
A New Perspective to the Keepaway Soccer: The Takers

(Short Paper)
Atil Iscen

Middle East Technical University
Ankara, Turkey

atil@ceng.metu.edu.tr

Umut Erogul
Middle East Technical University

Ankara, Turkey
umuero@ceng.metu.edu.tr

ABSTRACT
Keepaway is a sub-problem of RoboCup Soccer Simulator
in which ’the keepers’ try to maintain the possession of the
ball, while ’the takers’ try to steal the ball or force it out
of bounds. By using Reinforcement Learning as a learning
method, a lot of research has been done in this domain. In
these works, there has been a remarkable success for the
intelligent keepers part, however most of these keepers are
trained and tested against simple hand-coded takers. We
tried to address this part of the problem by using Sarsa(λ) as
a Reinforcement Learning method with linear tile-coding as
function approximation and used two different state spaces
that we specially designed for the takers. As the results of
the experiments confirm, we outperformed the hand-coded
taker which results in creating a better trainer and tester for
the keepers. Also when designing the new state space, we
noticed that smaller state spaces can also be successful for
this part of the problem.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Experimentation, Performance

Keywords
RoboCup, Keepaway Soccer, Takers

1. INTRODUCTION
Keepaway is a subproblem of the RoboCup Soccer Simu-

lator (RCSS) in which one team, ’the keepers’ tries to main-
tain possession of the ball within a limited region, while the
opposing team, ’the takers’ tries to gain possession of the
ball[2]. This game is commonly preferred in Machine Learn-
ing researches [4][5][7], because it can be a good testbed
with less agents resulting in a less complex problem rather
than two teams with 11 agents playing full team soccer each

Cite as: A New Perspective to the Keepaway Soccer: The Takers (Short
Paper), A. Iscen and U. Erogul, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

having different roles. Because of this, there are many re-
searches focusing on the keepaway game, but most of these
researches apply machine learning methods to maximize the
possession of keeper agents.

In these researches the experiments are made with ba-
sic takers, which run towards the ball without considering
to cooperate, which does not create a big challenge for the
keepers. When developing learning keepers, this type of tak-
ers does not really test the potential of the adversary agents.
In our project we plan to address this part of the problem
by developing learning takers. Another interesting point of
developing takers is that in learning keepers problem only
the keeper with the ball decides an action whereas in learn-
ing takers all the agents have to decide an action in each
step. This makes the agents more dependent on each others
decision, making the game more suitable for cooperation.

Among learning methods we used Reinforcement Lear-
ing[3] which is one of the most preferred learning method
in RCSS, because it is well suited to meeting its challenges,
like sequential decision making, achieving delayed goals and
handling noise. As a Reinforcement Learning algorithm we
have chosen Sarsa(λ) learning with tile coding because of its
previous success in application of keepers in one of the best
known paper in this area.[2]

2. ALGORITHM

2.1 Problem Definition
In keepaway a team of m players faces the task of keep-

ing possession of the ball within a rectangle region of play,
resisting attempts of the opposing team of n takers to wrest
possession. For research purposes, this problem is embedded
into RCSS with the keepaway framework developed by Stone
et Al [1]. This framework contains many classes and meth-
ods and some high level functions like passing and marking.
In addition, although this framework has the main functions
for the learning process, we had to modify some of them to
make the framework suitable for the takers.

We accepted the task as episodic, each starting with one
of the keepers having possession, and finishing when any
of the takers gets the ball or the ball goes out of bounds.
Apart from the keepers, which decide to an action only when
the agent has the ball until its decision to pass, the takers
need to decide to an action in each cycle, which can prevent
them from reaching any of the keepers if their decided ac-
tion changes repeatedly. As this makes it impossible to see
the effects of their immediate decisions, we decided to make
the takers do the selected action n consequent cycles. With

Portugal,pp. 1341-1344.



Figure 1: Keepaway scene and labels

using this ’n step same action’ trick, we made the learning
process easier at start, but this causes a disadvantage when
further agility or sensitivity to the states of disregarded cy-
cles is required. We decided the value of n as 15 cycles,
which is the duration of a successful pass execution.

2.2 States and Actions
Since we are dealing with the takers, the only possible

actions are GotoBall and Mark(n) which means marking the
nth keeper, where keepers are ordered by their distance to
the ball. When deciding on states, we wanted to minimize
the number of states by trying to use the information that
would be sufficient. First, to have a dynamic labeling, we
sort the keepers according to their distance to the ball. K1
means the keeper with the ball. Then the takers are sorted
such that the first taker will be itself. The others are sorted
according to their distance to this taker(Fig. 1). For our
first taker model (atum) the state variables are constructed
as the distances of each taker to each keeper (T1-K1, T1-
K2, T1-K3, ..., T2-K1, T2-K2, ...). For increasing number
of players, the size of the state space becomes a problem. To
overcome this, we minimized the state space by constructing
a second taker model. For this model, only the distances for
the current taker are taken into consideration, for the other
takers only the label of the nearest keeper is considered.
This gives for m keepers and n takers m+(n− 1) variables,
whereas first model has m ∗ n state variables.

2.3 Learning Algorithm
For the learning algorithm, because of its success in learn-

ing keepers [2], we have chosen sarsa(λ) which is a commonly
used algorithm in RL [3]. For feedback, the rewards are zero
until the end of the episode and it becomes 1 when the takers
force keepers to end episode. Eventhough we have less state
variables, the state space is still too large. To decrease the
size, and to generalize the states we used function approx-
imation. For function approximation we used tile coding,
which is a linear function approximation scheme that parti-
tions the input space into axis aligned regions called tiles.

3. EXPERIMENTAL RESULTS

3.1 Methodology
For the keepaway problem the common evaluation method

is the average episode length of the game. Our aim is to
decrease these durations, especially the ones presented in
P.Stone’s research[2], since we also use the keepers they de-
veloped.

After several tries, we chose the learning parameters giv-
ing best learning curves. Although we have infinitely many

Figure 2: Keeper = ka06

choices, we decided on α = 0.125, λ = 0.5, ε = 0.05, γ =
0.8(αbeingLearningRate, γbeingDiscountFactor).

All of the testing and implementation has been done on 32
bit 2.6.22-14 linux kernel, with rcssbase-10.0.11, rcssserver
10.0.7 and keepaway-0.6 on a 2.20Ghz AMD Athlon PC.
The results are converted to graphics using the points con-
structed by a sliding window containing 300 episodes. All
of the experiments are conducted in sync mode(server ad-
vances cycle immediately when all clients have responded
which allows games to be much faster) with unrestricted
vision settings(360 degree view of field).

The first keeper that we used to test is the original hand-
coded version that we got from the keepaway framework and
is denoted as ka06. For further testing we used the learning
keepers provided by M.Taylor et Al[1] which will be denoted
as mt07. For mt07 we used weights learned previously, which
were saved after a learning process having one of the highest
possession durations among learning keepers. For the takers
part, we have only one previous taker to compare our work
with, which is ka06. Our first taker model is denoted as
atum, and the second is denoted as mini in the graphics and
the results. The extended versions of the takers like mini-
ka06 express takers (in this example mini) which use the
previously saved weights against the keepers written after
the ’-’ symbol (ka06 in this example). For atum-l and mini-l,
the extension ’l’ signifies that they load weights saved during
a learning session against learning agents. For durations of
experiments we used long sessions for learning agents, and
shorter ones for agents loading previously learned weights.

3.2 Results
At first, we compared various takers performances against

hand-coded keepers of the keepaway framework[1]. As seen
in the Table 1, the hand-coded keepers versus hand-coded
takers get an average result of 29.2 seconds, whereas our
first taker atum developed to decrease this duration became
successfull by getting 16.3 as average. For the third model
(mini), although the number of state variables is reduced,
it shortens the durations further to 12.9. These statistics
clearly show that our expectations in the success of learning
takers come true.

For the second test, when we compare atum and mini,
there is two important points. First, during the first 5 hours



Table 1: Episode durations against ka06
Takers Average Min Max
ka06 29.2 27.6 31.1
atum 16.3 14.3 24.4
mini 12.9 10.8 15.5

Figure 3: Keeper = mt07

Table 2: Episode durations against mt07
Takers Average Min Max
ka06 26.7 24.9 27.7
atum 10.9 9.9 12.8
mini 11.1 8.3 16.9

mini-ka06 11.1 10.5 12.2
mini-l 15.9 14.8 17.2

atum-ka06 10.1 9.4 10.6
atum-l 15.1 12.4 16.0

Figure 4: Keeper = ka06 in 4 vs 3

of training(Fig. 3), mini converges more quickly. Secondly,
mini has a lower minimum (Table. 2) but its seems more
unstable than atum. In our opinion, this is caused by hav-
ing less state variables not being able to represent the state
clearly.

Interestingly there is a big difference between atum,mini
and atum-l,mini-l respectively. We believe that the reason of
this is the atum-l and mini-l are trained against the keepers
which are at the start of the learning process.

Another interesting point for this test is, the takers trained
against the hand coded takers are as successful as the takers
trained specifically against mt07. This means that the op-
posing keepers ka06 and mt07 behave similarly, as expected
from the statistics given by Stone et Al.[2]

For the last test (Fig. 4), we see that the mini especially
developed for keepaway with more agents is successfull at his
primary mission with a clear improvement over the hand-
coded takers.

4. CONCLUSIONS AND FUTURE WORK
Looking at the results, we can clearly say that we achieved

our initial goal which is to develop a successful learning taker
which performs better than the hand-coded ones. After test-
ing against various keepers, we have shown that our algo-
rithm is robust to different types of keepers. We also con-
cluded that previous studies on learning keepers can be also
applied to the takers with the help of an addition like ’n-step
same action’. As a further research, n could be decreased
during learning when the agent needs more agility.

Also for the takers part of the keepaway learning prob-
lem, using a second model of taker, we saw that we can
achieve similar (sometimes better) results in a less stable
way. With this new model using less state variables, the
same learning process can be used with more than 5 agents
with a manageable state space. As a new application area,
RoboCup-breakaway can be used to test the general success
of this algorithm for the defense team.[6]

In addition to these ones, one of our main contributions
is providing a better challenge and a benchmark to the re-
searchers of the keepaway framework. We think that using
a better taker for the experiments will help the researchers
analyze the true potential of the keepers



5. REFERENCES
[1] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.

Keepaway soccer: From machine learning testbed to
benchmark. In I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, volume 4020, pages 93–105. Springer
Verlag, Berlin, 2006.

[2] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[4] M. E. Taylor, S. Whiteson, and P. Stone. Temporal
difference and policy search methods for reinforcement
learning: An empirical comparison. In Proceedings of
the Twenty-Second Conference on Artificial
Intelligence, pages 1675–1678, July 2007. (Nectar
Track).

[5] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement
learning. In AAMAS ’07: Proceedings of the 6th
international joint conference on Autonomous agents
and multiagent systems, pages 1–8, New York, NY,
USA, 2007. ACM.

[6] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin.
Using advice to transfer knowledge acquired in one
reinforcement learning task to another. In ECML,
pages 412–424, 2005.

[7] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone.
Evolving keepaway soccer players through task
decomposition. Machine Learning, 59(1):5–30, May
2005.




