
A Domain Specific Modeling Language for Multiagent
Systems∗

Christian Hahn
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
66123 Saarbrücken, Germany
Christian.Hahn@dfki.de

ABSTRACT
Software systems are becoming more and more complex with
a large number of interacting partners often distributed over
a network. A common dilemma faced by software engineers
in building complex systems is the lack of clear requirements
and domain knowledge needed to come up with a detailed
design of the system. Agent technologies are a suitable pro-
gramming paradigm to cope with the complexity of modern
software systems. However, existing agent-based method-
ologies and tools are developed for experienced programmers
and are not suitable for non-agent experts. This paper dis-
cusses a domain specific modeling language for multiagent
systems that (i) provides a clear syntax and semantics to
define agent-based systems in a graphical visualized manner
and (ii) can be used to automatically derive code from its
design through model transformations.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; D.2.11 [Software Engineering]: Software Archi-
tectures

General Terms
Design, Language

Keywords
Domain Specific Modeling Language, Metamodel, Model-
driven Development, Transformations

1. INTRODUCTION
Agent-based computing can be considered as promising

approach and powerful technology to develop applications in
complex domains by designing and developing applications
in terms of autonomous software entities (agents), situated

∗The work published in this paper is partly funded by the
European Commission through the ATHENA IP (Advanced
Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications Integrated Project)
(IST-507849).

Cite as: A Domain Specific Modeling Language for Multiagent Sys-
tems, Christian Hahn, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. 233-240.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in an environment that can flexibly achieve their goals by
interacting with one another in terms of high-level protocols
and languages.

Recently, associated with the increasing acceptance of
agent-based computing as a novel software engineering
paradigm, a lot of research addresses the identification and
definition of suitable models and techniques to support the
development of complex software systems with respect to
agent-based computing. Agent-Oriented Software Engineer-
ing (AOSE) is a relatively young field – with its first work-
shop held in 2000 – that is concerned with how to engineer
agent-based software systems.

The current state-of-the-art in developing multiagent sys-
tems (MASs) is to design the agent systems basing on an
AOSE methodology and take the resulting design artifact
as a base to manually code the agent system using agent-
oriented programming languages (AOPLs). The gap be-
tween design and code may tend to the divergence of design
and implementation which makes again the design less useful
for further work in maintenance and comprehension of the
system [3]. Furthermore, even if existing methodologies have
different advantages when applied to particular problems, it
seems to be widely accepted that a unique methodology can-
not be applied to each problem without some (minor) level
of customization.

The framework discussed in this paper presents a platform
independent domain specific modeling language for MAS
called Dsml4mas that allows modeling agent systems in a
platform independent and graphical manner. The models
generated conform to the syntax and semantics given by a
formal specification language and are thus well-formed. Fur-
thermore, model transformations that base on the principles
of model-driven development (MDD) link design and code
through model transformations to generate executable code.

The structure of this paper is as follows: Section 2 gives
an introduction into language-driven development, followed
by Section 3 that discusses a platform independent meta-
model for agents that illustrates the core element of our
agent-based modeling language. In Section 4, we point out
how the semantics of the agent-based modeling language is
formulated. Section 5 presents the graphical editor of our
modeling language and illustrates how to apply it in a small
use case scenario. Section 6 illustrates the core mapping
rules to derive executable code from the design artifacts.
Section 7 discusses the generated output of these mapping
rules based on the presented use case scenario. Related work
is presented in Section 8 followed by Section 9 that concludes
this paper.

233



2. LANGUAGE-DRIVEN DEVELOPMENT
Languages are an essential part of the development of sys-

tems that are either used as a high-level modeling language
that abstracts from implementation or that are based on
a specific implementation technology. Many of these are
general-purpose languages like for instance Java or Unified
Modeling Language (UML), which provide abstractions that
are applicable across a wide variety of domains. In other
situations, they will be domain specific languages (DSL) [5]
that provide a highly specialized set of concepts to target
a small problem domain. In addition to using languages to
design and implement systems, languages typically support
many different capabilities (e.g. execution and parsing) that
are an essential part of the development process.

A strong distinction has traditionally been made between
modeling languages and programming languages. One rea-
son for this is that modeling languages have been tradition-
ally viewed as having an informal and abstract semantics
whereas programming languages are significantly more con-
crete due to their need to be executable. However, we will
show in this paper that our agent-based modeling language
provides key features like a concrete syntax, abstract syn-
tax and semantics that are discussed in more detail in the
following.

The abstract syntax of a language describes the vocabulary
of concepts provided by the language and how they may be
combined to create models or programs. It consists of a set
of provided concepts, their relationships to other concepts
and may also include rules that define whether a model is
well-formed. It is important to emphasize that a language’s
abstract syntax is independent of its concrete syntax and
semantics. Abstract syntax deals solely with the form and
structure of concepts in a language without any considera-
tion given to their presentation or meaning. This is espe-
cially important in the case when additional tool support is
provided and the models must be validated before to ensure
their correctness. In terms of MDD, the abstract syntax
is described by a metamodel that defines how the models
should look like. The abstract syntax of Dsml4mas is de-
fined by a platform independent metamodel for MAS called
Pim4agents that is discussed in more detail in Section 3.

The concrete syntax is the set of notations that facili-
tates the presentation and construction of the language con-
structs. The concrete syntax could either be formulated in
a textual or visual manner. A textual syntax allows to de-
scribe the models in a structured textual form, whereas a
visual syntax allows to use a diagrammatical form. For in-
stance, UML uses nodes and edges to represent some under-
lying model elements. The notations are visualized through
figures, e.g. nodes in UML by rectangles and ellipses. The
concrete syntax of Dsml4mas is presented in Section 5.

An abstract syntax conveys little information about what
the concepts in a language actually mean. Therefore, addi-
tional information is needed in order to capture the seman-
tics of a language which is important in order to give the
language a clear representation and meaning. Otherwise,
assumptions may be made about the language that lead to
its incorrect use. Even if the developers may have an un-
derstanding of the syntax of a language, the semantics are
the key to clarify the language’s and concept’s meanings.
In terms of MDD, semantic is often introduced when trans-
forming a platform independent model (PIM) to a specific
platform that offers some kind of execution semantics.

In general, a modeling language can be realized in two
different ways, either by customization of pre-existing lan-
guages through profiles or by creating a new language with
a standardized meta-data architecture which defines a set of
modeling constructs.

The first approach through customization is achieved by
marking up UML concepts with existing stereotypes and
tags. The second approach is based on the idea to create a
brand new modeling language from scratch. This involves
using MDD facilities and standards to create a model of the
language which is used to generate a tool for it on an existing
platform.

We base our modeling language on the second approach
that is constructed in four phases. In the first phase, an
adequate level of abstraction must be found. Often, this im-
plies to formally define a language model that specifies the
abstract syntax of the language. In terms of our framework,
the language model is derived from a formal metamodel.
In the second phase, a suitable concrete syntax is defined,
e.g. graphical symbols or a textual syntax, which is used by
users of the language. As the concrete syntax represents the
concepts in the abstract syntax, usually there is a correspon-
dence between concrete and abstract syntax elements. In the
third and last phase, a generator translates the modeling lan-
guage into an executable representation. For this purpose,
the elements of the concrete syntax have to be mapped to
instances of the abstract syntax, conforming to the formal
language model of the agent-based language. From the ab-
stract syntax, code in the target programming language is
generated (cf. Section 6).

3. A PLATFORM INDEPENDENT META-
MODEL FOR MULTIAGENT SYSTEMS

The challenge in defining a platform independent meta-
model that abstracts from existing execution platforms is
to decide on the building blocks of MAS. This metamodel
becomes the critical element when trying to create a new
language as in the agent context, to date, there is no com-
mon denominator, as already existing metamodels focus on
their own concepts and system structures.

In the following section, platform independent concepts
and their attributes are discussed that define the abstract
syntax of our agent-based modeling language. However, we
do not want to claim that these are the only adequate con-
cepts that should be considered as platform independent,
instead we want to show in this paper that this metamodel
can be used to define mappings to different AOPLs in order
to generate executable code.

The Pim4agents is structured into several aspects each
focusing on a specific viewpoint of a MAS. The metamodel
bases on Ecore which is the meta-metamodel of the Eclipse
Modeling Framework1 (EMF).

3.1 Multiagent System Aspect
The multiagent system aspect contains the main building

blocks of a MAS and thus includes the concepts Multia-
gentSystem, Agent, Instance, Cooperation, Capability, In-
teraction, Role, Behavior, and Environment.

1http://www.eclipse.org/modeling/emf/

234



Figure 1: The metamodel reflecting the agent aspect
of the Pim4agents.

Figure 2: The partial metamodel reflecting the or-
ganization aspect of the Pim4agents.

3.2 Agent Aspect
The agent aspect describes single autonomous entities, the

capabilities they have to solve tasks and the roles they play.
The metamodel of the agent aspect is depicted in Figure 1.
It includes the concepts Agent, Capability, and Instance as
well as Organization (from the organization aspect), Behav-
ior (from the behavior aspect), Role (from the role aspect),
and Resource (from the environment aspect).

This aspect is centered on the concept of Agent, the au-
tonomous entity capable of acting in the system. An Agent
has access to a set of Resources which may include informa-
tion or ontologies from its surrounding Environment. Fur-
thermore, the Agent can perform particular Roles that de-
fine in which specific context the Agent is acting and Be-
haviors defining how particular tasks are achieved. Further-
more, the Agent may have certain Capabilities that group
a particular type of Behaviors. To define social structures,
an Agent could additionally be member in an Organization
that represents the social structure Agents can take part in.

3.3 Organization Aspect
The organization aspect describes how single autonomous

entities cooperate within the MAS and how complex orga-
nizational structures can be defined. The metamodel of the
organization aspect is depicted in Figure 2. It includes the
concepts Cooperation, Organization, Protocol (from the in-
teraction aspect), Role (from the role aspect), and Agent
(from the agent aspect).

An Organization defines the social structure Agents can
take part in. The Organization is a special kind of Cooper-
ation that also has the same characteristics of an Agent.
Therefore, the Organization can perform Roles and have
Capabilities which can be performed by its members, be
it agents or sub-organizations. The multiple inheritance of
the Organization, from the Agent and the Cooperation, also
allows it to have its own internal Protocol that specifies (i)

how the Organization communicates with other Agents be
them atomic Agents or complex Organizations and (ii) how
organizational members are coordinated.

3.4 Role Aspect
The role aspect covers feasible specializations and how

they could be related to each other. The metamodel of the
role aspect is depicted in Figure 3. It includes the concepts
Role, Actor, and DomainRole as well as Agent, Capability
(both from the agent aspect), and Resource (from the envi-
ronment aspect).

Figure 3: The metamodel reflecting the role aspect
of the Pim4agents.

A Role is an abstraction of the social behavior of the Agent
in a given social context, usually a Cooperation or Organiza-
tion. The Role specifies the responsibilities of the Agent in
that social context. It refers to (i) a set of Capabilities that
define the set of Behaviors it can possess and (ii) a set of Re-
sources the Role has access to. An Actor can be considered
as a generic concept as it either binds Instances or Domain-
Roles. The Actor inherits from the Role and thus can have
access to particular Capabilities and Resources that are nec-
essary for exchanging messages. The set of bound entities
could be further specialized through the subactor reference
that refers again to an Actor. A subactor could be consid-
ered as a specialization of the superactor with respect to the
Capabilities they provide within an interaction.

A good example why to distinguish between subactors is
the Contract Net Protocol [7] (CNP). In the CNP, the Initia-
tor sends in the proposal stage either an accept-proposal or
a reject-proposal to the Participant. The decision which
message is sent depends on the fact if the Participant is con-
sidered as best bidder with respect to a certain criterion. If
this is the case, this Participant gets an accept-proposal,
otherwise a reject-proposal. This implicit distinction be-
tween best bidder and remaining bidders could be done using
Dsml4mas explicit. The Actor Participant would contain
two subactors, i.e. BestBidder and RemainingBidders that
are filled at run-time where the attributes min and max are
specified at design time to illustrate how many fillers are
needed at least and at most.

3.5 Interaction Aspect
The interaction aspect describes how the interaction be-

tween autonomous entities or organizations takes place.
To design flexible and robust agent interactions, message-
centric protocols are needed that should enable participat-
ing entities to perform appropriate actions. From our point
of view, messages should be considered as the least common
denominator for interaction but are not sufficient to design
robust interaction.

The metamodel of the interaction aspect is depicted in
Figure 4. It includes the concepts Protocol, MessageFlow,
MessageScope, Message, TimeOut, Operation, and Actor

235



Figure 4: The metamodel reflecting the partial in-
teraction aspect of the Pim4agents.

(from the role aspect). A Protocol refers to (i) at least two
Actors that interact within the Protocol, (ii) a set of Mes-
sages that are exchanged by the parties concerned, (iii) a set
of TimeOuts that define the time constraints for sending and
receiving Messages, (iv) a set of MessageFlows that specify
how the exchange of messages is to proceed, and (v) a set of
MessageScopes that specify the Messages exchanged and if
and how the message flow branches. This is done through an
Operation that could be of the type None, Sequence, Loop,
OR, XOR, and AND.

3.6 Behavior Aspect
The behavior aspect describes how plans are composed

by complex control structures and simple atomic tasks like
sending a message and how information flows between those
constructs. The core metamodel of the behavior aspect is
depicted in Figure 5. It includes the concepts Behavior,
Plan, Flow, ControlFlow, InformationFlow, Activity, Struc-
turedActivity, and MessageFlow (from the interaction as-
pect).

Figure 5: The metamodel reflecting the partial be-
havior aspect of the Pim4agents.

A Behavior represents the super class connecting the agent
aspect with the behavioral aspect, where a Plan can be con-
sidered as a specialization of the abstract Behavior to specify
an agent’s internal processes. A Plan contains a set of Flows
and Activities. The Activities are linked to each other via
Flows which are either of the type ControlFlow or Infor-
mationFlow. Furthermore, a Plan has a reference to a set
of MessageFlows that are implemented by the Plan. This

means that the internal behavior is defined that is necessary
to guarantee the adequate message exchange in accordance
to particular Protocol the MessageFlow belongs to.

Beside the concepts that are depicted in Figure 5, sev-
eral additional concepts have to be mentioned that belong
to the behavior aspect and are not part of Fig. 5. These
concepts include StructuredActivity and Task that inherit
from Activity. The StructuredActivity focuses on complex
control structures like Loop, Parallel or Decision whereas
Task focuses on atomic activities like sending or receiving
a message (i.e. SendMessage, ReceiveMessage). Further-
more, a so called InternalTasks that is a specialization of
Task could be used to introduce code specified in Object
Constraint Language2 (OCL).

3.7 Environment Aspect
The environment aspect contains any kind of Resource

that is dynamically created, shared, or used by the Agents
or Organizations, respectively. A Resource contains a set of
Documents that include Classes that refer to Attributes and
References. Resources (or Documents that inherit from Re-
source) are used for exchanging information within Messages
or InformationFlows.

4. A FORMAL APPROACH TO REFINE
THE SEMANTICS

A metamodel contains only little information about what
the concepts in a language actually means and only describes
the vocabulary of concepts provided by the language and
how they may be combined to create models. Thus, addi-
tional information and mechanisms are needed to capture
the semantics of a language.

Consequently, we developed a complete formal specifi-
cation using Object-Z [19]. Object-Z extends Z [22] with
object-oriented specification support. The basic construct
is the class which encapsulates a state schema with all the
operation schemas which may affect its variables. Further-
more, a class includes invariants that specify further restric-
tions on the variables.

Using Object-Z, we define the abstract syntax and static
semantics (ensuring that all concepts are statically well-
formed) of the individual concepts in the Pim4agents (e.g.
Agent) by formalizing their attributes and invariants. The
dynamic semantics is defined by specifying a denotational
and operational semantics. The denotational semantics is
defined in terms of introducing additional semantic vari-
ables and invariants. The operational semantics is defined
in terms of class operations and invariants restricting the
operation sequences that are specified using the timed trace
notation of the timed refinement calculus [20].

5. GRAPHICAL VISUALIZATION AND
USE CASE

The concrete syntax of Dsml4mas is specified using the
Graphical Modeling Framework3 (GMF) that provides the
fundamental infrastructure and components for developing
visual design and modeling surfaces in Eclipse. In principle,
GMF allows to define diagrams that base on a mapping be-
tween the concrete syntax and the abstract syntax defined

2http://www.omg.org/docs/ptc/03-10-14.pdf
3http://www.eclipse.org/gmf/

236



by the Pim4agents metamodel which thus serves as input
for the generation of a visual editor. For a complete lan-
guage description, we extend the generated diagrams by an
additional syntax check to guarantee the well-formedness
of the generated models. This is done by translating the
Object-Z specification into OCL rules (as explained in [18])
that are used to validate and check the created models at
design-time to ensure that the models can be mapped to the
AOPLs. The models that were created using the concrete
syntax conform to the Pim4agents and its semantics and
could thus be used as input for the model transformation to
generate code.

In the following, we discuss the concrete syntax in a
small example that covers a conference management sys-
tem (CMS). We assume that the reader is familiar with the
process of submitting a paper to an international conference
(e.g. AAMAS). This process starts with a call for papers
(CFP) distributed by the program committee (PC). When
receiving the CFP, authors decide whether to submit a pa-
per. After the deadline has passed, the PC distributes all
received papers among the PC members that are in charge
of providing a review for their assigned papers that is sent
back to the PC. Considering all reviews, the PC decides on
the accepted papers and sends a message to the correspond-
ing authors to inform them about acceptance or rejection.
To keep this example simple, we mainly concentrate on the
submission phase in the following.

Figure 6: The agent model of the CMS use case
exported from the agent diagram.

Figure 6 depicts the agent diagram of the CMS case. The
model consists of an Agent called Researcher A that per-
forms the DomainRole of an Author and acts in accordance
to a Plan called ReactOnCPF. This Plan defines in which
manner the CallForPapers is handled, according to which
criterion the Agent decides whether it submits a paper or
not and finally, how it replies to the initially sent CallFor-
Papers. The message exchange is illustrated in the interac-
tion diagram (see Figure 7). Due to space restriction, the
behavior aspect of the CMS use case is not discussed in more
detail in this paper. The DomainRole Author is bound to
an Actor (this is allowed as the Actor inherits from Role)
called AAMASAuthor that is required – in addition to the
Actor AAMASPC – by the Organization PaperSubmission.
The participants of this Organization are coordinated in ac-
cordance to a Protocol SubmissionProtocol that defines the
message exchange between both parties.

The SubmissionProtocol is depicted in Figure 7. It con-

Figure 7: An interaction model of the CMS use case
exported from the interaction diagram.

sists of two Messages called CallForPapers and SubmitPaper.
Both Messages are attached to a MessageScope that uses the
None Operator expressing that the message flow is not split.
The MessageFlow SendCFP in which the AAMASPS is ac-
tive is the source for sending the CallForPapers, whereas
the MessageFlow Submission in which the AAMASAuthor
is active receives the CallForPapers and sends the Message
SubmitPaper if the Researcher A has decided to submit a pa-
per. This decision is implemented as a StructuredActivity
within the ReactOnCFP Plan. The TimeOut TO represents
the deadline for submitting a paper to the AAMASPC.

6. CODE GENERATORS
Model transformations are one of the key mechanisms

within MDD. Basing on code generation templates, the
model is transformed to executable code that may option-
ally be merged with manually written code. One or more
model-to-model as well as a model-to-text transformation
steps could be necessary for code generation. The imple-
mentation of model-to-model transformations is done using
the Atlas Transformation Language4 (ATL) that again bases
on the Ecore meta-metamodel.

In the context of our approach, we developed model trans-
formations to two target languages (i.e. Jack [13] and JADE
[1]) and currently investigate a model transformation be-
tween the Pim4agents and Jadex [16]. The main mo-
tivation for choosing the mentioned AOPLs is their dif-
ferent view on agent systems. Whereas Jack and Jadex
base on principles of the Belief-Desire-Intention (BDI, cf.
[17]) architecture, JADE focuses on the compliance with the
FIPA5 specifications for interoperable intelligent MASs and
thus concentrates on interaction aspects. A mapping from
the Pim4agents’s concepts to the concepts of the different
execution platform demonstrates that the concepts of the
Pim4agents can be considered as platform independent.

Due to space restrictions, we focus in this paper on the
Pim4agents to Jack transformation. For detailed informa-
tion regarding the Pim4agents to JADE transformation,
we refer to [9].

In the remainder of this section, several mapping
rules (depicted in Figure 8) are discussed that transfer
the Pim4agents metamodel to the metamodel of Jack
(JackMM). For detailed information regarding JackMM and
the model transformation we refer to [9, 8].

Mapping Rule 1: Organization → Team
The source and target concepts of this mapping rule nicely

4http://www.eclipse.org/m2m/atl/
5http://www.fipa.org

237



Figure 8: The basic mapping rules of the Pim4agents (left hand side) to the metamodel of Jack (JackMM)
(right hand side) transformation. Please note that both metamodels only present abstractions of the originals.
For instance, a Plan in the Pim4agents does not directly refer to Messages, instead it contains the concepts
SendMessage and ReceiveMessage that directly refer to Messages.

correspond to each other as both (i) make use of an inter-
nal behavior that specifies how their members are coordi-
nated and (ii) require and perform Roles. The Behavior
as well as the Roles could thus be easily mapped from the
Pim4agents to Jack. The only difference between both
metamodels is the manner in which interactions are defined,
i.e. the interaction in the Pim4agents is defined by a Pro-
tocol whereas JackMM defines the interaction between enti-
ties in an event-driven manner without explicitly specifying
a protocol.

Mapping Rule 2: Agent → Team
At first glance the concept Agent of JackMM seems to be
the best match, but since an Agent in the Pim4agents ref-
erences Roles, it is recommended to assign an Agent (from
Pim4agents) to an atomic Team – which does not require
any NamedRole – in JackMM. The Behaviour or rather the
concrete Plan used by the Agent is mapped to a set of Team-
Plans the Team makes us of. The Messages of the Protocol
the Agent participates are mapped to Events that are ei-
ther handled or sent/posted by the Team. Furthermore, the
Team performs the Roles that are performed by the Agent
in the Pim4agents.

Mapping Rule 3: Plan → TeamPlan
A TeamPlan uses a set of NamedRoles that are extracted
from the Roles the corresponding Organization requires in
the Pim4agents. In fact, only an Organization (and Co-
operation from which the Organization inherits) requires
Roles, i.e. the set of NamedRoles an atomic Team requires
is empty. Detailed information on how the Plan’s elements
are mapped is discussed in [8].

Mapping Rule 4: Message → Event
Each Message that is either part of a Protocol or is referred
by an atomic Task (i.e. SendMessage or ReceiveMessage)

in a Plan is mapped to an Event (i.e. MessageEvent) in
JackMM.

Mapping Rule 5: Capability → Capability
The Behavior that is used by the Capability in the Pim4-
agents is mapped to the Capability’s Plan in JackMM. The
Messages that are sent and received within the particular
Behavior are mapped to Events that are sent and handled
by the Capability in JackMM.

Both kinds of Capabilities nicely correspond to each other.
However, in JackMM only the concepts Agent and Team
refer to Capabilities, but not Roles. To compensate this,
we introduce additional Capabilities for those Teams that
perform the particular Roles referring to Capabilities in the
Pim4agents.

Mapping Rule 6: Actor → Role
The concept Actor of the Pim4agents is transformed to
Jack-related Roles. The Instances or Roles that are bound
to the particular Actor are used as role fillers a Team can
make use of in Jack.

The model-to-model transformation generates an output
model in accordance to JackMM which serves as input model
for the model-to-text transformation that generates Jack
Gcode (XML-like documents that can be imported into the
Jack IDE). This transformation is implemented using MOF-
Script6 that bases – like ATL – on Ecore. In MOFScript,
serialization rules (i.e., templates) are created following the
structure of JackMM, i.e the information regarding the con-
cept itself as well as the references to other concepts are
extracted from the JackMM model and assigned to the tem-
plate’s attributes. Consequently, a template is created for
the concepts Event, Role, NamedRole, Agent, Plan, Team
and TeamPlan. For each instance of these concepts in the

6http://www.eclipse.org/gmt/mofscript

238



JackMM model, a new file is generated that could be im-
ported into the Jack development IDE and compiled to gen-
erate executable Jack code.

7. GENERATED JACKMM MODELS
In the previous section, we illustrated the basic map-

ping rules used to transform Pim4agents models to
JackMM models and described how to generate Jack code
based on these JackMM models. For the purpose of
demonstration, we relate the model transformation to the
Pim4agents models that were discussed in Section 5 and
explain how the generated Jack models look like.

Figure 9: The generated Jack model.

Figure 9 depicts the generated Jack model. The Team
Researcher A is generated by applying Mapping Rule 2 on
the Agent Researcher A. The Team Researcher A uses a
TeamPlan called ReactOnCPF that is generated by apply-
ing Mapping Rule 3 on the Plan ReactOnCPF. Furthermore,
Mapping Rule 6 instantiates two Roles (i.e. AAMASAuthor
and AAMASPC), where the AAMASAuthor is performed by
the Team Researcher A. These Roles handle and post Events
called CallForPapers and SubmitPaper, that are generated
by applying Mapping Rule 4.

8. RELATED WORK
Several agent-oriented methodologies have been already

proposed [23, 15]. Obviously, a comprehensive study and
comparison of these is out of scope of this paper. Neverthe-
less, a short overview on already well-established method-
ologies in the agent community is given in the remainder of
this section.

Tropos [4] is an agent-oriented methodology based on the
concepts of Actor and Goal. The Tropos methodology con-
sists of five phases including early and late requirements.
The core concepts of the Tropos metamodel are Actor and its
specializations Position, Agent and Role, where a Position
covers at least one Role and an Agent may play Roles and
may occupy Positions. Furthermore, an Agent may want
Goals that are either HardGoals or SoftGoals. Tropos is
supported by a graphical visualization tool called Tool for
Agent Oriented Visual Modeling (TAOM) [14] that allows to
generate models in accordance to the Tropos metamodel on
the different phases. Furthermore, by adopting principles of
MDD, TAOM is able to perform a model-to-model trans-
formation on the generated models to produce JADE code.
However, Tropos does not provide support for transforming
design into executable agent code as already asserted by [10].

Prometheus [12] defines a detailed process for analysis,
design, and implementation. The core concepts of the Pro-
metheus metamodel are (i) Goal, (ii) Role that achieve
Goals, has access to Data and has to handle Percepts, and
(iii) Agent that may have access to a set of Capabilities,
owns a set of Plans and plays a set of Roles. Further-
more, an Agent may be either participant or initiator of a
Protocol/Interaction which includes Messages. Like Tropos,
Prometheus is supported by the java-based graphical editor
Prometheus Design Tool (PDT) [21] and the eclipse-based
graphical editor Agent Development Tool Plug-in for Eclipse
(ADPT) [11] that both allow to automatically generate code
in BDI based AOPLs like Jack and Jadex. However, none of
them generate design artifacts that capture sufficient details
to apply automated generators producing executable code.

The Unified MAS Metamodel proposal [2] was the first
attempt towards the development of a unified metamodel.
This metamodel was developed by merging the metamodels
of ADELFE [15], Gaia [23] and PASSI [6] and thus combin-
ing the strengths of each metamodel. The unified metamodel
covers aspects such as (i) cooperative behavior as described
by the ADELFE metamodel, (ii) organizational behavior as
specified by the Gaia metamodel, and (iii) FIPA-compliant
communication structures as defined by the PASSI meta-
model. Even if this metamodel defines the most important
building blocks of agent systems, it is not really clear if ex-
ecutable code can be generated as neither the internal be-
havior of an agent nor the external behavior – i.e. the agent
interaction – are specified in an adequate manner.

9. CONCLUSION
This paper presented a platform independent modeling

language for agents in the context of MDD with the objective
to close the gap between design and code. In this context,
we have identified the following advantages of our approach:

The Dsml4mas covers the core building blocks of an agent
system. The identified building blocks enable a mapping to
different AOPLs like Jack and JADE which is – to the best of
our knowledge – not supported by any other agent-oriented
modeling language.

A formal description of the Pim4agents is given using
Object-Z to (i) further refine its abstract syntax and (ii)
formalize the denotational and operational semantics.

The syntax and semantics defined are used as a base to de-
velop a graphical editor that finally formulates the concrete
syntax. Syntax and semantics are expressed with OCL to
guarantee that the developed models are well-formed. This
is of special importance when applying the model transfor-
mation to the specific AOPLs.

MDD has the potential to addresses interoperability issues
necessary to link design and code. Exemplarily, this is shown
by the model transformation between Dsml4mas and Jack.

In [24, 8], we showed how to integrate service-oriented
architectures (SOAs) into JackMM in a model-driven sce-
nario. The agent-based modeling language could easily be
integrated into this approach to execute SOAs. It is not
clear whether Prometheus or Tropos would allow this kind of
integration as the concepts used for instance in the early re-
quirement phase of Tropos only cover Actor and Goal which
might not be sufficient for deploying (semantic) web services.

However, the Pim4agents and thus the
Dsml4mas should not be considered as completed, as
mentioned before, it could easily be extended and refined.

239



Concepts like beliefs and commitments could be added in
the next versions. Up to now, our MDD approach only
considers a top-down approach from platform independent
to platform specific models. Thus, any change of the
executable code cannot be propagated to the Dsml4mas.
This is an interesting approach that will be explored in the
future work.

10. REFERENCES
[1] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.

JADE - a java agent development framework.,
volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, chapter 5, pages
125–147. Springer, Berlin et al., 2005.

[2] C. Bernon, M. Cossentino, M.-P. Gleizes, P. Turci,
and F. Zambonelli. A study of some multi-agent
meta-models. In J. Odell, P. Giorgini, and J. Müller,
editors, Agent-Oriented Software Engineering V: 5th
International Workshop, AOSE 2004. Revised Selected
Papers, Lecture Notes in Computer Science 3382,
pages 62–77. Springer-Verlag, 2005.

[3] R. H. Bordini, M. Dastani, and M. Winikoff. Current
issues in multi-agent systems development (invited
paper). In Post-proceedings of the Seventh Annual
International Workshop on Engineering Societies in
the Agents World, volume 4457 of Lecture Notes in
Artificial Intelligence, pages 38–61, 2007.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. TROPOS: An Agent-Oriented
Software Development Methodology. Journal of
Autonomous Agents and Multiagent Systems,
8(3):203–236, 2004.

[5] S. Cook, G. Jones, S. Kent, and A. C. Wills.
Domain-Specific Development with Visual Studio DSL
Tools. Addison-Wesley Professional; 1 edition, 2007.

[6] M. Cossentino. From requirements to code with the
PASSI methodology. In B. Henderson-Sellers and
P. Giorgini, editors, Agent-Oriented Methodologies,
Hershey, PA, USA, 2005. Idea Group Inc.

[7] R. Davis and R. G. Smith. Negotiation as a metaphor
for distributed problem solving. Artificial Intelligence,
20:63–109, 1983.

[8] K. Fischer, C. Hahn, and C. Madrigal-Mora.
Agent-oriented software engineering: a model-driven
approach. Int. J. Agent-Oriented Software
Engineering, 1(3/4):334–369, 2007.

[9] C. Hahn, C. Madrigal-Mora, and K. Fischer. A
platform-independent model for agents. Technical
Report RR-07-01A, German Research Center for
Artificial Intelligence (DFKI GmbH),
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, 2002.

[10] G. Jayatilleke, J. Thangarajah, L. Padgham, and
M. Winikoff. Component agent framework for
domain-experts (CAFnE) toolkit. In Proceedings of
the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1465–1466, New
York, 2006. ACM Press.

[11] L. Padgham, J. Thangarajah, and M. Winikoff. Tool
support for agent development using the prometheus
methodology. In Proceedings of the Fifth International
Conference on Quality Software, pages 383–388,
Washington, 2005. IEEE Computer Society.

[12] L. Padgham and M. Winikoff. Prometheus: A
Methodology for Developing Intelligent Agents. In
F. Giunchiglia, J. Odell, and G. Weiß, editors,
Agent-Oriented Software Engineering (AOSE-2002),
volume 2585 of Lecture Notes in Computer Science,
pages 174–185, Berlin et al., 2002. Springer.

[13] M. Papasimeon and C. Heinze. Extending the UML
for designing JACK agents. In Proceedings of the
Australian Software Engineering Conference (ASWEC
01), 2001.

[14] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos.
From stakeholder intentions to software agent
implementations. In Proceedings of the 18th
Conference on Advanced Information Systems
Engineering, volume 4001 of LNCS. Springer Verlag,
2006.

[15] G. Picard and M.-P. Gleizes. Methodologies and
Software Engineering for Agent Systems, The
Agent-Oriented Software Engineering Handbook,
chapter 8, The ADELFE Methodology. Kluwer
Academic Publishers, 2004.

[16] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A BDI Reasoning Engine, volume 15 of Multiagent
Systems, Artificial Societies, and Simulated
Organizations, chapter 6, pages 149–174. Springer,
Berlin et al., 2005.

[17] A. S. Rao and M. P. Georgeff. Modeling agents within
a BDI-architecture. In R. Fikes and E. Sandewall,
editors, Proceedings of the 2rd International
Conference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 473–484, Cambridge,
Mass., 1991. Morgan Kaufmann.

[18] D. Roe, K. Broda, and A. Russo. Mapping uml models
incorporating OCL constraints into Object-Z.
Technical Report 2003/9, Imperial College, 180
Queen’s Gate, London, 2002.

[19] G. Smith. The Object-Z Specification Language.
Advances in Formal Methods. Kluwer Academic
Publishers, 2000.

[20] G. Smith and I. J. Hayes. Structuring real-time
Object-Z specifications. In Proceedings of the Second
International Conference on Integrated Formal
Methods, volume 1945 of Lecture Notes In Computer
Science, pages 97–115, London, 2000. Springer.

[21] J. Thangarajah, L. Padgham, and M. Winikoff.
Prometheus design tool. In Proceedings of the fourth
international joint conference on Autonomous agents
and multiagent systems, pages 127–128, New York,
2005. ACM Press.

[22] J. Woodcock and J. Davies. Using Z: Specification,
Refinement, and Proof. Prentice-Hall, 1996.

[23] F. Zambonelli, N. Jennings, and M. Wooldridge.
Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software
Engineering and Methodology, 12(3):417–470, 2003.

[24] I. Zinnikus, C. Hahn, M. Klein, and K. Fischer. An
agent-based, model-driven approach for enabling
interoperability in the area of multi-brand vehicle
configuration. In B. J. Krämer, K.-J. Lin, and
P. Narasimhan, editors, ICSOC, volume 4749 of
Lecture Notes in Computer Science, pages 330–341.
Springer, 2007.

240


