
Graph Laplacian Based Transfer Learning
in Reinforcement Learning

 (Short Paper)

Yi-Ting Tsao
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

yiting.tsao@gmail.com

Ke-Ting Xiao
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

peter.xiau@gmail.com

Von-Wun Soo
Department of Computer Science

National Tsing-Hua University
HsinChu, Taiwan

soo@cs.nthu.edu.tw

ABSTRACT
The aim of transfer learning is to accelerate learning in related
domains. In reinforcement learning, many different features such
as a value function and a policy can be transferred from a source
domain to a related target domain. Many researches focused on
transfer using hand-coded translation functions that are designed
by the experts a priori. However, it is not only very costly but also
problem dependent. We propose to apply the Graph Laplacian
that is based on the spectral graph theory to decompose the value
functions of both a source domain and a target domain into a sum
of the basis functions respectively. The transfer learning can be
carried out by transferring weights on the basis functions of a
source domain to a target domain. We investigate two types of
domain transfer, scaling and topological. The results
demonstrated that the transferred policy is a better prior policy to
reduce the learning time.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition,
parameter learning.

General Terms
Experimentation, Theory.

Keywords
reinforcement learning, transfer learning, graph Laplacian

1. INTRODUCTION
One of the disadvantages in reinforcement learning (RL) [1] is
that two different domains with different initial states and goal
states must be learned separately to acquire an optimal policy for
each domain. It would waste time to simply learn twice in two
different domains even if they might share some similar subtasks.
Transfer learning is an approach to improve the performance of
cross domains by avoiding redundant learning.

In a reinforcement learning problem, the value function provides
a guideline for action selection in a given state that is known as a
policy. Many transfer methods that transfer different features

from a source domain to a target domain have been proposed [2, 3,
4]. One work is a rule transfer method that acquires some rules
that approximate the policy in a source domain and translates into
ones that can be used as a policy for a target domain [2]. Thus an
agent may apply the translated policy that is acquired by hand-
coded translation functions and revise a partial policy in a target
domain. However, designing general translation functions
becomes a problem. Another work based on case-based reasoning
uses a similar idea but it acquires rules using a decision-tree
method [3]. The other work is to transfer the policy from a source
domain to a target domain directly [4] but it also requires hand-
coded translation functions. Proto-value functions derived from
spectral graph theory, harmonic analysis, and Riemannian
manifold can be used to represent a set of the basis functions to
approximate a value function [5, 6, 7]. A novel transfer method
has been proposed to reuse a set of the basis functions from a
source domain and just to learn the weights of the set of the basis
functions to compose a value function for a target domain. This
method can transfer domain features without hand-coded
translation functions but it needs some exploring trials for a target
domain to acquire the combination weights.

The aim of the transfer learning is to use the knowledge learned
from a source domain to accelerate learning in a related target
domain. In this paper, we propose a transfer method to obtain a
better prior policy from a source domain to reduce the learning
time in a similar target domain without hand-coded translation
functions by spectral graph theory.

2. BACKGROUND
Most reinforcement learning researches are based on Markov
Decision Processes (MDP) and a value function to guide an
agent’s actions in solving a domain. However, a value function
can be too rigid to apply to a domain such that to transfer it
directly to another domain is hard. Finding a set of suitable basis
functions to express the value function helps the transfer. In this
paper, the development is based on a discrete MDP and the
spectral graph theory.

2.1 Markov Decision Process
A discrete Markov Decision Process M which is defined by a 4-
tuple (S, A, ,)a

ssP '
a
ssR ' where S is a finite set of states, A is a finite

Cite as: Graph Laplacian Based Transfer Learning in Reinforcement
Learning (Short Paper), Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo, Proc.
of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp. .
Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1349-1352.

set of actions, and represent the probability and reward
of transiting to state s’ when taking action a on state s
respectively [1]. A function which determines the action that an
agent should take at any state that the agent could reach is called a
policy π. A policy is a mapping from a state to a unique action.
The value function V

a
ssP '

a
ssR '

π represents the value by using policy
function π and the optimal policy π* is defined as a unique
optimal value function V* that can maximize the expected reward
starting at a given state s with discount factor γ. The optimal value
function V*(s) is defined as follows.

∑ +=
'

*
''

*))'((max)(
s

a
ss

a
ssa

sVRPsV γ

The value function is represented in tabular form with one output
for each input tuple. However, the state space in the real world is
often so huge that to memorize the value table is impossible. We
can approximate the value function in terms of a linear
combination of a set of the basis functions as:

B
nn

B VVV ααπ ++= ...11

where each is a basis function. Approximating by the basis
functions saves a lot of memory. However, different sets of the
basis functions may affect the function approximation. Therefore,
for an agent to have good performance, selecting good basis
functions to make good value approximation plays an important
role.

B
iV

2.2 Spectral Graph Theory
A Fourier analysis is to decompose a function in terms of a sum
of trigonometric functions with different frequencies that can be
combined together to represent the original function. Each
frequency of trigonometric functions is inversely proportional to
its importance in representing characteristics of the function.
Therefore, if two functions are similar, their trigonometric
functions tend to be similar at low frequencies and differ at high
frequencies.

A graph Laplacian can be defined as the combinatorial Laplacian
or the normalized Laplacian [8]. The combinatorial Laplacian L
of the undirected unweighted graph G is defined as L = D - A
where A is the adjacency matrix and D is a diagonal matrix whose
entries are the row sums of A. In problem solving, the states are
represented as the vertices and the edges represent the connection
(undirected) or transitions (directed) between the states so that
one state can reach another. Let u and v represent two states in a
graph and dv represents the degree of v, a graph Laplacian L(u, v)
is defined as follows:

⎪
⎩

⎪
⎨

⎧ =
−=

 otherwise
adjacent are and if

 if

0
1),(vu

vud
vuL

v

Let f denote a function mapping each vertex u of the graph into a
real number. The combinatorial Laplacian L acts on a function f
as

∑ −=
vu

vfufuLf
~

))()(()(

where u and v are adjacent vertices. Functions that solve Lf = 0
are called harmonic functions [9]. It turns out that to find the
harmonic functions is equivalent to finding the eigenvectors (or
eigenfunctions) of Lf = λf, where f is the eigenfunction and λ is the
associated eigenvalue. A smaller eigenvalue implies a smoother
eigenfunction. Furthermore, we can extend the idea in general
with normalized graph Laplacian[8]. In our cases, the normalized
graph Laplacian has the better consequences than the
combinatorial Laplacian.

The spectral analysis of the graph Laplacian operator provides an
orthonormal set of the basis functions that can approximate any
square-integrable functions on a graph [8]. These basis functions
which are called as proto-value functions in [5, 6, 7] construct a
global smooth approximation of a function on the graph. In other
words, the function can be decomposed into a sum of the basis
functions [10]. Besides, the notion of the spectral analysis on
graph Laplacian is similar to the Fourier analysis. The basis
functions of a graph Laplacian corresponding to the smaller
eigenvalues represent more valuable features and are thus more
important. It implies that if two graphs are similar, their features
tend to be similar at low-order basis functions and different at
high-order basis functions.

3. THE TRANSFER METHOD
In [6], the authors distinguished three transfer types: task transfer,
topological domain transfer, and scaling domain transfer as shown
in Figure 1. The domain transfer problem means only the
topology of the state space changes and rewards do not change. In
this paper, we focus on both topological and scaling domain
transfer.

RR RR RR

(a) 8 x 8 grids (b) 8 x 8 grids (c) 10 x 10 grids
source topological target scaling target

Figure 1. The example of topological and scaling domain
transfer.

The transfer algorithm is described in Figure 2. The first step is to
collect the topological knowledge of both domains retrieving
basis functions respectively. The second step is to compute the
corresponding basis functions of the graph Laplacian. The third
step is to compute the coefficients of the basis functions
approximating the real value function in the source domain. The
fourth step is to approximate the target value function in terms of
the target basis functions and the weights that are obtained from
the source domain. The last step is to acquire the target policy
through the approximated target value function.

The reason why the transfer algorithm works is that the basis
functions of both domains with the same order play the same
important role for the value functions at each domain respectively.
Therefore, we transfer the obtained weights from a source domain
to a target domain. If two domains are similar, the basis functions
tend to be similar. It does not imply similar numeric value but

similar structure as shown in Figure 3. On the one hand, a small
change of the domain cannot affect the global smooth structure so
the low-order basis functions for the target domain tend to be the
same as the corresponding basis functions for the source domain.
On the other hand, the high-order basis functions for the target
domain are affected by a small change of the domain so the target
policy can be obtained from the target low-order basis functions
that are similar to the source low-order basis functions and the
high-order basis functions that are modified by a small change.

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

4. EXPERIMENTS
First of all, we illustrate the basis functions of the graph Laplacian
with different size of domains with the same topology. The upper
two graphs and lower two graphs in Figure 4 and 5 show some
low-order and high-order basis functions from graph Laplacian
respectively. We note the two upper graphs in Figure 4 and 5 that
represent the smoothest k basis functions of different domains
respectively tend to be very similar while the lower graphs are not.

We design the experiments on scaling and topological domain
transfer and evaluate the performance of an agent in the domains
using different policies: random, transferred and optimal
respectively. The agent is an active agent with ε-greedy behavior
[1]. In other words, the agent has probability ε to act at random. A
random policy selects an action at random, a transferred policy is

obtained from the transfer method, and an optimal policy selects
an action based on the optimal value function obtained by the
value iteration method. The results are shown in Figure 6 and 8.
The x-axis and the y-axis represent the number of states and the
number of steps reaching the reward respectively. The diamond,
square, and triangle lines represent the random, transferred and
optimal policies respectively. Each point in the line represents the
average number of steps reaching the reward state over all
possible initial states.

1. Perform random walk of M trials, each with maximum
N steps on source domain and target domain and build
the undirected graphs GS, GT respectively.

2. Construct the normalized Laplacian on GS, GT and
solve the Laplacian to obtain the basis functions V ,

. Sort them by eigenvalue in ascending order.

B
S

B
TV

3. Approximate the source value function V using V
by the least-square error fit method to obtain the
weight w

*S
B

S

i corresponding to the source basis
functionV . B

Si

4. Transfer the weight wi from the source basis function
 to the corresponding target basis functionV . B

SiV B
Ti

∑=
i

B
TiiT VwV *

5. Convert the approximation target value function to the
target policy.

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

Figure 4. The basis functions of Figure 1(a).

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy
va

lu
e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

xy

va
lu

e

Figure 2. Pseudo-code of the transfer algorithm.

Figure 3. The similar structure of the basis functions of
Figure 1(a) and 1(b).

Figure 5. The basis functions of Figure 1(c).

4.1 Scaling Domain Transfer
These experiments investigate the effects of the scaling domain
transfer. We separate the scaling domain transfer into two cases:
up-scaling and down-scaling. The topology of each case is the
same as shown in Figure 1(a). In up-scaling case, we choose the
6x6 grids world as a source domain and 8x8, 10x10, 12x12,
14x14, 16x16, 18x18, and 20x20 grids as target domains. In
down-scaling case, we choose the 20x20 grids world as a source
domain and 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, and 18x18
grids as target domains. The results show that regardless of the
size in a target domain, the transferred policy still performs very
close to the optimal one as shown in Figure 6.

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

4.2 Topological Domain Transfer
These experiments investigate the effects of the topological
domain transfer. The topology in the source domain is shown in
Figure 1(a) and we design three different topological cases as
target domains. Figure 7(a) represents a case that splits the door
into two separating doors, Figure 7(b) represents a case that splits
the door into two separating doors farther, and Figure 7(c)
represents a case that increases the size of a door.

RR RR RR

The results demonstrate that if both domains are similar enough,
the transferred policy may perform very close to the optimal one
as shown in Figure 8(a). However, when the source and target
domains are not similar enough as in the case of Figure 8(c) in
which the larger size domains are more affected than the smaller
ones. Besides, when the number of states is small, the effect of a
small change in the domain is large, but when the number of
states is large enough, the effect of a small change in the different
size domains is similar as shown in Figure 8(b).

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

(a) (b)

0

1000

2000

3000

4000

5000

0 100 200 300 400

the number of states

th
e

nu
m

be
r

of
 s

te
ps

random

transferred

optimal

(c)

5. CONCLUSIONS
The theoretical analysis of the transfer method is based on the
spectral analysis on graph Laplacian. The low-order basis
functions of the graph Laplacian represent major features of a

value function while the high-order ones represent miner features.
If the low-order basis functions of the source and target domains
are similar, the transfer method performs well. In other words,
similar domains tend to keep similar distributions in low-order
basis functions so we can transfer the weights of the source
domain to the target domain and acquire a good approximate
policy for the target domain. In this paper, we have proposed a
domain transfer method based on the topology of the state space
to support the transfer for reinforcement learning. Our
experimental results show that if two domains are similar
topologically, the policy learned from transfer learning can be
very close to the optimal one. However, how to determine if a
topological similarity is enough to apply the transfer learning to
ensure its error bound be close to the optimality still needs more
theoretical analysis. This work only considers the state space
topology of the problem but not the rewards. We should revise the
domain transfer method by considering how to map a state in a
source domain to the corresponding one in a target domain that
considers the rewards in future work.

(a) up-scaling case (b) down-scaling case
Figure 6. The results of scaling domain transfer.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Council of
Taiwan under grant number NSC 96-2628-E-007-044-MY3.

7. REFERENCES
[1] Richard S. Sutton and Andrew G. Barto. Reinforcement

learning: an introduction. MIT Press, 1998. (a) (b) (c)
Figure 7. The topological transfer targets.

[2] Matthew E. Taylor and Peter Stone. Cross-domain transfer
for reinforcement learning. In Proceedings of the Twenty-
fourth International Conference on Machine Learning, 2007.

[3] Andreas von Hessling and Ashok K. Goel. Abstracting
reusable cases from reinforcement learning. In Proceedings
of the Sixth International Conference on Case-Based
Reasoning Workshop, 2005.

[4] Mattew E. Taylor, Shimon Whiteson, and Peter Stone.
Transfer via inter-task mappings in policy search
reinforcement learning. In Proceedings of the Sixth
International Conference on Autonomous Agents and
Multiagent Systems, 2007.

[5] Sridhar Mahadevan. Proto-value functions: developmental
reinforcement learning. In Proceedings of the Twenty-second
International Conference on Machine Learning, 2005.

[6] Ferguson Kimberly and Sridhar Mahadevan. Proto-transfer
learning in Markov decision processes using spectral
methods. In Proceedings of the Twenty-third International
Conference on Machine Learning Workshop on Structural
Knowledge Transfer for Machine Learning, 2006. Figure 8. The results of

topological domain transfer.
(a), (b) and (c) correspond to
Figure 7(a) (b) (c) respectively.

[7] Sridhar Mahadevan and Mauro Maggioni. Proto-value
functions: a Laplacian Framework for learning representation
and control in Markov decision processes. Technical Report,
2006.

[8] Fan R. K. Chung. Spectral graph theory. American
Mathematical Society, 1997.

[9] Sheldon Axler, Paul Bourdon, and Ramey Wade. Harmonic
function theory. Springer, 2001.

[10] Mikhail Belkin and Partha Niyogi. Semi-supervised learning
on Riemannian manifolds. Machine Learning, 2004.

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Markov Decision Process
	2.2 Spectral Graph Theory

	3. THE TRANSFER METHOD
	4. EXPERIMENTS
	4.1 Scaling Domain Transfer
	4.2 Topological Domain Transfer

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

