
what has been attempted before in the literature in terms of num-
bers of agents. Among the FANS heuristics, the Searcher heuristic
with the highest search overhead never wins; the Node and Link
heuristics which have moderate heuristic overheads dominate for
smaller-scale networks, but the lower-overhead Greedy heuristic
may provide the right trade-off in larger scale networks.

491

Figure 7: (a) Time overhead for Node and Link Heuristics for different configurations, (b) FSM size for each agent (5-star configuration), (c) solution
quality vs. runtime for 7-H configuration

6. SUMMARY AND RELATED WORK
Recently there have been many exciting theoretical advances in

Distributed POMDPs. It is now important for the field to take
steps towards real practical applications. Agent networks, exem-
plified by sensor networks for target tracking [8], the recently de-
veloped LANDroids[4] domain, and others, are distributed applica-
tions with transitional and observational uncertainties; these agent
networks appear ideally suited for distributed POMDPs. However,
these applications also suggest tailoring distributed POMDPs, via
models such as ND-POMDPs, and most importantly, they require
algorithms that will demonstrate scale-up in number of agents. This
paper is motivated by such a need for scale-up, and presents a new
algorithm called FANS which shows scale-up in ND-POMDPs of
up to 15 agents. FANS uses FSMs for policy representation and
provides three key contributions: (i) FANS introduces novel heuris-
tics to automatically vary the FSM size in different agents for scale-
up; (ii) FANS exploits FSMs for dynamic programming in pol-
icy evaluation and heuristic computations and provides significant
speedups; (iii) FANS illustrates efficient integration of its FSM-
based policy search within an algorithm that exploit agent network
structures.

In terms of related work, of key relevance are algorithms focused
on agent networks. Of these, distributed POMDP algorithms for
ND-POMDPs, SPIDER[14] and LID-JESP[10] are most relevant
and we have already provided a detailed comparison of FANS with
SPIDER and LID-JESP. Within the broader distributed POMDP
arena, among globally optimal approaches, Hansen et al. [7] present
an algorithm for solving partially observable stochastic games
(POSGs) based on dynamic programming, while Szer et al. [13]
provide an optimal heuristic search method for solving Decentral-
ized POMDPs. These globally optimal algorithms have tradition-
ally been demonstrated in domains involving two agents. Insights
from FANS of differing the policy expressivity across agents, and
heuristics for doing so may help in scaling up these algorithms. In
related work focusing on approximate policies, Peshkin et al. [11]
and Bernstein et al. [2] are examples of techniques that search
for locally optimal policies using FSMs. Interactive POMDP (I-
POMDP) model by [6] is presented as an alternative to the dis-
tributed POMDP model and particle filters have been proposed to
solve them. The key difference between our work and theirs is our
focus on scaling up in the agent network dimension, scaling up the
number of agents into double digits: thus the techniques we pro-
vide to search for joint policies in an agent network, and our vary-
ing FSM nodes in the scale-up are key novelties missing in these
previous works.

ACKNOWLEDGEMENTS
This material is based upon work supported by the DARPA/SBRI
Contract W31P4Q-07-C-0146 and DARPA/STTR Contract No.
W31P4Q-06-C-0410 via a subcontract from Perceptronics Solu-
tions, Inc. The authors also want to thank the anonymous reviewers
for their valuable comments.

7. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.

Solving transition independent decentralized Markov
decision processes. JAIR, 22:423–455, 2004.

[2] D. S. Bernstein, E. Hansen, and S. Zilberstein. Bounded
policy iteration for decentralized POMDPs. In IJCAI, 2005.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman. The
complexity of decentralized control of MDPs. In UAI, 2000.

[4] DARPA. Landroids. http://fs1.fbo.gov/EPSData/ODA/
Synopses/4965/BAA07-46/BAA07- 46LANdroidsPIP.pdf

[5] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In AAMAS, 2004.

[6] P. Gmytrasiewicz and P. Doshi. A framework for sequential
planning in multiagent settings. Journal of Artificial
Intelligence Research, 24:49–79, 2005.

[7] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
AAAI, 2004.

[8] V. Lesser, C. Ortiz, and M. Tambe. Distributed sensor nets:
A multiagent perspective. Kluwer, 2003.

[9] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.
Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. In IJCAI, 2003.

[10] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In AAAI, 2005.

[11] L. Peshkin, N. Meuleau, K.-E. Kim, and L. Kaelbling.
Learning to cooperate via policy search. In UAI, 2000.

[12] P. Poupart and C. Boutilier. Bounded finite state controllers.
In NIPS, 2003.

[13] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic
search algorithm for solving decentralized POMDPs. In
IJCAI, 2005.

[14] P. Varakantham, J. Marecki, Y.Yabu, M. Tambe, and
M. Yokoo. Letting loose a SPIDER on a network of
POMDPs: Generating quality guaranteed policies. In
AAMAS, 2007.

492

