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ABSTRACT
Auction methods have been successfully used for coordinat-
ing teams of robots in the multi-robot routing problem, a
representative domain for multi-agent coordination. Solu-
tions to this problem typically use bids computed using the
shortest distance between various locations on a map. But,
the cost of this shortest-distance computation has not been
considered in previous research. This paper presents a new
auction-based algorithm, FastBid, that works to reduce the
computational costs associated with bidding in the multi-
robot routing problem. We also analyze how a small mod-
ification in the bidding algorithm can reduce the computa-
tional load of the bidding process. Experiments demonstrate
that FastBid not only scales much better than previous ap-
proaches, but does so with little or no loss in solution quality.
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I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms
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1. INTRODUCTION
Consider a set of robots assigned to complete a set of tasks.

Whatever the exact domain, the completion of tasks requires
communication and collaboration. An abstract version of
these problems has been studied by AI and robotics re-
searchers as the multi-robot routing problem, where a team
of robots must visit a set of targets while also achieving
other objectives such as minimizing energy consumption or
the total time to complete the plan.

Heuristic approaches are used for “real-time” solutions as
exact approaches to this problem are computationally in-
feasible. The multi-robot routing problem has usually been
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analyzed from the perspective of maximizing the quality of
the plans. We argue, however, that plan quality is not the
only metric that should be considered when comparing al-
gorithms. Specifically, the memory and computational costs
for existing algorithms quickly become infeasible as map
sizes and the number of robots grow. This is important
if we are minimizing energy consumption and can also have
a significant effect on the time required to complete a plan.

In this paper we present a variety of techniques which
allow us to scale the size of multi-robot routing problems
which can be solved. The contributions of the paper are:

• A novel combination of a bidding algorithm based on
minimum spanning trees [3, 4] with clique abstraction
[8] which effectively computes shortest distances on de-
mand during the bidding process.

• Experiments on the multi-robot routing problem with
large maps and large numbers of robots and targets.
Results demonstrate that computing the shortest dis-
tances without abstraction leads to serious performance
degradation on large maps. Our implementation only
reduces the solution quality a few percent in order to
achieve a speedup of two orders of magnitude.

2. MULTI-ROBOT ROUTING PROBLEM
The multi-robot routing problem this paper deals with

is defined as follows: n homogeneous robots and m targets
are placed on a two-dimensional map. Each target must be
visited by one robot. All robots move at the same speed
and can move to cardinally and diagonally adjacent points
unless blocked by obstacles. The cost of moving to cardinal
and diagonal neighbors are 1 and

√
2 respectively.

Let the robots be R = {r1, r2, · · · , rn} and the targets
T = {t1, t2, · · · tm}. The cost of moving between locations
i and j is c(i, j) (i, j ∈ R ∪ T ). In our model c(i, j) is
not pre-computed. The path cost of a given robot, ri, is
the sum of costs from ri’s initial location to all sequential
targets allocated to ri. The objective of multi-robot routing
is to find an allocation of targets to robots for some team
objectives. This paper deals with the following two typical
team objectives:

• MiniSum: Minimize the path cost sum over all robots.

• MiniMax: Minimize the maximum path cost of any
single robot.
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2.1 Sequential Single-Item Auctions
The MiniSum and MiniMax objectives are NP-hard [3].

Approximation methods are important in such domains, par-
ticularly when computation cannot take place offline.

Sequential Single-Item (SSI) auctions have shown promise
for approximating optimal solutions to the multi-robot rout-
ing problem. SSI auctions consist of a series of auctions in
which a single item is auctioned off; there are as many rounds
as there are items to be auctioned off. In the multi-robot
routing problem all robots are eligible to bid on any unal-
located targets in each round. The robot that makes the
lowest bid on a target wins that target; ties are broken arbi-
trarily. Only one target is allocated in each round, so each
robot bids just on the single target for which the lowest bid
can be placed. This process continues until all targets are
assigned to the robots. SSI auctions allow for efficient com-
munication and parallelism among robots, as bid costs can
be computed in parallel by the robots.

The Tree rules [4] are a popular SSI auction method
which guarantees approximation factors of no worse than
2 for MiniSum and 2× n with n robots for MiniMax if the
triangle inequality holds. Under the Tree rules each robot
ri creates a minimum spanning tree (MST) originating from
ri and passing through each allocated target. There is one
node for each allocated target, and one for robot ri. When
building the MST, node locations are known, but edge costs
are not; c(i, j) must be computed from the actual travel costs
in the map. The MST is then converted to a path. The
MST approximates the cost of visiting all allocated targets
and can be obtained in polynomial time by Prim’s algorithm
[6], a greedy algorithm which iteratively adds the node with
the smallest edge cost from the current spanning tree.

The main focus of existing research (see [2] for a detailed
literature review) has been in improving auction strategies;
the cost-effective computation of c(v, t) has been ignored.
This is particularly because experiments have used small
maps, such as 51×51 [9]. Computing c(v, t) requires finding
the shortest path between v and t, for which the computa-
tional effort increases with large maps. This computational
overhead can be large, especially on large maps. In a näıve
approach, the shortest path from all allocated targets to all
unallocated targets must be computed before each bid. In
the worst case, this could mean that c(v, t) of all possible
O(T 2) edges between targets will have to be computed.

2.2 Abstraction and Pathfinding
The exact cost of some edge c(v, t) can be computed ex-

actly by running a pathfinding algorithm like A* in the map.
Because the auction methods described in the last section
do not guarantee optimality we can use a heuristic estimate
of an edge cost in the map as c(v, t). There are a number
of heuristics which can be used in the map. The most ob-
vious heuristic is just to use the straight-line estimate (eg.
Euclidean or octile distance). These heuristics are fast, but
can provide poor estimates of actual cost (see Section 4).

Instead, we leverage an idea which has received much at-
tention in the search literature, but has not been widely ap-
plied in other domains. Our approach is to build an abstract
version of the map and to use costs in the abstract graph as
a heuristic estimate for c(v, t). We could use our heuristic
estimate from the abstract graph to find exact costs in the
original map more quickly, but the heuristic estimate pro-
vides significant speed gains with little or no loss of solution

quality (see Section 4). The heuristic is computed online
from the abstract graph using standard search algorithms.

Explicit abstractions are built by merging groups of states
in the original map into abstract states in the abstract graph.
In this paper we use the clique-abstraction from [8]. Clique
abstraction is an iterative process which can be recursively
applied to provide abstract graphs of many different sizes.

At the lowest level of the map, assuming that a robot
can only move to direct and diagonal neighbors on a two-
dimensional map, the clique abstraction groups states which
form a clique. In such maps, the largest possible cliques
contain four nodes. Maps are abstracted by successively
removing cliques (size 2-4), which become nodes in the ab-
stract graph. Any nodes not abstracted by this process are
abstracted as single nodes. This abstraction process contin-
ues from lower level to higher levels, creating a hierarchy of
abstract graphs. One important feature is that reachability
between locations is preserved through this approach. When
no path between two locations is found in an abstract graph,
there is also no path between them in the original map [1].

3. THE FastBid ALGORITHM
FastBid works to minimize the cost of the shortest dis-

tance computation, based on three ideas: bounding path
computations based on known target information, using ab-
straction to quickly estimate costs, and modifying slightly
the bidding scheme to further bound path computations.
In order to inherit the merits of auction-based approaches,
FastBid is based on the Tree rules [3].

3.1 Bounding edge cost computations
Each robot maintains a MST of targets which have been

successfully bid on. When a robot is considering which tar-
get to bid on next, the robot must find the closest unallo-
cated target to its MST. We present two approaches which
can do this effectively.

3.1.1 Dijkstra’s Algorithm
For each node in the MST, we can run Dijkstra’s algorithm

from that node to find the cost to all unallocated targets.
But, instead of running Dijkstra’s algorithm to completion,
we run it incrementally. At each node we keep track of the
cost of the last path expanded. If a path to a target has not
yet been found, we are guaranteed that this will be a lower
bound on the cost to any target from that node.

Thus, we can keep all nodes from the MST in a priority
queue, sorted by the cost of the last path expanded by Di-
jkstra’s algorithm. At each step we remove the best node
from the priority queue, and continue the Dijkstra search
from that node until the cost exceeds the cost of the next
best node at the top of the priority queue. At this point the
current node is put back onto the priority queue, and the
process is repeated until a path to an unallocated target is
found. The first target found will be the next bid. This pro-
cess requires one invocation of Dijkstra’s algorithm for the
robot’s location, and one for each target which has already
been allocated to that robot.

3.1.2 The A∗ Algorithm
If multiple targets are nearby, Dijkstra’s algorithm is effec-

tive, as a single search tree is used. But, Dijkstra’s algorithm
does not take advantage of a heuristic function.



An alternate approach is to start one A∗ search from each
node in the MST to each unallocated target. This requires
many individual searches, but use of a heuristic function will
often prevent the searches from expanding any nodes. As
in the Dijkstra approach, we focus our efforts on the most
promising path between a MST node and an unallocated
target. Instead of putting each node from the MST on the
priority queue, we put a pair onto the priority queue for each
possible node and target. We then sort the pairs by the cost
of the best node on A∗’s Open list. As with Dijkstra’s, the
best (node, target) pair is taken off the priority queue at
each step, and nodes are expanded in that A* search until
the cost exceeds the next best pair in the priority queue or
until the target is found. If there are Tu unallocated targets
and n nodes in the MST, this will require O(n · Tu) A∗

searches. The octile distance heuristic is used during search.
FastBid computes the path costs locally and does not

share any shortest distances computations among robots,
which would incur an additional communication overhead.

3.2 Pathfinding on an Abstract Map
The previous analysis assumed that the A∗ and Dijkstra

searches were taking place on the original map. However, we
can replace the map used for search with an abstract graph.
If we need an admissible heuristic, we must set the cost of
all edges in the abstract graph to be the minimum edges
cost in the original map. Because we are not computing
optimal solutions to begin with, we instead get a heuristic
estimate from the abstract graph which is not guaranteed to
be admissible. The cost of an abstract edge is defined as the
straight-line cost between the abstract node locations. An
abstract node is located at the average of the location of all
nodes it abstracts. Octile distance will then be an admissible
heuristic for search within the abstract graph, but the costs
in the abstract graph are not guaranteed to be lower bounds
on the true costs in the original map.

Let cl(v, w) be the distance of the shortest path between
v and w on the map with abstraction level l. Although
clique abstraction makes cl(v, w) less accurate than comput-
ing c(v, w) in the planning graph, it is not only a reasonable
approximation but also preserves reachability. Hence, our
approach guarantees that robot ri can reach target t, if ri

wins t and a map is completely known. For an incomplete
map, we believe that techniques described in [1] for repairing
abstraction could be incorporated into our algorithm. How-
ever, investigating a priori unknown maps remains future
work.

3.3 Modification to the Bidding Scheme
The server that determines the winner of an auction re-

ceives all the bids of robots. If the server broadcasts not
only the winner of the previous auction, but also the sec-
ond best bid in the previous round, each robot can use this
value as a threshold for path computation, further reducing
search effort. This is only valid if the second-best bid is for a
different target than the one that was one in the auction. In
FastBid, each robot can bid either the exact bidding cost
or a lower bound (i.e., give-up obtaining a target) in each
round. Only the second smallest exact biding cost can be
used to bound the path computations.

3.4 Other Implementation Details
When converting an MST to a path, our current imple-
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Figure 1: Average planning time on various sized
maps (5 robots and 50 targets, MiniSum)

mentation employs shortcutting as used in TSP [5]. How-
ever, since there is a trade-off between solution quality and
execution time, the edges selected in the MST for depth-
first search are limited to at most two edges. These edges
are greedily chosen, based on cl(v, w) if available or the octile
distance otherwise.

4. EXPERIMENTAL RESULTS
We used a freely available implementation of the clique

abstraction, along with a corresponding simulation environ-
ment for our experiments [7]. Although FastBid allows for a
decentralized implementation, it was simulated sequentially
on a single machine. But, none of the shortest distances
computations were shared among robots. All experiments
were performed on a 1.79 GHz AMD Opteron 265 with 2
GB memory. 117 maps were used, and varied in size from
100× 100 to 1400× 1400. 5 robots and 50 targets were ran-
domly placed with the condition that each target must be
reachable by at least one robot, resulting in 117 problems
per map size. We report the average value for each category
over all experiments. Each robot has complete knowledge of
the map and the locations of the targets, but has no infor-
mation about the locations of the other robots or the exact
costs to travel between targets.

4.1 A* versus Dijkstra’s Algorithm
Figures 1 summarizes performance comparison between

A∗ and Dijkstra’s algorithm without abstraction. As the
map size increases, the planning time considering the short-
est distance computation dramatically increases for both
MiniMax and MiniSum. Due to memory constraints, maps
800 × 800 or larger were not solvable without applying ab-
straction first. For example, finding a task allocation on
600×600 maps requires more than 40 times longer planning
time than on 100 × 100 maps. This indicates the impor-
tance of efficiently computing c(v, w) on large maps. The
results for both MiniMax and MiniSum are similar so we
only show MiniSum results here. A∗ is twice as fast as Di-
jkstra’s algorithm in each category. Our slight modification
to the bidding rule further improves the planning time.

A∗ usually outperforms Dijkstra’s algorithm by a large
margin. For example, A∗ is more than 10 times faster in
solving 48 problems for MiniMax and 42 for MiniSum.
However, there are a few problems that Dijkstra’s algorithm
solves much more quickly than A∗. For these problems, due
to complicated paths between targets, the duplicate search
effort of A∗ offsets the benefit of using a heuristic function.
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Figure 2: Performance results on various sized maps
(5 robots and 50 targets, A∗, new bidding)

Speeding up A∗ in this scenario remains as future work.

4.2 Performance with Clique Abstraction
Figure 2 summarizes performance on various abstraction

levels varied from level 0 (i.e. no abstraction) to level 4
(four iterations of abstraction applied to the low-level map).
Solution quality was measured by computing the shortest
path for each robot to visit all assigned targets after the
bidding phase. The versions with levels 0 and 1 could not
find allocations within available memory in some problems
on large maps. These cases are excluded from the graphs.
Additionally, a version that only uses the the octile distance
(heuristic) between v and w as c(v, w) was also compared.

The results show that there is a direct trade-off between
planning time and solution quality. Using only the octile
distance as a heuristic for c(v, w) is always the fastest ap-
proach. But, octile tends to achieve a lower solution quality
especially on larger maps for MiniMax. For example, octile
returns a 34% larger path cost on the 1400×1400 maps than
the version with abstraction level 2.

Octile achieves better solution quality for MiniSum than
for MiniMax. Auction-based algorithms usually return much
closer solutions to optimal than the theoretical worst case
[9]. Moreover, because of the worse approximation factor
in MiniMax than in MiniSum (2 × 5 = 10 for MiniMax
versus 2 for MiniSum), there is usually much more room for
improvement to MiniMax.

Using abstraction improves the planning time, especially
on large maps. For example, using abstraction level 4 on
the 800× 800 maps achieves speedups of two orders of mag-
nitude for both MiniMax and MiniSum. The degradation
in solution quality is only a few percent if a proper abstrac-
tion level is used. Moreover, when the map is 800 × 800 or
larger, the shortest-path computations sometimes exceeded
the available (2GB) memory, even with one level of abstrac-
tion. On the other hand, if the map used to compute bids is

too abstract, the solution quality becomes worse even than
octile, at least on small maps. Informally, this seems to oc-
cur when the number of nodes is the abstract map is less
than the square root of the number of nodes in the actual
map, but more work is needed to understand this.

5. CONCLUSIONS AND FUTURE WORK
This paper has synthesized research on abstraction and

the Tree rules for task allocation. Although there is a trade-
off between the bidding time and solution quality, our results
show that using new bounds for bidding along with map ab-
straction can dramatically improve the computational costs
with only a small degradation in solution quality.

There are many topics for future work. First, we plan to
extend the presented algorithm to scenarios where robots
do not have a priori knowledge of the map, and environ-
ments where the maps can change dynamically. We are also
interested in whether limited communication can further re-
duce planning costs. We attempted to use a different search
mechanism to speed search further, and plan to continue to
look into methods for reducing computational cost.
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