
Decentralized Algorithms for Collision Avoidance in
Airspace

David Šišlák, Jiří Samek and Michal Pěchouček
Agent Technology Group, Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague
Technicka 2, Prague, 166 27, Czech Republic

sislakd@fel.cvut.cz, {samek|pechouc}@labe.felk.cvut.cz

ABSTRACT
The paper proposes decentralized deconfliction algorithms
deployed on multiple autonomous aerial vehicles in free-
flight operations. The paper provides two separate algo-
rithms for collision avoidance - one based on the iterative
peer-to-peer negotiation solving a singular collision and sec-
ond based on multi-party negotiation about a cluster of col-
lisions. The presented decentralized algorithms allow the ve-
hicles operating in the same area to utilize the given airspace
more efficiently. The algorithms have been developed and
tested on a multi-agent prototype and the properties of both
algorithms are discussed on a set of large scale experiments.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial intelligence—
Multi-agent systems; I.6 [Computing Methodologies]: Sim-
ulation and modeling

General Terms
Algorithms, Performance

Keywords
agent-based collision avoidance, autonomous aircrafts, dis-
tributed algorithm

1. INTRODUCTION
The operation of a group of autonomous airplanes fulfill-

ing a given objective of their mission requires the See &
Avoid capability [1]. Such capability guarantees that each
airplane is able to monitor local environment using the on-
board radar or information from a headquarter to detect
possible collision situation and to take actions to avoid that
collision. Such approach is known as the free flight con-
cept [8] – each airplane plans its own best flight corridor but
still respects separation from the others. There are two cat-
egories of collision avoidance algorithms: cooperative and
noncooperative. The paper addresses the area of coopera-
tive collision avoidance algorithms in the three-dimensional
space restricted by the limited communication range and by
no-flight zones which represent some strategic places.

The research community in the field of cooperative colli-
sion avoidance aims on many different approaches and com-

Cite as: Decentralized Algorithms for Collision Avoidance in Airspace,
Šišlák, D. - Samek, J. - Pěchouček, M., Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

paring using different metrics [3]. One possibility for the
distributed solution is the use of principled negotiation [10].
Others use the approaches based on the game theory [2] and
the fully distributed solution based on agent to agent nego-
tiation using various protocols [11].

We use the agent based approach to implement the co-
operative collision avoidance by a local collision avoidance
implementation. The detailed specification of the airspace
domain is stated in the Section 2. The restriction to use only
decentralized algorithm is given by the fact that airplanes
in the domain can communicate only with planes located
nearby. Well known techniques for collision avoidance based
on the potential fields are not suitable for the domain (3D,
no-flight zones, the need smooth flight plan also in its first
derivation, allowed speed changes) due to their complexity
and because of the complicated dynamic mission airplane
specification.

The main contribution of the paper is in the novel multi-
party collision avoidance (MPCA) algorithm (Section 6) for
the described airspace domain. The algorithm removes the
iterations from the iterative peer-to-peer (IPPCA) algorithm
[9] (new formalized description is in the Section 5) for multi-
collisions among several airplanes. The use of searching for
the best combination of evasion applications used in the pro-
posed algorithm leads to better solutions (in means of used
criterion) and thus for better utilization of given airspace
than in the IPPCA. The ’See’ ability of the algorithms is
the same, see the Section 3. Both algorithms use the same
set of possible evasion manoeuvres (Section 4). The proper-
ties of the proposed MPCA are studied in experimental way
by a comparison to the existing IPPCA (Section 7). The
IPPCA algorithm was selected for the comparison because
it provides the best result from all implemented ones in the
domain multi-agent simulator.

2. DOMAIN DESCRIPTION
Let us define the airspace collision avoidance problem in

the free-flight domain (FFD). In FFD the autonomous air-
crafts, all members of A, operate in a shared three dimen-
sional airspace Air ⊆ R3 that is limited by the ground sur-
face and airspace boundaries. The airspace that can be oc-
cupied by an individual aircraft Ai is made smaller by no-
flight zones Zi = {Z1, Z2 . . .}, where the Ai cannot fly (thus
Airi = Air−

∑
Zk∈Zi

Zk). The no-fly zones represent strate-

gic places (e.g. nuclear power plants), nonstandard weather
conditions or dangerous enemy territories.

The behavior of the airplane Ai ∈ A is given by the spe-
cific flight plan fpi = (sp, e1, e2 . . . en) defined as a start

543

Estoril,Portugal,pp. 543-550.

situation and ordered sequence of flight elements. The start
situation includes the position, initial direction, start time
and initial velocity sp = 〈x0, dir0, t0, v0〉. Each of the flight
elements can be of the following type: (i) straight element
estraight = 〈l, a〉 specified by its length and acceleration, (ii)
horizontal or vertical turn elements eturn = 〈r, d〉 given by
the turn radius (sign define turn direction) and angle, and
(iii) spiral element espiral = 〈r, d, c〉 similar to horizontal
turn element extended by a climbing rate. The elements are
constrained by the airplane type that often specifies minimal
and maximal flying velocity, minimal and maximal acceler-
ation, minimal turn radius and max climbing/descending
rate. Each element ek+1 specifies the flight path part rela-
tively from the end of the previous element ek or from sp
for the first element e0. Thus the path given by fpi is con-
tinuous and must be smooth. First derivation in all coor-
dinates and time must be continuous too. Let us introduce
FP = {fpi}Ai∈A as a set of all actual flight plans of the
aircrafts in the airspace.

The behavior of an aircraft is not random, while it is spec-
ified by a mission. All points on the path of fpi must be
in Airi and must be constrained by the airplane mission
Mi = 〈wp1, wp2 . . . wpn〉, a sequence of way-points wpk =
〈x, t1, t2〉. The way-point in Airi specifies the time interval
by specifying t1 and t2 when the aircraft is allowed/requested
to fly through. Let us introduce the function p(fpi, t) that
returns the position of the individual airplane Ai at the given
time t. The way-point wpk is completed by the Ai’s flight
plan fpi if ∃t so that p(fpi, t) = xwpk and t

wpk
1 ≤ t ≤ t

wpk
2 .

In the other words, the path defined by fpi must go through
each way-point at least once in the specified order of Mi.

Definition 1. The planning problem in FFD from the
perspective of an individual aircraft Ai with respect to the
mission Mi is the process of finding such a flight plan fpi so
that ∀wpk ∈ Mi are completed.

Airplane can alter its own current fpi anytime, but only
the future part can be changed. The processes of (re)planning
and collision avoidance are carried out in the same time as
the process of mission accomplishment. Thus, the airplane
is allowed to change its flight plan in some future time t to
be able to apply new changed fp′i, see the Figure 1.

Around each airplane there is defined a safety zone – a
spherical space with a given radius rszi for each Ai. It de-
fines surrounding airspace where no other airplane is allowed
to appear so that effects of turbulence caused by other air-
plane and inaccuracy of flight plan execution (there are al-
lowed small deviations from the flight path) can be avoided.
Let us introduce the function

col(fpi, fpj , t) =

{
1 if |p(fpi,t),p(fpj ,t)|≤max(rszi,rszj)

0 otherwise

specifying the fact that two flight plans fpi and fpj have a
collision in time t.

Definition 2. Two aircrafts Ai and Aj (with their flight
plans fpi and fpj respectively) are colliding (denoted as
Ai ⊗Aj) if and only if ∃t : col(fpi, fpj , t) = 1.

Clearly, Ai⊗Aj ≡ Aj⊗Ai. The set A is dynamic as there
can be new planes created or removed (e.g. after landing)
during the process of mission execution. In the FFD it is
guaranteed that newly created plane Ai has no collision on

its flight plan fpi with any other existing fpj in next δ
from its start. The δ value is specified for each aircraft and
guarantees that there is enough air space to avoid future
collision which appears just after the plane creation. After
δ the flight plan of the newly created aircraft can collide.

Let us discuss how the multiple collisions can influence
each other. We introduce Call ⊂ A×A as a set of all colliding
aircrafts. We are working with the multi-collision set of
collisions C ⊂ Call that includes all related collisions. In C
there is at least one pair of colliding airplanes Ai ⊗ Aj and
in the same time there is no such collision Ak ⊗ Al ∈ C
so that neither Ai nor Aj does not have a collision with
either Ak or Al and there is no other collision in C that is
linked with both Ai ⊗Aj and Ak ⊗Al by a finite number of
collisions. Let us view C as undirected graph. Let us assume
that each collision from the set C has one vertex in a graph,
an edge between any two vertices exists if and only if there
is at least one Ai involved in both collisions represented by
vertices. The C is the multi-collision set if and only if its
graph representation is connected (for every pair of distinct
vertices in the graph there exists a path linking them both).
Note that the concept of multi-collision set includes also the
collision of two airplanes only. AC ⊆ A is the set of all
aircrafts which are implied in at least one collision in C.

Let us work with the encounter [6] as a subject of colli-
sion avoidance problem. For a given multi-collision set C an
encounter enk is tuple 〈t, {fpi}Ai∈AC 〉 such that t ≥ now

is a time point in the future from which the flight plans of
the colliding airplanes can be changed. Clearly, the collision
avoidance problem (CA) in FFD can be defined as the pro-
cess of finding such FP for which Call = ∅. In this paper we
are solving CA by solving local collision avoidance problems
(LCA) applied on top of FP.

Definition 3. Local collision avoidance problem
(LCA) (replanning) with respect to an encounter enk =
〈t, {fpi}Ai∈AC 〉 [6] and FP is the process of finding such
a solution {fp′i}Ai∈A′⊆A founded in time t′ < t so that the
encounter enk is eliminated.

The current time and time t from encounter gives the max-
imal interval in which LCA algorithm can search for the so-
lution. The selection of right time t in encounter is the part
of the algorithm and can take into account its own proper-
ties. Two CA algorithms applied to the same situation can
be compared using their final flight plan utility values after
accomplishment of all aircrafts’ missions. The utility func-
tion value ui(fpi) used for comparison [5] includes aircraft’s
intention to proposed solution of the conflicts – e.g. to be
as short as possible, to use minimum of fuel, to fulfill time
constraints of the way-points, etc. The ui(fpi) ∈ 〈0, 1〉 is
evaluated as weighted sum of its components. Each airplane
can have different components, but each airplane must use
the same in both compared CA algorithms. E.g. for the
social welfare criterion we can say that one CA algorithm is
better if

∑
Ai∈A ui(fpi) is higher where fpi represents final

flight plan of airplane Ai after applying CA algorithm.
The airplane can host one or more agents and provide

them communication infrastructure via its on-board com-
munication transceivers with the limited range of communi-
cation ci. So, the agents at Ai can negotiate with agents at
Aj in time t only if | p(fpi, t),p(fpj , t) |≤ min(ci, cj). The
agents on airplane Ai have full information about its flight
status and can call functions for altering fpi. Using this

544

transceiver airplane agents are aware of existence of other
airplane if they can negotiate together. There is no central
element in the domain so the agent knows only information
which can be obtained from its hosting airplane or by ne-
gotiation with other agents. Even though the range ci is
relatively large, not all aircrafts can communicate together.
The domain allows also airplanes which are not capable to
communicate with others due to several reasons: broken
transceiver, or they don’t want to communicate. But in this
paper we are focused only on the case where all airplanes
A are able to communicate together if distance condition is
satisfied. Thus, agent controlled airplanes can cooperate to
do collision avoidance.

3. LOCAL COOPERATIVE DETECTION
The see capability [1] in the domain is implemented by

the negotiation and flight plan comparison. Due to the lim-
ited communication range each airplane Ai is aware only of

the planes located within this range Aj ∈ Ãi. Ãi denotes
the set of airplanes Aj ∈ A of which Ai is aware. Both de-
scribed algorithms solve encounters locally where they can
be detected. It is not necessary to identify collision Ai

⊗
Aj

for whole fpi and fpj . The airplane can share only part of

its current flight plan f̂pi from current time tc for interval

tshare where p(f̂pi, t) = p(fpi, t) for ∀t : tc ≤ t ≤ tc + δt. δt

is selected by the airplane not to expose all its future plan
including its mission objectives, but to give enough part to
identify possible collision. Such local sharing of the flight
plans also reduces necessary communication flow. The flight
plan sharing is implemented by the subscribe-advertise pro-
tocol [12]. Every time when the airplane is aware of new

other airplane Aj it subscribes for its f̂pj . The plane Aj , by
accepting subscription request from Ai, will provide regular

updates of its f̂pj such there will be enough part of future
part of the flight plan from current time. If Aj changes its
fpj for any reason – change of its mission objectives or as
a result of other collision avoidance – it provides new fresh

f̂pj to the subscriber as soon as possible.

Airplane Ai who received f̂pj from all its neighbors Ãi

performs check if ∃t where col(fpi, f̂pj , t) = 1 upon every
received update. If such t exists Ai tries to identify first

and last collision point t
Ai⊗Aj

1 and t
Ai⊗Aj

2 (Section 4). Air-
planes are also able to detect multi-collision group AC by
exchanging information about collisions. Ai prepares its lo-

cal view of an encounter enAi
k = 〈t, {fpi}

⋃
{f̂pj}Aj∈AC\Ai

〉.
Selection of tC1 > t > tc depends on the used algorithm or
the combination of algorithms and is chosen somewhere be-
tween current time tc and time of the earliest collision tC1 for
given multi-collision C. t− tc defines timeout which is then
given for invoked collision avoidance algorithm. If the result
for C is not provided within specified timeout, the algorithm
is interrupted and next algorithm is invoked for the same C
and new encounter. Note that using local cooperative detec-

tion the encounter contains full fpi and only parts of f̂pj ,
but it is enough to do distributed local collision avoidance.
The LCAP algorithm still provides solution containing full
flight plans fpj for ∀Aj : Aj ∈ AC because all flight plans
are still provided by its final implementor Aj .

4. EVASION MANOEUVRES

Both CAP algorithms described in this paper are based
on the application of evasion manoeuvre to the place of the
collision Ai ⊗ Aj – identification of the first and last col-

lision time of the first collision between their fps. t
Ai⊗Aj

1

is the first collision time between fpi and fpj if there is
col(fpi, fpj , t1) = 1 and ∀t : t < t1 is col(fpi, fpj , t) =

0. The last collision time t
Ai⊗Aj

2 is defined by ∀t : t1 ≤
t ≤ t2 is col(fpi, fpj , t) = 1 and for t = lim

δ→0+
(t2 + δ) is

col(fpi, fpj , t) = 0. From the fact that max(rszi, rszj) > 0

we are certain that t2 > t1 holds. Note that the times t
Ai⊗Aj

1

and t
Ai⊗Aj

2 are the same from both perspective Ai and Aj ,
but the p(fpi, t1) 6= p(fpj , t2).

There are defined seven evasion manoeuvres
EMi = {emL, emR, emU , emD, emF , emS , em0}: left,
right, climb up, descend down, fly faster, fly slower and leave
plan as it is. The set EMi can contain different manoeuvres
for each airplane Ai ∈ A, but there must be included em0 for
all planes. The evasion manoeuvre can be seen as a function
applied to the flight plan with time specification and return-
ing new changed flight plan. The simplest one is defined as
fpi = em0(fpi, p, t, t1, t2). It returns exactly the same fpi

and is used for the simplification of cases where airplane Ai

can also do nothing in CA algorithm. All other ems return
changed fp′i respecting constraints given for flight plan and
changes elements only from specified time t – time known
from definition of encounter enk. All manoeuvres are appli-
cable only if t < t1 < t2 and have also specified application
strength parametrization p for the evasion manoeuvre.

fpi t1 t2

fpi‘

tcurrent
position

Figure 1: Application of right evasion manoeuvre –
fp′i = emR(fpi, p, t, t1, t2)

The application of right evasion manoeuver to the fpi is
shown in the Figure 1. It changes fpi from time t that
the new fp′i passes through the points specified by moved
p(fpi, t1) and p(fpi, t2) to the right side. The size of the
shift is given by the parameter p – for larger p the eva-
sion manoeuvre makes larger evasion. The emL, emU and
emD are defined similarly to emR only with different shift
direction of the points to the appropriate side. The veloc-
ity changing manoeuvres emF and emS change the flight
plan by time t′1 that p(fp′i, t

′
1) = p(fpi, t1). For fly faster

manoeuvre is t′1 < t1 and for fly slower t′1 > t1. The ap-
plication of emF manoeuvre is restricted by the maximal
flying velocity of the plane. The emS manoeuvre is not re-
stricted, because there can be inserted holding orbit if the
minimal flying velocity is reached. Evasion manoeuvres can
be combined together by their sequential application.

5. ITERATIVE PEER-TO-PEER CA
This section introduces iterative peer-to-peer CA [9] used

as a provider of comparison result for multi-party CA. The
algorithm solves an encounter enk = 〈t, {fpi}Ai∈AC 〉 by

545

the selection of most important collision airplane pairs I =
{A1

⊗
A2, A3

⊗
A4 . . .} where each airplane from AC can

be included only once in I. Identification of the set I is
done in the distributed manner. Each Ai ∈ AC selects
its opponent Aj from local view of the encounter enAi

k =

〈t, {fpi}
⋃
{f̂pj}Aj∈AC\Ai

〉 (see Section 3) using

arg min
Aj∈AC

arg min
t1

col(fpi, f̂pj , t1) = 1 . (1)

Each Ai ∈ I starts pair negotiation on removing collision
(PNRC) with its colliding opponent Aj . If there is a conflict
– Ai selects Aj which is already negotiating with other air-
plane Ak – Aj will stop its current negotiation if and only

if t
Ai

⊗
Aj

1 < t
Aj

⊗
Ak

1 . Note that for the same times the
first selected opponent by Aj will stay. The encounter in
which Aj is included can be changed during its PNRC. Aj

stops current PNRC if the solved collision no more exists
within new encounter or there is identified more important
opponent to Aj .

Within PNRC these airplane pairs Ai

⊗
Aj ∈ I prepare

a set of possible changed flight plans with their utility value

Fi = {〈fp′i1,ui(fp′i1)〉, 〈fp′i2,ui(fp′i2)〉 . . .} . (2)

First, the flight plans 〈fp′i,ui(fp′i)〉 ∈ Fi are given by the
application of all em ∈ EMi to the place of collision Ai⊗Aj

using the lowest parametrization p first, see the Section 4.
Note, that the set EMi can contain different manoeuvres
for each airplane and there is always included leave plan as
it is manoeuvre em0 for all airplanes. The changed flight
plan fp′i of em application is included in Fi if and only if

∀Aj ∈ Ãi is (arg min
t

col(fp′i, f̂pj , t) = 1) > t
Ai⊗Aj

1 . (3)

Then both planes Ai and Aj exchange their F̂ – local future
parts of proposed changes with their utility values (counted
from the whole flight plans) for next δ interval, see the Sec-
tion 3. Ai prepares the negotiation set

SAi⊗Aj

i = {〈fp′i1,ui(fp′i1), f̂p
′
j1,uj(fp′j1)〉,

〈fp′i1,ui(fp′i1), f̂p
′
j2,uj(fp′j2)〉 . . .}

(4)

as a cartesian product of Fi and F̂j . Each tuple

〈fp′ik,ui(fp′ik), f̂p
′
jl,uj(fp′jl)〉 ∈ SAi⊗Aj

i is included if and
only if

(arg min
t

col(fp′ik, f̂p
′
jl, t) = 1) > t

Ai⊗Aj

1 . (5)

If the negotiation set SAi⊗Aj is empty, Ai adds to the Fi

flight plans as a result of application of evasion manoeuvres
em ∈ EMi using the next larger parametrization p. This is

done by both Ai and Aj and new SAi⊗Aj

i is generated. The
whole process is repeated until the negotiation set holds at
least one element.

Aj does the same from its perspective and its view of

negotiation set SAi⊗Aj

j holds equivalent elements as SAi⊗Aj

i ,

but has full flight plan for fp′j and local future parts for fp′i.
Both airplanes Ai resp. Aj propose the solution

arg max
〈fp′

ik
,ui(fp′

ik
),f̂p

′
jl,uj(fp′

jl
)〉∈Fi

ui(fp′ik) + uj(fp′jl) resp.

arg max
〈fp′

jl
,uj(fp′

jl
),f̂p

′
ik,ui(fp′

ik
)〉∈Fj

ui(fp′ik) + uj(fp′jl) .

(6)

If there exists more candidates with the same value of se-
lection criterion, the proposed solution is selected randomly
from these candidates. To agree with one of two different
randomly proposed solutions Ai and Aj can use protocol
based on commitment scheme known from cryptography [4].

After distributed application of all solutions for Ai⊗Aj ∈
I the last encounter is partially modified and new one is
detected by the local cooperative detection (Section 3) and
described peer-to-peer CA is started again. The restrictions
3 and 5 ensure that the possible application of the solution
selected from SAi⊗Aj cannot cause new earlier collision with
any airplane’s current flight plan of which they are aware
than the solved one. This assertion with combination of the
creation of I guarantees the termination of algorithm.

The described iterative peer-to-peer algorithm is also suit-
able for the application of any other solution selection from
the negotiation set than described maximal sum of utilities
in criterion 6. For example there can be used classical mono-
tonic concession protocol (MCP) [13] – the simple protocol
for automated agent to agent negotiations in cooperative
domain. Use of such protocol guarantees that both partic-
ipating agents want to maximize their expected utility. In
this case both agents leave only pareto optimal deals in the
negotiation set S and then the agents can use Zeuthen strat-
egy [13] for finding acceptable deal for both agents.

6. MULTI-PARTY CA
This section describes the collision avoidance algorithm

based on the creation of groups of airplanes which together
solve a collision or collisions. In a more dense airspace, this
approach enables better utilization of the airspace. As a
motivation for this approach, we can imagine a situation
where two airplanes have a collision Ai⊗Aj , but it is difficult
for them to avoid the collision as other airplanes are in the
airspace near to them. The situation can be so difficult that
they can have only two options, dramatically deviate from
their courses, or deviate only slightly but make their flight
plans colliding with another airplanes’ flight plans. However,
they can create a group with the other airplanes and solve
the collision Ai ⊗Aj together with them. Basically, we can
say that the two colliding airplanes will ask other airplanes
to make space for their evasion maneuvers.

The basic idea behind the presented multiparty algorithm
is to search the state space of possible applications of se-
quences of evasion maneuvers on the flight plans of airplanes.
The goal of the searching is to solve a multi-collision with
respect to given criterion evaluating the fitness of solution.
In our experiments we use the sum of flight plan utilities for
decimalization of the social welfare. There is no restriction
how many evasion maneuvers an airplane can apply to its
flight plan. This means that the state space is infinite. The
multiparty collision avoidance is motivated by A* algorithm
[7]. The A* algorithm finds the optimal solution in a finite
time if there is a solution. Our situation is more difficult,
each airplane has its local information about other airplanes.
This information can change during searching. This is the
reason why we can not use pure A* algorithm, we can not
specify searching space in the beginning of the searching.
When the new plane appears in the communication range,
its flight plan can collide with some airplane in multiparty
group. Then the A* algorithm should be restarted because
of the state space change. Our algorithm just updates states
in the open list and continues with the search. This approach

546

removes the lost of the progress of the search by restart.
There are no cycles in the state space so the list for storing
of already expanded states can be omitted. We will use only
open list O for storing of states generated by the expansion
of other states and not yet expanded.

For a given encounter enk = 〈t, {fpi}Ai∈AC 〉 a multi-
party group G ⊇ AC is a set of airplanes whose flight plans
are involved in a solution searching process. The goal of
the group is to find a solution for the encounter. Note
that solution provided by multi-party algorithm has to con-
tain flight plans for airplanes AC , but usually it will con-
tain additional flight plans for airplanes located nearby. A

state s is a set {si}Ai∈G , where si = 〈f̂pi,ui(fpi)〉 is a

tuple containing the local flight plan f̂p
s

of airplane Ai

for state s and its utility value computed by airplane Ai

from full flight plan fps
i . For the initial state s0 the G is

AC and thus the s0 contains current local flight plans de-
rived from enk with their utility values. The child state
s′ of the state s is defined as a set of changed local flight
plans with their utilities by application of evasion united
with the set of unchanged flight plans from the predeces-

sor, s′ = {〈f̂p
s′

i ,ui(fps′
i)〉}Ai∈I ∪ {〈f̂p

s

i ,ui(fps
i)〉}Ai∈G\I .

The set I ⊆ G holds exactly two airplanes which apply the
evasions to remove selected collision as described later. The
final state sf is a state which is the solution of an encounter,
basically a set of non-colliding flight plans.

For each state s there is defined the evaluation function
f(s) = g(s)+h(s). The g(s) is the cost of the application of
all evasion maneuvers applied to the s0 to get to the state
s. It is clear that g(s0) = 0. The g(s) is defined recursively.
For the child state s′ of s the

g(s′) = g(s) +
∑

Ai∈I

ui(fps
i)−

∑
Ai∈I

ui(fps′
i). (7)

In the other words, the g(s′)−g(s) is the cost of application
of evasion maneuvers with goal to remove one single colli-
sion of two flight plans for Ai ∈ I. The h(s) is the heuristics
function estimating the cost to remove all remaining colli-
sions among flight plans in the state s.

At the beginning the multiparty group contains only the
airplanes which create it, G = AC . The searching algorithm
of the group proceeds in a cycle until it finds the solution.
The state with the lowest value of evaluation function is se-
lected s∗ = arg min

s∈O
f(s). All flight plans from s∗ are checked

for collision with local flight plans of airplanes from the set
A \ G. Any colliding airplane not already included in the
set G is asked to join the group. If the airplane Ay joins the
group, then its actual local flight plan is added to all states
in O and to state s∗. Precisely, all states s ∈ O are replaced

by a new states s ∪ 〈f̂py,uy(fpy)〉 (similarly for s∗). Note
that the cost of the state g(s) does not change by addition
of new flight plan, there is no application of evasion ma-
neuvers. If the state s is the final state, algorithm finishes
and the planes in the multiparty group change their actual
flight plans to the flight plans {fp

sf

i }Ai∈G which correspond
to local flight plans in the chosen final state sf . From the
description of the algorithm below, it is clear, that each air-

plane Ax knows for each generated local flight plan f̂p
sf

i its
full version fp

sf

i .
In the other case - when s∗ is not the final state, the pair

of airplanes Ai, Aj with the earliest collision in the state s∗

is selected by

arg min
Ai,Aj∈G,Ai 6=Aj

t
fps∗

i ⊗fps∗
j

1 (8)

and these airplanes Ai, Aj generate combinations Sfps∗
i ⊗fps∗

j

of flight plans to remove their (earliest) collision. The air-
planes prepare sets Fi resp. Fj of possible changed flight
plans with their utility value

Fi = {〈fp′i1,ui(fp′i1)〉, 〈fp′i2,ui(fp′i2)〉 . . .} (9)

and their local versions F̂i resp. F̂j for next δ interval, see
the Section 3,

F̂i = {〈f̂p
′
i1,ui(fp′i1)〉, 〈f̂p

′
i2,ui(fp′i2)〉 . . .} . (10)

The flight plans 〈fp′i,ui(fp′i)〉 ∈ Fi are given by the appli-

cation of all em ∈ EMi to the place of collision fps∗
i ⊗ fps∗

j

using the lowest parametrization p, see the Section 4. Note,
that the set EMi can contain different manoeuvres for each
airplane and there is always included leave plan as it is ma-

noeuvre em0 for all airplanes. Sfps∗
i ⊗fps∗

j is then a subset

of combinations of flight plans from F̂i and F̂j which have
no collision or the first collision point of the collision is not
earlier that the old collision point, precisely

Sfps∗
i ⊗fps∗

j = {{〈f̂p
′
ik,ui(fp′ik)〉 ∈ F̂i,

〈f̂p
′
jl,uj(fp′jl)〉 ∈ F̂j} :

t
f̂p

′
ik⊗f̂p

′
jl

1 > t
f̂p

s∗
i ⊗f̂p

s∗
j

1 }

(11)

The set of new states N is created using

N = {s′ = old ∪ new|
old = s∗ \ {s∗i , s∗j}, new ∈ Sfps∗

i ⊗fps∗
j ,

∀Ax ∈ {Ai, Aj} ∀Ay ∈ G \ {Ai, Aj} :

t
f̂p

new
x ⊗f̂p

old
y

1 > t
f̂p

s∗
i ⊗f̂p

s∗
j

1 } .

(12)

New states N are added to O and the searching continues
with expansion of the state with the smallest value according
to the evaluation function.

By default the algorithm uses the zero heuristics. With
general utility function for flight plan, it is possible to have
evasion maneuvers that do not change the utility of flight
plane and can be used for collision avoidance, so only zero
heuristic is admissible [7]. For example assume we have a
scenario where two planes have a collision on their perpen-
dicular flight plans and the utility value depends only on
the flight plan length. The best solution is when one plane
speeds up and another slows down and in this case the utility
value is the same is in the initial state.

The algorithm with zero heuristics finds the final state
with the lowest value of evaluation function which corre-
sponds to the lowest utility lost for the sum of utilities of
flight plans. However, in the worst case the expanded state
space can grow exponentially with the number of collisions
in a multiparty group. We can also use different not ad-
missible heuristic. Such as ”collision” heuristic which would
combine the main utility criterion with giving more prefer-
ences to the states with less collisions. The search process
with such heuristics is faster, but its result can be far from
the best possible utility.

547

6.1 Interaction of Multi-party groups
When the airplane is asked to join the multiparty group

G1, it can be already participating in another multiparty
group G2. In this case, the airplane checks if G1 is more
important than G2 and if so, the airplane terminates its
interaction with group G2 and joins the group G1. When
an airplane terminates the interaction with the group, the
group is dissolved. The relation of importance of groups is
defined according to the earliest collision in their encounter.
When the group G is searching for solution of the encounter
〈t, {fpi}Ai∈AC 〉 then the time tG of the soonest collision is

tG = min
Ai,Aj∈G,Ai 6=Aj

t
Ai⊗Aj

1 (13)

The group G1 is more important than G2 – G1 � G2 if and
only if tG1 < tG2 . To make � relation total, it must be
defined also for situations when tG1 = tG2 , also it is not
important if tG1 < tG2 or tG1 > tG2 . It can be chosen for ex-
ample randomly, or deterministically - with help of the lexi-
cographic ordering of the string representation of the groups.

7. EXPERIMENTAL EVALUATION
The experimental evaluation and comparison of novel

MPCA algorithm has been carried out within the system
AGENTFLY. The AGENTFLY [9] implements the airspace
domain specified in the Section 2 and provides the precise
flight modeling of a large number of aircrafts. Each un-
manned aerial vehicle is controlled by an autonomous agent
which provides a flight plan updates for an execution, can
use communication infrastructure and can subscribe for re-
ceiving local perceptions (existence and position from on-
board simulated radar and transceiver equipment). The
planning problem specified in the definition 1 is supported
by the flight plan wrapping object with a highly optimized
searching algorithm using a dynamic size of state space el-
ement building blocks. The changes to the flight plan are
defined by the insertion and the alteration of the special
control dummy way-points.

Both tested algorithms are implemented as modules of the
multi-layer collision avoidance (MLCA) architecture [9] in
AGENTFLY. They are configured to use the optimization
criterion based on the maximization of the sum of utilities
while utilities have only the component for the length of
the flight plan. The MLCA provides implementation of ex-

change of local future flight plans f̂p, identification of en-
counters in local perspective and combines several methods
by use of specified timeout which comes from an encounter.
The AGENTFLY system has implemented two cooperative
collision avoidance methods: rule-based (RBCA) and itera-
tive peer-to-peer (IPPCA) collision avoidance (implemented
as plug-ins). The IPPCA was chosen as a solution provider
to which new algorithm is compared. In the Section 5 we’ve
provided its description. The implementation is based on the
concept of active and passive participants of PNRC process.
The active one is responsible for making set SAi⊗Aj and se-
lection of the solution for Ai ⊗ Aj . On the other hand, the

passive participant provides its F̂ and accepts the selected
solution. The identification who is active and who is passive
is based on natural ordering of the unique airplanes’ ids.

We’ve implemented MPCA algorithm (Section 6) as a new
plug-in in MLCA architecture of the system. It is imple-
mented mainly as a multiparty coordinator agent who co-

operates with participating airplane agents. One coordi-
nator agent manages one multiparty group and resides on
one of the airplanes contained in initial multi-collision which
caused creation of the encounter and its corresponding mul-
tiparty group. The concept of the coordinator is used for
simplification of the synchronization issues in the commu-
nication among airplanes. A multiparty coordinator is re-
sponsible for the state space expansion and searches for an
optimal solution of multi-collision. During the expansion
state it requests for the changed flight plans the airplanes in
the group needed for the expansion of the state space. After
finding the final state, it informs airplanes in the group that
they may implement one of the generated flight plans.

7.1 Random Experiment
In the random experiment we performed a set of repet-

itive tests while collecting several characteristic properties
for the comparison of both methods. The sequence of 900
runs (configuration with 5, 10 ... 90 airplanes each 50 times
repetitively) for each method was carried out in the limited
airspace area of 31 x 31 units. The mission Mi holds ex-
actly two way-points randomly generated on the two oppo-
site airspace borders, thus each airplane needs to fly across
the square. All way-points have the same altitude during the
whole experiment and each new airplane’s way-points are
generated on the adjacent borders of the square in clock-wise
direction. Such generating scheme guarantees high num-
ber of collisions in the middle of the airspace. The safety
zone size rsz = 0.25 units and the communication range
c = 10 units are the same for all airplanes. The airplane
flying speed can vary between 0.075 and 0.125 units per
second. Totaly 85,500 airplanes were simulated during more
than 230 hours of flight time. The collision-free solution was
found in every simulation run – there is no collision between
any two final airplanes’ flight plans.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

#UAVs

S
um

 O
f L

en
gt

h
C

ha
ng

es
 In

 F
P

s

MPCA
IPPCA

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

#UAVs

#F
P

 C
ha

ng
es

 D
ue

 T
o

C
ol

lis
io

ns

MPCA
IPPCA

Figure 2: Top: The sum of differences between fi-
nal collision-free paths and shortest regardless colli-
sions. Bottom: The number of applied changes by
all planes in particular experiment run. Presents
average values from 50 repeated experiments.

The top chart in the Figure 2 presents the comparison of

548

the average sum of all differences between the final collision-
free flight plans and the shortest path from start to end
way-point in given run. The MPCA solves the collisions us-
ing only 50 to 80 percentage of average flight plan length
generated by the IPPCA in the same scenario. The value
varies due to the fact that the same numbers and types of
collisions during each randomized experiment are not guar-
anteed. The bottom plot displays the average sum of num-
bers of changes of flight plans applied by all airplanes in the
given configuration. More changes occur in the experiment
using the IPPCA due to its iterative nature (Section 5). The
difference in the number of applied changes in a flight plan
correlates with the difference depicted in the previous chart.
This shows that there must exist multi-party groups G with
more than two airplanes that participate in the MPCA.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

#UAVs

T
ot

al
 F

lo
w

 [M
B

]

MPCA
IPPCA

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

#UAVs

M
ax

 C
om

m
un

ic
at

io
n

B
an

dw
id

th
 [k

B
/s

]

MPCA
IPPCA

0 50 100 150 200 250 300 350 400 450 500
10

−1

10
0

10
1

10
2

10
3

Time (s)

kB
/s

MPCA
IPPCA

Figure 3: The communication flow analysis: total
communication flow (top), maximum network band-
width (middle) and network flow distribution over
time in one specific run for 90 UAVs (bottom).

We’ve studied also the communication aspects of both al-
gorithms, see Figure 3. Both algorithms have almost the
same amount of transmitted bytes in total during the specific
configuration, but there is huge difference in the flow distri-
bution. The middle chart presents the maximal communica-
tion bandwidth depending on the number of airplanes in cur-
rent configuration. This chart presents the overall maximum
from all 50 repeated runs. It is apparent that the MPCA
requires several times wider communication bandwidth than
the IPPCA, especially for the configurations with more air-
planes. The higher number for larger setup is given by the
larger multi-party groups appearing in the collision area (the
center of restricted airspace). The MPCA requires more

communication during the state expansion phase within the
coordination group but on the other hand it requires lower
number of detected encounters. This leads to almost the
same sum of total transmitted bytes among all aircrafts.
The characteristic distribution of communication flow over
time is shown in the bottom plot. The peeks around time
200 seconds are caused by the higher occurrence of multi-
collisions (airplane needs around 400 seconds to fly to the
opposite side). The computation requirements of both al-
gorithms for the entire configurations have been also ana-
lyzed. The computation requirements are measured as a
sum of time necessary to solve all collisions in one run. It
has been measured on the same identical computer for both
algorithms. The requirements are almost the same for both
methods, but the distribution is different similarly as the
network flow.

7.2 Specific Scenarios
The differences between both algorithms have been tested

on two selected worse-case based scenario setups. In the first
setup there are flying 13 airplanes located in the geometri-
cal vertically oriented plane. Their position in the plane is
shown in the Figure 4 left. Initially all of them fly in the
same direction and at the same flight speed. There is an-
other airplane which flies in the opposite direction and has
a head collision with the airplane located in the middle of
the first group. The final results comparing both collision
avoidance methods are depicted on the right side in the Fig-
ure 4. When using the IPPCA only one plane avoids the
group of airplanes and therefore no other planes participate
in the solution. On the other hand, while using the MPCA
the middle airplane in the group performs a combination of
several flight plan changing manoeuvres and creates a small
hole in the middle of the group flying in geometrical plane
to let the opposite airplane fly through. Then the airplane
goes back to its original central position within the group.
The difference is given by the fact that the multi-party so-
lution is found by the search for the solution with best cri-
terion through the large space of possible combinations. In
the IPPCA two negotiating airplanes must find solution of
their collision and next negotiation cannot take already ap-
plied changes back. The MPCA provides a solution that is
only 0.213 units longer than the initial flight plan while the
IPPCA gives a solution that is 2.843 units longer. These
values were calculated as an average from 20 consecutive
experiments.

Figure 4: Left: the setup of the first test scenario.
Right: the result after IPPCA (top) and MPCA
(bottom) negotiations.

The second selected worse-case based scenario setup places
ten airplanes equally to the horizontal circle. All of them
start at the same flight altitude and want to fly to the op-

549

posite side of the circle through its center. Therefore in
the center of the circle there is a multi-collision of all air-
planes where each one has collision with all others. Both
algorithms find a solution for the setup – final flight plans
are not colliding together. The IPPCA produces the final
flight plans 1.963 units longer then the initial ones and the
MPCA provides solution only 1.441 units longer.

8. CONCLUSION
The novel multi-party approach addressing the problem of

decentralized collision avoidance among agent-controlled au-
tonomous airplanes participating in the free-flight operation
is presented in the paper. The multi-party algorithm for the
specified airspace domain is described and experimentally
compared to the iterative peer-to-peer method. The algo-
rithm utilizes the benefits of a centralized solution search
and optimization but still respects the decentralized manner
in the air domain with restricted communication range. Sev-
eral airplanes having mutual collision are grouped together
and perform state space generation and exploration for find-
ing the best solution for the given criterion function. The
multi-party group is dynamically changed if it is necessary
or two groups can be merged into one.

The multi-party algorithm has been tested on two selected
worse-case based scenario setups where it has been proved
that it has the potential to provide the solution with bet-
ter value of given criterion function than the peer-to-peer
method. An extensive set of experiments has been carried
out where the properties of both methods have been studied.
In random experiment it was validated that the multi-party
algorithm never provides worse solution than the iterative
peer-to-peer in any configuration. For the setups with mu-
tual collisions among several airplanes the multi-party solu-
tion is much better for the given criterion. The algorithms
have been compared in their communication properties. The
necessary communication total flow is the same for both
methods. But the distribution of the communication flow
over time is different. The proposed multi-party algorithm
requires wider communication bandwidth among airplanes
during the state space expansion phase. In our next work we
would like to address the influence of the coordination group
size to the state space expansion and to the time necessary
to find a solution. We are thinking of implementation of a
limit for group size and of definition of a membership func-
tion which will be used for the identification which airplane
should be replaced by another one for the fully occupied
groups. Such restriction should provide solution also for
the scenarios with hundreds of airplanes where this unlim-
ited version will not work due to the fast expansion of the
searched state space and long searching time. In this case
the current multi-party version will be timeouted because it
will not provide the solution until the time specified in the
encounter.

9. ACKNOWLEDGEMENT
Effort sponsored by the Air Force Office of Scientific Re-

search, Air Force Material Command, USAF, under grant
number FA8655-06-1-3073. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government
purpose notwithstanding any copyright notation thereon1.

1The views and conclusions contained herein are those of

Also supported by Czech Ministry of Education grant
6840770038.

10. REFERENCES
[1] DOD. Unmanned aircraft systems roadmap 2005-2030,

2005.

[2] J. C. Hill, F. R. Johnson, J. K. Archibald, R. L. Frost,
and W. C. Stirling. A cooperative multi-agent
approach to free flight. In AAMAS ’05: Proceedings of
the fourth international joint conference on
Autonomous agents and multiagent systems, pages
1083–1090, New York, NY, USA, 2005. ACM Press.

[3] J. Krozel, M. Peters, K. D.Bilimoria, C. Lee, and J. S.
Mitchel. System performance characteristics of
centralized and decentralized air traffic separation
strategies. In 4th USA/Europe Air Traffic
Management R & D Seminar, Stanta Fe, NM,
December 2001.

[4] M. Naor. Bit commitment using pseudorandomness.
Journal of Cryptology: the journal of the International
Association for Cryptologic Research, 4(2):151–158,
1991.

[5] S. Parsons and M. Wooldridge. Game theory and
decision theory in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 5(3):243–254, 2002.

[6] J. S. Rosenschein and G. Zlotkin. Rules of Encounter.
The MIT Press, Cambridge, Massachusetts, 1994.

[7] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Series in Artificial
Intelligence, Englewood Cliffs, New Jersey, 1995.

[8] R. Schulz, D. Shaner, and Y. Zhao. Free-flight
concept. In Proceedings of the AiAA Guidance,
Navigation and Control Conference, pages 999–903,
New Orelans, LA, 1997.

[9] D. Šǐslák, P. Volf, A. Komenda, J. Samek, and
M. Pěchouček. Agent-based multi-layer collision
avoidance to unmanned aerial vehicles. In Proceedings
of International Conference on Integration of
Knowledge Intensive Multi-Agent Systems (KIMAS
’07): Modeling, Evolution and Engineering, 2007.

[10] J. P. Wangermann and R. F. Stengel. Optimization
and coordination of multiagent systems using
principled negotiation. Journal of Guidance, Control,
and Dynamics, 22(1):43–50, 1999.

[11] S. Wollkind, J. Valasek, and T. R. Ioerger. Automated
conflict resolution for air traffic management using
cooperative multiagent negotiation. In Proc. of the
American Inst. of Aeronautics and Astronautics
Conference on Guidance, Navigation, and Control,
Providence, RI, 2004.

[12] M. Wooldridge, editor. An Introduction to MultiAgent
Systems. John Wiley and Sons Ltd, 2002.

[13] G. Zlotkin and J. S. Rosenschein. Negotiation and
task sharing among autonomous agents in cooperative
domains. In N. S. Sridharan, editor, Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 912–917, San Mateo, CA, 1989.
Morgan Kaufmann.

the author and should not be interpreted as representing the
official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the U.S.
Government.

550

