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ABSTRACT

In this paper, we consider the problem of selecting, for any
given positive integer k, the top-k nodes in a social network,
based on a certain measure appropriate for the social net-
work. This problem is relevant in many settings such as
analysis of co-authorship networks, diffusion of information,
viral marketing, etc. However, in most situations, this prob-
lem turns out to be NP-hard. The existing approaches for
solving this problem are based on approximation algorithms
and assume that the objective function is sub-modular. In
this paper, we propose a novel and intuitive algorithm based
on the Shapley value, for efficiently computing an approxi-
mate solution to this problem. Our proposed algorithm does
not use the sub-modularity of the underlying objective func-
tion and hence it is a general approach. We demonstrate the
efficacy of the algorithm using a co-authorship data set from
e-print arXiv (www.arxiv.org), having 8361 authors.
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1. INTRODUCTION

A social network is a social structure made of individu-
als or organizations that are tied by one or more specific
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types of interdependency, such as friendship, co-authorship,
collaboration, web links, etc. Typically, each individual is
represented by a node in the network, and there is an edge
between two nodes if there exists a social interaction be-
tween them [8]. Finding patterns of social interaction within
a population has wide-ranging applications, which includes
knowing the social and organizational structure. Given a so-
cial network, there has been quite intensive interest to find
the influential nodes based on a well defined measure. We
now present a few motivating examples in this regard.

Our first example is diffusion of information in social
networks. In general, social networks play a key role for the
spread of information or behavior within a population of in-
dividuals. The idea behind diffusion of diffusion is the extent
to which people are likely to be influenced by the decisions
of their neighbors. For a given value of k, a natural ques-
tion that emerges is which subset of nodes with cardinality
k should we target to maximize the size of the information
cascade [2, 3] in a social network.

Our second example concerns analysis of collaboration
patterns among research communities. There exists a nat-
ural social network here, where a node corresponds to a re-
searcher and an edge exists between two researchers if they
have collaborated (for example, co-authored in a paper). In
such a network, it may be desirable to find the most prolific
researchers since they are most likely the trend setters for
new innovations.

Our third example is concerned with a social network of
books sold by an online book seller such as Amazon.com
(www.amazon.com). Edges between books represent the co-
purchasing of books by the same buyers. It may be useful
to find the most frequently co-purchased books because it
would help the online book seller to enhance the quality
of its recommendations to the users and also helps him to
maximize his own profits.

In all the above mentioned contexts, the common goal is
to find the influential nodes in the social network with re-
spect to a measure that can capture the behavior in which
we are interested. This task may turn out to be computa-
tionally hard in some contexts such as diffusion of informa-
tion. Domingos [1] considered the problem of finding a set of
nodes with cardinality k& that can maximize the information
cascade in viral marketing setting and proposed predictive
models to show that selecting the right set of users for a mar-
keting campaign can make a big difference. Later Kempe,
Kleinberg, and Tardos [2] approached this problem from the



perspective of two widely studied operational models for dif-
fusion of information, namely thresholds model and cascade
model. They showed that the underlying objective function
of the problem is NP-hard and further showed that it is
sub-modular. They proposed provable approximation guar-
antees for this problem. They also presented a framework to
generalize the thresholds model and the cascade model for
reasoning about the performance guarantees of algorithms
for these types of influence problems in social networks. In
another paper, Kemp, Kleinberg, and Tardos [3] consider the
problem of information diffusion in the presence of word-of-
mouth referral and give a general model called the decreasing
cascade model. The authors show that, in the presence of de-
creasing cascade model, a natural greedy algorithm achieves
an approximation factor of (1 — 1 —¢€) where ¢ > 0. In both
these papers, the authors point out that the greedy approx-
imation algorithms suffer from a limitation that the under-
lying objective function for information diffusion can not be
computed exactly and efficiently. Due to this reason, they
efficiently simulate the diffusion process to determine ap-
proximate value of the underlying objective function. They
further posed a question how to find influential nodes more
efficiently in a systematic manner?

In this paper, we propose a novel and intuitive way to
find the influential nodes with respect to a defined measure
in social networks using the notion of the Shapley value, a
well known concept in cooperative game theory [7, 4]. Our
approach leads to an efficient algorithm for computing the
k most influential nodes approximately.

For ease of explanation, we develop this approach in the
context of coauthorship networks. In such a network, each
node represents a researcher. There exists an edge between
two nodes if the corresponding researchers have coauthored
in a paper. Given a value for k, we need to find a set of
k researchers who have coauthored with maximum number
of other researchers. From now on we refer to this prob-
lem as top-k modes problem in coauthorship networks. Let
N = {1,2,...,n} be the set of nodes in the network. For
any S C N, we define a function g(S) that represents the
number of nodes that are adjacent to nodes in the set .S. We
call the function g(.) as top-k nodes function. Given a value
for k, we show that the problem of finding a set S of cardi-
nality k such that g(S) attains maximum value is NP-hard.
This motivates us to think about efficiently finding a set
of cardinality k that can approximate the optimal solution.
Our contribution is to propose an intuitive algorithm based
on the Shapley value for this purpose. It also turns out that
our approach can be applied even when the underlying ob-
jective function is not sub-modular, as assumed in [2, 3]. We
evaluate the the performance of the proposed algorithm us-
ing a co-authorship data set with 8361 authors from e-print
arXiv (www.arxiv.org) and show that it outperforms a well
known benchmark heuristic algorithm.

1.1 Organization of the Paper

The rest of the paper is organized as follows. In Section
2, we give a brief overview of Shapley value. In Section 3,
we prove a few properties of the objective function involved
in the top-k nodes problem and present our algorithm to
find an approximate solution to the top-k£ nodes problem.
In Section 4, we evaluate the performance of the proposed
approach using a coauthorship data set. We finally conclude
the paper in Section 5.

2. PRELIMINARIES

Here we present a brief discussion on cooperative game
theory. A cooperative game with transferable utility is de-
fined as the pair (N, v) where N = {1,2,...,n} is the set of
players and v : 2 — R is a characteristic function, that as-
signs a value to each subset of N, with v(¢) = 0. The value
v(S) for a subset S of N (also called the worth of coalition
S) represents the total utility that can be attained by the
members in S only without any help from the members in
N\ S.

The Shapley value [7, 4] is a solution concept for cooper-
ative games which predicts a unique expected utility alloca-
tion for each player in the game. The Shapley value tries
to capture how coalitional competitive forces influence the
possible outcomes of a game. It describes a reasonable or
fair way of dividing the gains from cooperation given the
strategic realities captured by the characteristic function. It
captures the marginal contribution that each player makes
to the dynamics of the game. Given a cooperative game
with transferable utilities, (N,v), the Shapley value, is the
vector ®(v) = (P1(v), P2(v),...,Pn(v)), where

®i(v) = % > [o(Si(r) ) — o(Si(m))] (1)
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where 2 is the set of permutations over N, and S;() is the
set of players appearing before the ith player in permutation
7. The Shapley value ®;(v) of player 7 is the sum of marginal
contributions of the player over all possible permutations
averaged over the number of permutations.

3. THE PROPOSED APPROACH

Here we first present a few properties of the top-k nodes
problem and then present our algorithm to this problem.

3.1 Properties of the Top-k Nodes Function

We now prove a few properties of the top-k node function
g9(.)-

Proposition 1: Given any co-authorship network, the top-
k nodes function g(.) is submodular.

Proof: Proof is an easy consequence of the definition g(.).

Proposition 2: The top-k nodes function g(.) is monoton-
ically non-decreasing.

Proof: Directly follows from Proposition 1.

Proposition 3: Given a co-authorship network, the prob-
lem of finding the top-k nodes is NP-hard.

Proof: Let us consider the following instance of the k-
coverage problem which is known to be NP-hard. Let U
be the universal set with n elements. Each element u € U
has an associated weight w(u). Let C = {A1, A2,..., An}
be the set of subsets of U. We are given an integer k. We
wish to know whether there exist k subsets of U, where each
subset selected is a member of C such that the weight of the
elements in UF_; A; is maximized.

From the above instance of the k-coverage problem, we
can construct an instance of the top-k£ nodes problem. Note
that if any of the weights of the elements in U are negative
or fractional, we can add appropriately a positive quantity
to each of these elements and ensure that all the weights
in U are positive integers. Let us call the new weight of
an element u in U be w/(u). We define a new graph G’



/ . . . .
with n+ 3" | w () nodes, i.e., there exists a node ¢ corre-

sponding to each subset A4; in C and there exist w’ (u) nodes
corresponding to each element v in U. If an element u be-
longs to set A;, then there exist directed edges from i to
the corresponding w,(u) nodes of u in G . If we pick the k
nodes corresponding to the k sets in the solution of the k-
coverage problem, it results in a solution to the top-k£ nodes
problem. On the other hand, if we can pick k£ nodes that
solve the top-k nodes problem, then we have a solution to
the k-coverage problem.

It is clear that to address the top-k nodes problem, we
want to find a set S of cardinality k such that g(S) is max-
imized. Proposition 3 shows that it is an NP-hard problem.
This motivates us to think about how to approximate the
optimum solution for the top-k nodes problem. Nemhauser,
Wolsey and Fisher [5] have presented a greedy hill climbing
algorithm that achieves an approximation factor of (1 —1).
Proposition 4 states this result more formally.

Proposition 4: For any non-negative, monotone sub-
modular function f, let S be a set of size k obtained by
selecting elements one at a time, each time choosing an ele-
ment that provides the largest marginal increase in the func-
tion value. Let S™ be a set that maximizes the value of f
over all k-element sets. Then f(S) > (1 — 1).f(S*). That
is, S achieves a (1 — %)—approximation.

This greedy algorithm assumes that it is possible to eval-
uate the underlying function f(.) exactly, which may not be
the case in several contexts in social networks [2, 3]. To over-
come the above serious difficulty, we propose an approach
based on the Shapley value. The motivation for using the
Shapley value arises from the fact that the Shapley value for
each node (or player) gives the marginal contribution the
node makes to the coalitional dynamics in the game. The
higher the marginal contribution of a node, the higher the
Shapley value of that node and the more important that node
is among the players. It therefore makes sense to use the the
Shapley value to pick an element with largest marginal gain
in each iteration of the the greedy algorithm [5] as stated in
Proposition 4. For this, we need to model the top-k nodes
problem as an appropriate cooperative game.

The use of Shapley value in this current problem setting
has another significant advantage, namely that the function
g(.) need not be submodular.

3.2 Shapley Value Based Algorithms

First, we model the top-k nodes problem as a cooperative
game, (N,v). We define N to be the set of nodes in the co-
authorship network. For each subset S C N, we define v(5),
in a natural way, as the number of nodes that are adjacent
to the nodes in S.

‘We now outline a naive algorithm, based on Shapley value,
for the top-k nodes problem.

Algorithm 1: Naive Algorithm

1. Consider the set, 2, of n! permutations of the nodes
in the set N. Note that the size of each permutation
is n.

2. For each permutation (z1,z2,...,%,) in £, compute

the marginal contribution of each node i using the fol-
lowing expression:

,Ti—1})

3. Compute the Shapley value of each node in N using
expression (1).

v({z1,z2,...,2:}) — v({z1, 22, . ..

4. Pick k nodes with the highest Shapley values. The
solution to the problem is the set consisting of these k
nodes.

In Algorithm 1, it is clear that we have to compute Shapley
value of each node while considering all possible n! permu-
tations of the nodes. It is easy to see that the running time
of Algorithm 11is O(2)". Thus this algorithm finds an ap-
proximate solution to the top-k nodes problem, but not in
an efficient way. We propose to circumvent this difficulty
by finding approximate Shapley values of the nodes in the
co-authorship network in polynomial time. We do this by
using a randomly sampled subset, call it ¥, of permutations
where the cardinality of ¥ is polynomial in n. Let ¢ be the
cardinality of ¥, i.e., ¢ = |¥|. We can compute the approxi-
mate Shapley values of nodes using the following algorithm.

Algorithm 2: Efficient Approximate Algorithm

1. Consider the set ¥ with ¢ permutations of the nodes
in N, where t << n!. Note that the size of each per-
mutation is n.

2. For each permutation (z1,z2,...,T,) in ¥, compute
the marginal contribution of each node ¢ using the fol-
lowing expression:

,Ti—1})

3. Compute the Shapley value of each node in ¥ using
expression {£ Yo [v(Si(m) Ui) — v(Si(m))}.

4. Pick k nodes with the highest Shapley values and the
solution is given by these k£ nodes.

v({z1,z2,...,2:}) — v({z1, 22, . ..

In Algorithm 2, we have to compute the marginal con-
tribution of each node corresponding to each permutation
in U. This takes O(tn) time. Picking k nodes with the k
highest Shapley values takes O(k log(n)) time. The overall
running time of Algorithm 2 therefore is O(tn + k log(n)),
and also we claim that ¢ is polynomial in n.

Recall that we need to find a node, say v, with a high
marginal gain in each iteration of the greedy algorithm [5]
as stated in Proposition 4. We conjecture that Algorithm 2
picks such a node v in each iteration that is (1 — €) approx-
imate best node, where ¢ > 0. Given that this conjecture is
true, then by invoking Theorem 1 in [3], we can claim that

Algorithm 2 achieves an approximation factor of (1 — é — e')

where € depends on € polynomially.

4. EXPERIMENTS

In this section, we show the efficacy of Algorithm 2 by
conducting experiments on a real world co-authorship data
set and comparing its performance against that of a well-
known benchmark heuristic, the mazimum degree heuristic
[8]. as a baseline for all our comparisons. In applying the



maximum degree heuristic to address top-k nodes problem,
we simply pick k£ nodes in the co-authorship network having
the k£ highest degrees.

‘We construct a co-authorship network with 8361 researchers
using the co-authorships in high-energy Physics theory publi-
cations. These co-authorships are between scientists posting
preprints on the high-energy Physics theory e-print archive
(www.arxiv.org) between Jan 1, 1995 and December 31,
1999. More information on this data set is available in [6]. In
this co-authorship network, there is a node corresponding to
each scientist and there exists a link between two scientists
if they have co-authored at least one paper.

650 Algorithm-2 —6—
600 - Maximum Degree Heuristic 1
550 q
500 q
450 + 9
400 1
350 1
300 q
250 q
200 q
150 q
100 q
504 .

Maximum Number of Co-AuthorS

0 L L L L L L L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Value of k

Figure 1: Shapley value based approach versus max-
imum degree heuristic based approach

The values that we consider for k£ are 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90. For each
possible value of k, we compute the approximate solutions
to the top-k nodes problem using Algorithm 2 and using the
maximum degree heuristic. These values are averaged over
1000 runs. Results shown in Figure 1 clearly indicate that
the performance of Shapley value based algorithm superior
than that of the maximum degree heuristic.

We now give a brief note on the size of the sampled set ¥
in Algorithm 2. Recall that there are n = 8361 researchers
in the co-authorship network. So we have to sample a poly-
nomial number of permutations in n into the set W out of
all possible 8361! (very huge number) permutations. We il-
lustrate this sampling process for k = 15. We work with
different sampled sets of sizes 3000, 4000, 5000, 6000, 7000,
8000, 9000, 10000. The graph in Figure 2 shows the max-
imum number of co-authors with each size of sampled set.
This graph shows that we can get convincingly accurate re-
sults even with moderate sizes of sampled sets.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the top-k£ nodes problem
where we need to find £ most influential nodes in the social
network. We proposed an algorithm based on the Shapley
value for efficiently computing an approximate solution to
the top-k nodes problem since it is hard computationally.
We showed the efficacy of this algorithm using a real world
coauthorship network from e-print arXiv (www.arxiv.org).

150 T yan var
performanté curve

Maximum Number of Co-AuthorS
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Sampled Set Size

Figure 2: Maximum Number of co-authors for dif-
ferent sampled set sizes when k=15

The proposed approach can also be used even when the
underlying objective function is not submodular. This would
mean that the approach can be used in a wide variety of
related problems.

It would be interesting to study the approximation guar-
antees provided by Algorithm 2 more formally. It would also
be useful to determine bounds on the size of sampled set ()
of permutations in Algorithm 2 to get a desired quality of
the approximation.
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