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ABSTRACT
Computational grids offer users a simple access to tremen-
dous computer resources for solving large scale computing
problems. Traditional performance analysis of scheduling
algorithms considers overall system performance while fair-
ness analysis focuses on the individual performance each user
receives. Until recently, only few grids and cluster systems
provided preemptive migration (e.g. [2]), which is the ability
of dynamically moving computational tasks across machines
during runtime. The emergent technology of virtualization
(e.g. [4]) provides off-the-shelf support for migration, thus
making the use of this feature more accessible (even across
different OS’s).

In this paper, we study the close relation between migra-
tion and fairness. We present fairness and quality of service
properties for economic online scheduling algorithms. Under
mild assumptions we show that it is impossible to achieve
these properties without the use of migration. On the other
hand, if zero cost migration is used, then these properties
can be satisfied.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Schedul-
ing ; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics, Design, Theory

Keywords
Mechanism Design, Online Scheduling, Fairness

1. INTRODUCTION
Computational grids offer users simple access to tremen-

dous computer resources for solving large scale computing
problems. Grids are often composed of shared resources
owned by different owners. Hence grids are heterogeneous
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in nature. This paper explores the close connection between
job migration and fairness.

Until recently, only few grids and cluster systems pro-
vided preemptive migration (e.g. [2]), which is the ability of
dynamically moving computational tasks across machines
during runtime. The emerging technology of virtualization
becomes an important building block in grids (e.g. [4]). Vir-
tualization provides off-the-shelf support for virtual machine
migration, thus making the use of migration more accessible
(even across different OS’s). It has been shown that mi-
gration with zero cost provides better theoretical worst case
bounds [8]1. Even if the cost of migration is not negligible,
it is highly beneficial in practice [6].

Traditional performance analysis of scheduling algorithms
considers overall system performance. Theoretical competi-
tive analysis and simulation-based analysis of scheduling al-
gorithms focus on overall criteria such as makespan, sum of
(weighted) completion time and average slowdown (e.g. [8,
6]). Even if such an overall criterion is optimized, the in-
dividual goal of fairness is not guaranteed. Fairness is an
important goal in shared systems, such as grids, involving
different owners.

Fair division has been a central problem in economic the-
ory since the 1950’s and recently gained considerable amount
of focus from the computer science community ( [10, 1, 5,
11] and references therein). In general, an allocation is said
to be envy-free if every player likes his own share at least as
much as the share of any other player.

In this paper, we study fairness criteria for the allocation
of indivisible goods over time. We first present three crite-
ria: envy-freeness, responsiveness and independence for eco-
nomic online scheduling algorithms (Section 3). Under mild
assumptions, we show that it is impossible to achieve these
properties without the use of migration (Section 4). On the
other hand, if zero cost migration is allowed, we show an
algorithm satisfying all of these properties (Section 5).

2. THE SETTING
We consider an organizational grid model [2]. In this

model an organization possesses a computational grid (ho-
mogeneous or heterogeneous). The organization is composed
of several departments where each department i has a pre-
defined priority v0

i . Departments with higher v0
i are ranked

higher in the organization. One way to think about v0
i is

1Observe that in [8] migration between machines with the
same speed is called preemption.
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that it reflects the amount of money department i invests
in the shared grid. Essentially, our fairness and quality of
service criteria ensure that the more the department invests
the better service it gets.

The type θj of job j is θj = (rj , tj , v
0
j ) ∈ R+ ×R+ ×R+

where rj is the release time of the job, tj represents the
processing time of job j on a standard machine (with speed
1) and v0

j is the priority of the department j belongs to.
Unless stated explicitly, we assume that the user does not
have to report tj to the scheduling algorithm. In this setting,
tj is not necessarily known to the user before the completion
of the job.

Let θ−j be the types of all other jobs except j. Let d
Alg
j be

the time job j finishes to run given θj , θ−j and the scheduling
algorithm Alg. For simplicity, when it is clear from the
context, we use the notation dj . We assume that users are
more happier if their jobs finish earlier. Note that this is the
only assumption we make on users’ preferences.

The action of suspending a job on a machine is generally
called preemption, while the moving of jobs across machines
is called migration. In our organizational grid model the
operating system may or may not support migration of jobs.
We assume that the machines may only differ by their speed,
and thus we consider a uniform related machines model [8].
Recall that the homogeneous machine setting is a special
case of the heterogeneous machine setting. The stronger
heterogeneous machine setting is a natural theoretical model
to study realistic grid environments. We say that a setting
is strictly heterogeneous if there are no two machines with
the same speed.

We define a partial order between jobs in the following
way:

Definition 1. Let j, k be any two jobs. We say that j �
k if rj ≤ rk, v0

j ≥ v0
k and tj ≤ tk. We say that j � k if

j � k and at least one of the following inequalities is strict:
rj ≤ rk or vj ≥ vk.

Note that the � order does not require strictness with re-
spect to the running times. As will be discussed later, this
is due to the fact that in our possibility result, we do not
assume that players declare the running times of their jobs
to the algorithm. In what follows, we will not restrict the
inputs of our scheduling algorithms. Rather, we will define
the required behavior of the scheduling algorithms on a re-
stricted family of instances.

3. DIVISION CRITERIA

3.1 Fairness Criterion
Our first criterion is a fairness criterion for the allocation

of indivisible goods over time. We define the Envy-Free (EF)
property of a scheduling algorithm to be:

Definition 2. An online scheduling algorithm is said to
provide the EF property if j � k implies that dj(rj , vj , tj) ≤
dk(rk, vk, tk), for every two jobs j, k.

The EF property means that if job j has an earlier release
time, higher priority and shorter processing time than job
k, it will finish earlier than job k. Note that our property is
weaker than the general notion of envy-freeness in the sense
that two portion of the allocation are compared only if the
associated jobs are comparable.

3.2 Responsiveness Criterion
We next define a responsiveness criterion indicating that

the scheduler is sensitive to the requirements of the con-
sumers. The Weak-Performance-Monotonicity (WPM) prop-
erty of a scheduling algorithm is as follows:

Definition 3. An online scheduling algorithm is said to
provide the WPM property if dj(θj , θ−j) ≤ dj′(θj′ , θ−j)
whenever j � j′.

The WPM property means that, fixing the types of all
other jobs θ−j, job j will not complete later if it is released
earlier or reports a higher priority (or consumes less CPU
time). Thus, this property essentially requires a reasonable
behavior from the scheduler. Moreover, this property incen-
tivizes the user to not manipulate the system by reporting a
lower priority, a later arrival and / or a longer running time.

3.3 Independence Criterion
We now consider an independence criterion which ensures

that the quality of service a job receives depends only on
jobs with higher priority. We define the Independence of
Low Value jobs (ILV) property of an economic scheduling
algorithm to be:

Definition 4. Let J be an instance of jobs and let θj ∈
J . Define hθj (J) = {θk ∈ J |v0

k > v0
j } ∪ {θk ∈ J |v0

k =

v0
j and rk ≤ rj}.
Let θ = (r, v0, t). Let J and J ′ be any arbitrary instances

of jobs, where:

1. ∃j s.t. θ = θj ∈ J and ∃k s.t. θ = θk ∈ J ′.

2. rj′ 6= rk′ for every j′ and k′ ∈ J .

3. rj′ 6= rk′ for every j′ and k′ ∈ J ′.

An online scheduling algorithm is said to provide the ILV
property if hθ(J) = hθ(J

′) implies that dθ(J) = dθ(J
′).

The ILV property means that the completion time of job
θ is independent of jobs with lower priority than θ (when
considering instances with no simultaneous arrivals of jobs).

4. IMPOSSIBILITIES
In what follows we consider the family of busy scheduling

algorithms [8]. We will show that without migration this
family of scheduling algorithms can not provide any of our
properties.

Definition 5. A busy-scheduling algorithm is an online
algorithm satisfying the following conditions:

1. If there is an idle machine then there is no waiting job
(that has not started yet).

2. A job is returned to the user as soon as it finishes.

3. Jobs can not be killed by the system before completion
and there are no restarts.

The first condition means that the scheduler immediately
gives “work” to any machine that becomes idle. By work,
we do not mean preempted jobs that has already started
on another machine. The second condition means that the



job is not kept before returned to the user. The second and
the third conditions were implicitly assumed in [8]. Many
classical scheduling algorithms (e.g. FCFS, Round Robin)
belong to the natural family of busy schedulers. Moreover
real grid and cluster systems such as MOSIX [2] and those
described in [3] are using busy scheduling policies. Busy
schedulers with “reservation” prices were considered in [7,
9]. A job can only use an idle machine if its willingness to
pay can cover the machine’s price.

Proposition 1. In a strictly heterogeneous system with-
out migration, any busy scheduling algorithm cannot provide
the EF property.

Proof. We will show this for every algorithm A, any
large enough X > 0 and any number of machines n ≥ 2.
WLOG we are given 2 machines, where machine n1 is having
speed of 1, and a faster machine n2 having speed of 2 (clearly,
when using a busy scheduler we can make all other n − 2
machines occupied indefinitely). In what follows we assume
that v0

i = 1, i = 1 . . . 5. Assume that at time t = 0, job j1
is submitted. We can divide the family of busy schedulers
into two groups: the first group of algorithms assigns j1 to
n1, while the second group assigns it to n2. According to
the group algorithm A belongs to, we will build an instance
of jobs that violates the EF property.

If algorithm A belongs to the first group, then we will use
the following instance of jobs: j1 with r1 = 0, t1 = X, j2
with r2 = 1, t2 = X, j3 with r3 = X/2 + 1, t3 = X, j4 with
r4 = X, t4 = X, j5 with r5 = X + 1, t5 = X + 2. Note
that j4 � j5. Since job j1 is assigned to n1, then j2 will be
assigned to n2 and job j3 will also be assigned to n2. At
time t = X when j4 is released, it will be assigned to n1

since n1 is idle while n2 is busy. When j5 is released it will
be assigned to n2, since n2 will be idle and n1 busy (running
j4). The result will be that j5 will finish at time 3

2
X + 2,

which is sooner than the time j4 will finish (2X), thus the
EF property is violated. Proving the case where A belongs
to the second group is similar using the following instance:
j1 with r1 = 0, t1 = X, j2 with r2 = 1, t2 = X − 1, j3 with
r3 = X/2, t3 = X + 2, j4 with r4 = X, t4 = X, j5 with
r5 = X + 1, t5 = X + 1. Note again that j4 � j5.

Proposition 2. In a strictly heterogeneous system with-
out migration, any busy scheduler cannot provide the WPM
property.

Proof. We will show this for every algorithm A, any
large enough X > 0 and any number of machines n ≥ 2.
Again, we can divide the family of busy schedulers into two
groups, whether the algorithm assigns j1 to n1 or not. Ac-
cording to the group algorithm A belongs to, we will build
an instance of jobs that violates the WPM property.

In case algorithm A belongs to the first group, then we will
use the following sequence of jobs: j1 with r1 = 0, t1 = X,
j2 with r2 = 1, t2 = X, j3 with r3 = X/2 + 2, t3 = X, j4
with r4 = X, t4 = X, j5 with r5 = X + 1, t5 = 2. Since j1
is assigned to n1, then j2 will be assigned to run on n2 and
since n2 is twice as fast as n1, job j2 finishes at X/2 + 1.
When j3 is submitted, machine n2 is idle while n1 is busy,
this means j3 is assigned to n2. Now at time t = X, j4 is
submitted and will run on n1 since n2 is still busy. However,
if j4 is submitted later at t = X+2, then j5 will be scheduled
to n1, and j4 must be scheduled to run on n2. This means
that the completion time of j4 can be strictly improved by
releasing it later.

If algorithm A belongs to the second group, we will use
the following sequence of jobs: j1 with r1 = 0, t1 = X, j2
with r2 = 1, t2 = X − 1, j3 with r3 = X/2 + 2, t3 = X, j4
with r4 = X, t4 = X, j5 with r5 = X + 1, t5 = 2. A similar
argument shows that if j4 is submitted later at t = X + 2,
it would be scheduled to run on the faster machine n2.

Observe that in the two proofs above, the schedules will
not change independently of whether the algorithm does or
does not know the runtimes of jobs. Additionally, even if
migration is not allowed but preemption is allowed, this will
not change the schedule of the instances.

We complete this section by showing that in a homoge-
neous system, a busy scheduler without migration fails to
provide the ILV property.

Proposition 3. In a homogeneous system, any busy sched-
uler which does not use migration (including preemption)
does not provide the ILV property.

Proof. Let n be the number of machines in the sys-
tem. Let J ′ be instance containing only jn+1, where rn+1 =
n + 1, tn+1 = 3n, v0

n+1 = 2. Clearly, as we use a busy
scheduler, jn+1 will be scheduled immediately on arrival.
Now, consider the following instance: J = j1, j2, . . . , jn, jn+1

where j1 = (v0
1 = 1, r1 = 1, t1 = 2n − 1), j2 = (v0

2 = 1, r2 =
2, t1 = 2n − 2), . . . , jn = (v0

n = 1, rn = n, t1 = n) and jn+1

as above. For every busy scheduler A, the machines are oc-
cupied from time n onward. When jn+1 is introduced (at
time n+ 1) it can not be scheduled to run immediately (as
preemption is not allowed). This means that the completion
time of jn+1 depends on jobs in J which have a lower v0,
contradicting the ILV property.

Observation. Note that if preemption is allowed (with-
out migration), the example in the proof above can satisfy
the ILV property, provided that, upon arrival of jn+1, the
scheduler will preempt one of the running jobs and start to
immediately run jn+1. However, at time 2n + 1, there will
be n− 1 idle machines, while the machine running jn+1 has
also a preempted job, waiting to be completed.

More formally, define the Non-Wastefulness property:
If there is an idle machine then there is no waiting job

which has previously been preempted. We essentially show
that: In a homogeneous system, any busy scheduler which
uses preemption but not migration, can not satisfy the Non-
Wastefulness property.

5. ADDING MIGRATIONS: A POSSIBILITY
RESULT

In this section we will show that in a heterogeneous system
with migration, all our fairness properties can hold, using the
Online Greedy Migration algorithm (GM) (see Algorithm 1).
The system executes the GM algorithm upon arrival of a new
job or termination of a running job. Upon arrival, job j de-
clares its priority v0

j (but not tj). The obtained reallocation
is performed using the migration capabilities of the system.
Assumptions: In what follows, we assume first that the
time it takes to migrate a job between two machines is 0
(“zero migration cost”). Second, every termination and sub-
mission event occurs in an integral time.

Lemma 1. The GM algorithm provides the EF property.



Algorithm 1 Online Greedy Migration (GM)

Upon job arrival or job termination do:

1. Sort the set of current submitted and uncompleted jobs
in descending order according to their v0 and break ties
according to earlier release time (and job id).

2. Sort the machines in descending order according to
their speed.

3. Repeatedly assign the highest ranked job to the highest
ranked machine.

Proof. Let j and k be any two jobs with j � k. If v0
j >

v0
k, GM will always rank job j higher than job k (and thus

job j gets at least the same service level as k). Otherwise,
if v0

j = v0
k then it must be the case that rj < rk. Similarly,

GM will rank j higher, according to its tie breaking rule.
Since tj ≤ tk, job j will finish no later than job k in both
cases, resulting in dj(rj , vj , tj) ≤ dk(rk, vk, tk).

Lemma 2. GM provides the WPM property.

Proof. First, fix rj and v0
j . By the greediness of our

algorithm, it is clear that the smaller tj the earlier dj . More
formally dj(t̃j) ≥ dj(tj), for t̃j ≥ tj .

Second, fix v0
j and tj . We will show that dj(r̃j) ≥ dj(rj),

for r̃j ≥ rj . By a step by step argument, consider r̃j = rj+1.
If job j was not assigned to a machine at time rj , then
obviously dj(rj) = dj(r̃j). Similarly, if job j was assigned
to a machine at time rj , and no other job was assigned
to this machine if the job was submitted at time r̃j , then
dj(rj) < dj(r̃j). Now, assume that job j was assigned to
a machine at time rj . Let K be the set of jobs that were
assigned to faster machines if job j would be released at r̃j .
Then it must be the case that v0

k ≤ v0
j , ∀k ∈ K.

If v0
k < v0

j for every k ∈ K then each job k would be ranked
lower than j by the GM algorithm at each step. Therefore, in
the time interval starting from time r̃j until dj(rj), in both
scenarios, job j would be assigned to the same machines.
However, since in the first scenario job j was scheduled to
run at rj , then it should be given some extra processing time
in the second scenario (after dj(rj)). Thus dj(rj) < dj(r̃j).

Otherwise, there is at least one job k′ ∈ K with v0
k′ = v0

j .
However, rk′ < r̃j and thus k′ will be ranked higher than
j in the GM algorithm. As a result, in the time interval
starting at r̃j until dj(rj), the schedule of j can only get
worse. Meaning dj(rj) < dj(r̃j).

Finally, fix rj and tj . Let d = dj(v
0
j ). That is, d is the

completion time of j. We give extra power to j and assume
that at the beginning of any time slot the job can modify its
v0
j and declare different value of v0

j to the GM algorithm.
By a step by step argument, where in each step we assume
that at times rj , . . . , d − i − 1 the declared value of j is v0

j

and at times d− i, d− i+ 1, . . . , d− 1 the declared value of
j is ṽ0

j > v0
j . We will show that at each step the completion

time can only improve.
In step 1, we assume that at beginning of the last time slot

(d − 1), job j declares ṽ0
j . Clearly this can not increase dj .

Now, at step 2 assume that at (d − 2), the player declares
ṽ0
j > v0

j . Clearly, in this time interval ([d − 2, d − 1]) the
job will get a (weakly) faster machine. As a result, there
might be a set of jobs K that will be allocated to slower

machines. Clearly, for every k ∈ K, v0
k ≤ ṽ0

j . Thus as j

declares ṽ0
j > v0

j also at d− 1, this will not increase dj .

Lemma 3. The GM algorithm provides the ILV property.

Proof. Let J and J ′ be instances as in definition 4.
Clearly, the GM algorithm ranks the jobs in hθ(J) and in
hθ(J

′) in the same order at the top of the queue (since there
are no jobs with the same release time in J and J ′, and as
a result, no ties occur). And so, the jobs in hθ(J

′) = hθ(J
′)

receive the same service (regardless of the low ranked jobs
in J \ hθ(J) and in J ′ \ hθ(J ′)) and thus complete at the
same time. In particular dθ(J) = dθ(J

′).

Theorem 1. The GM algorithm provides the EF, the WPM,
and the ILV property.

Proof. See lemmas 1, 2, 3.

6. CONCLUSION & FUTURE WORK
In this paper, we investigated the benefit of performing

preemptions and migrations in economic settings where users
have time-dependent valuations. We identified several fair-
ness criteria which represent a first step towards inducing
selfish users to sincerely reveal their job characteristics. At
the core of this paper, we showed that, without migrations,
so called economic busy schedulers cannot satisfy these cri-
teria. In contrast, if migration is allowed, a simple allocation
mechanism can indeed achieve these notions of fairness.

One basic assumption in our possibility result is zero mi-
gration cost. A natural extension of this work will thus be to
consider such a cost in realistic scenarios. We are currently
developing a simulator to investigate economic scheduling
mechanisms which achieve an “adequate” balance between
incentives and fairness performance on the one hand and
migration cost on the other hand.
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