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ABSTRACT 
The aim of transfer learning is to accelerate learning in related 
domains. In reinforcement learning, many different features such 
as a value function and a policy can be transferred from a source 
domain to a related target domain. Many researches focused on 
transfer using hand-coded translation functions that are designed 
by the experts a priori. However, it is not only very costly but also 
problem dependent. We propose to apply the Graph Laplacian 
that is based on the spectral graph theory to decompose the value 
functions of both a source domain and a target domain into a sum 
of the basis functions respectively. The transfer learning can be 
carried out by transferring weights on the basis functions of a 
source domain to a target domain. We investigate two types of 
domain transfer, scaling and topological. The results 
demonstrated that the transferred policy is a better prior policy to 
reduce the learning time. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition, 
parameter learning. 

General Terms 
Experimentation, Theory. 

Keywords 
reinforcement learning, transfer learning, graph Laplacian 

1. INTRODUCTION 
One of the disadvantages in reinforcement learning (RL) [1] is 
that two different domains with different initial states and goal 
states must be learned separately to acquire an optimal policy for 
each domain. It would waste time to simply learn twice in two 
different domains even if they might share some similar subtasks. 
Transfer learning is an approach to improve the performance of 
cross domains by avoiding redundant learning. 

In a reinforcement learning problem, the value function provides 
a guideline for action selection in a given state that is known as a 
policy. Many transfer methods that transfer different features 

from a source domain to a target domain have been proposed [2, 3, 
4]. One work is a rule transfer method that acquires some rules 
that approximate the policy in a source domain and translates into 
ones that can be used as a policy for a target domain [2]. Thus an 
agent may apply the translated policy that is acquired by hand-
coded translation functions and revise a partial policy in a target 
domain. However, designing general translation functions 
becomes a problem. Another work based on case-based reasoning 
uses a similar idea but it acquires rules using a decision-tree 
method [3]. The other work is to transfer the policy from a source 
domain to a target domain directly [4] but it also requires hand-
coded translation functions. Proto-value functions derived from 
spectral graph theory, harmonic analysis, and Riemannian 
manifold can be used to represent a set of the basis functions to 
approximate a value function [5, 6, 7]. A novel transfer method 
has been proposed to reuse a set of the basis functions from a 
source domain and just to learn the weights of the set of the basis 
functions to compose a value function for a target domain. This 
method can transfer domain features without hand-coded 
translation functions but it needs some exploring trials for a target 
domain to acquire the combination weights. 

The aim of the transfer learning is to use the knowledge learned 
from a source domain to accelerate learning in a related target 
domain. In this paper, we propose a transfer method to obtain a 
better prior policy from a source domain to reduce the learning 
time in a similar target domain without hand-coded translation 
functions by spectral graph theory. 

2. BACKGROUND 
Most reinforcement learning researches are based on Markov 
Decision Processes (MDP) and a value function to guide an 
agent’s actions in solving a domain. However, a value function 
can be too rigid to apply to a domain such that to transfer it 
directly to another domain is hard. Finding a set of suitable basis 
functions to express the value function helps the transfer. In this 
paper, the development is based on a discrete MDP and the 
spectral graph theory. 

2.1 Markov Decision Process 
A discrete Markov Decision Process M which is defined by a 4-
tuple (S, A, , )a

ssP '
a
ssR '  where S is a finite set of states, A is a finite 
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set of actions,  and  represent the probability and reward 
of transiting to state s’ when taking action a on state s 
respectively [1]. A function which determines the action that an 
agent should take at any state that the agent could reach is called a 
policy π. A policy is a mapping from a state to a unique action. 
The value function V

a
ssP '

a
ssR '

π represents the value by using policy 
function π and the optimal policy π* is defined as a unique 
optimal value function V* that can maximize the expected reward 
starting at a given state s with discount factor γ. The optimal value 
function V*(s) is defined as follows. 
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The value function is represented in tabular form with one output 
for each input tuple. However, the state space in the real world is 
often so huge that to memorize the value table is impossible. We 
can approximate the value function in terms of a linear 
combination of a set of the basis functions as:  

B
nn

B VVV ααπ ++= ...11  

where each  is a basis function. Approximating by the basis 
functions saves a lot of memory. However, different sets of the 
basis functions may affect the function approximation. Therefore, 
for an agent to have good performance, selecting good basis 
functions to make good value approximation plays an important 
role. 

B
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2.2 Spectral Graph Theory 
A Fourier analysis is to decompose a function in terms of a sum 
of trigonometric functions with different frequencies that can be 
combined together to represent the original function. Each 
frequency of trigonometric functions is inversely proportional to 
its importance in representing characteristics of the function. 
Therefore, if two functions are similar, their trigonometric 
functions tend to be similar at low frequencies and differ at high 
frequencies. 

A graph Laplacian can be defined as the combinatorial Laplacian 
or the normalized Laplacian [8]. The combinatorial Laplacian L 
of the undirected unweighted graph G is defined as L = D - A 
where A is the adjacency matrix and D is a diagonal matrix whose 
entries are the row sums of A. In problem solving, the states are 
represented as the vertices and the edges represent the connection 
(undirected) or transitions (directed) between the states so that 
one state can reach another. Let u and v represent two states in a 
graph and dv represents the degree of v, a graph Laplacian L(u, v) 
is defined as follows: 

⎪
⎩

⎪
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Let f denote a function mapping each vertex u of the graph into a 
real number. The combinatorial Laplacian L acts on a function f 
as 
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where u and v are adjacent vertices. Functions that solve Lf = 0 
are called harmonic functions [9]. It turns out that to find the 
harmonic functions is equivalent to finding the eigenvectors (or 
eigenfunctions) of Lf = λf, where f is the eigenfunction and λ is the 
associated eigenvalue. A smaller eigenvalue implies a smoother 
eigenfunction. Furthermore, we can extend the idea in general 
with normalized graph Laplacian[8]. In our cases, the normalized 
graph Laplacian has the better consequences than the 
combinatorial Laplacian. 

The spectral analysis of the graph Laplacian operator provides an 
orthonormal set of the basis functions that can approximate any 
square-integrable functions on a graph [8]. These basis functions 
which are called as proto-value functions in [5, 6, 7] construct a 
global smooth approximation of a function on the graph. In other 
words, the function can be decomposed into a sum of the basis 
functions [10]. Besides, the notion of the spectral analysis on 
graph Laplacian is similar to the Fourier analysis. The basis 
functions of a graph Laplacian corresponding to the smaller 
eigenvalues represent more valuable features and are thus more 
important. It implies that if two graphs are similar, their features 
tend to be similar at low-order basis functions and different at 
high-order basis functions. 

3. THE TRANSFER METHOD 
In [6], the authors distinguished three transfer types: task transfer, 
topological domain transfer, and scaling domain transfer as shown 
in Figure 1. The domain transfer problem means only the 
topology of the state space changes and rewards do not change. In 
this paper, we focus on both topological and scaling domain 
transfer. 

RR   RR   RR  

 

(a) 8 x 8 grids        (b) 8 x 8 grids         (c) 10 x 10 grids 
source                    topological target    scaling target 

Figure 1. The example of topological and scaling domain 
transfer. 

The transfer algorithm is described in Figure 2. The first step is to 
collect the topological knowledge of both domains retrieving 
basis functions respectively. The second step is to compute the 
corresponding basis functions of the graph Laplacian. The third 
step is to compute the coefficients of the basis functions 
approximating the real value function in the source domain. The 
fourth step is to approximate the target value function in terms of 
the target basis functions and the weights that are obtained from 
the source domain. The last step is to acquire the target policy 
through the approximated target value function. 

The reason why the transfer algorithm works is that the basis 
functions of both domains with the same order play the same 
important role for the value functions at each domain respectively. 
Therefore, we transfer the obtained weights from a source domain 
to a target domain. If two domains are similar, the basis functions 
tend to be similar. It does not imply similar numeric value but 



similar structure as shown in Figure 3. On the one hand, a small 
change of the domain cannot affect the global smooth structure so 
the low-order basis functions for the target domain tend to be the 
same as the corresponding basis functions for the source domain. 
On the other hand, the high-order basis functions for the target 
domain are affected by a small change of the domain so the target 
policy can be obtained from the target low-order basis functions 
that are similar to the source low-order basis functions and the 
high-order basis functions that are modified by a small change. 
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4. EXPERIMENTS 
First of all, we illustrate the basis functions of the graph Laplacian 
with different size of domains with the same topology. The upper 
two graphs and lower two graphs in Figure 4 and 5 show some 
low-order and high-order basis functions from graph Laplacian 
respectively. We note the two upper graphs in Figure 4 and 5 that 
represent the smoothest k basis functions of different domains 
respectively tend to be very similar while the lower graphs are not. 

We design the experiments on scaling and topological domain 
transfer and evaluate the performance of an agent in the domains 
using different policies: random, transferred and optimal 
respectively. The agent is an active agent with ε-greedy behavior 
[1]. In other words, the agent has probability ε to act at random. A 
random policy selects an action at random, a transferred policy is 

obtained from the transfer method, and an optimal policy selects 
an action based on the optimal value function obtained by the 
value iteration method. The results are shown in Figure 6 and 8. 
The x-axis and the y-axis represent the number of states and the 
number of steps reaching the reward respectively. The diamond, 
square, and triangle lines represent the random, transferred and 
optimal policies respectively. Each point in the line represents the 
average number of steps reaching the reward state over all 
possible initial states. 

1. Perform random walk of M trials, each with maximum 
N steps on source domain and target domain and build 
the undirected graphs GS, GT respectively. 

2. Construct the normalized Laplacian on GS, GT and 
solve the Laplacian to obtain the basis functions V , 

. Sort them by eigenvalue in ascending order. 

B
S

B
TV

3. Approximate the source value function V  using V  
by the least-square error fit method to obtain the 
weight w

*S
B

S

i corresponding to the source basis 
functionV . B

Si

4. Transfer the weight wi from the source basis function 
 to the corresponding target basis functionV . B

SiV B
Ti

∑=
i

B
TiiT VwV *  

5. Convert the approximation target value function to the 
target policy. 
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Figure 4. The basis functions of Figure 1(a).  
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Figure 2. Pseudo-code of the transfer algorithm. 

Figure 3. The similar structure of the basis functions of 
Figure 1(a) and 1(b). 

Figure 5. The basis functions of Figure 1(c).  

4.1 Scaling Domain Transfer 
These experiments investigate the effects of the scaling domain 
transfer. We separate the scaling domain transfer into two cases: 
up-scaling and down-scaling. The topology of each case is the 
same as shown in Figure 1(a). In up-scaling case, we choose the 
6x6 grids world as a source domain and 8x8, 10x10, 12x12, 
14x14, 16x16, 18x18, and 20x20 grids as target domains. In 
down-scaling case, we choose the 20x20 grids world as a source 
domain and 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, and 18x18 
grids as target domains. The results show that regardless of the 
size in a target domain, the transferred policy still performs very 
close to the optimal one as shown in Figure 6. 
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4.2 Topological Domain Transfer 
These experiments investigate the effects of the topological 
domain transfer. The topology in the source domain is shown in 
Figure 1(a) and we design three different topological cases as 
target domains. Figure 7(a) represents a case that splits the door 
into two separating doors, Figure 7(b) represents a case that splits 
the door into two separating doors farther, and Figure 7(c) 
represents a case that increases the size of a door. 

RR   RR   RR  

 
The results demonstrate that if both domains are similar enough, 
the transferred policy may perform very close to the optimal one 
as shown in Figure 8(a). However, when the source and target 
domains are not similar enough as in the case of Figure 8(c) in 
which the larger size domains are more affected than the smaller 
ones. Besides, when the number of states is small, the effect of a 
small change in the domain is large, but when the number of 
states is large enough, the effect of a small change in the different 
size domains is similar as shown in Figure 8(b). 
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5. CONCLUSIONS 
The theoretical analysis of the transfer method is based on the 
spectral analysis on graph Laplacian. The low-order basis 
functions of the graph Laplacian represent major features of a 

value function while the high-order ones represent miner features. 
If the low-order basis functions of the source and target domains 
are similar, the transfer method performs well. In other words, 
similar domains tend to keep similar distributions in low-order 
basis functions so we can transfer the weights of the source 
domain to the target domain and acquire a good approximate 
policy for the target domain. In this paper, we have proposed a 
domain transfer method based on the topology of the state space 
to support the transfer for reinforcement learning. Our 
experimental results show that if two domains are similar 
topologically, the policy learned from transfer learning can be 
very close to the optimal one. However, how to determine if a 
topological similarity is enough to apply the transfer learning to 
ensure its error bound be close to the optimality still needs more 
theoretical analysis. This work only considers the state space 
topology of the problem but not the rewards. We should revise the 
domain transfer method by considering how to map a state in a 
source domain to the corresponding one in a target domain that 
considers the rewards in future work. 

(a) up-scaling case                         (b) down-scaling case 
Figure 6. The results of scaling domain transfer. 
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