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ABSTRACT
This paper presents the dynamics of multi-agent reinforce-
ment learning in multiple state problems. We extend previ-
ous work that formally modelled the relation between rein-
forcement learning agents and replicator dynamics in state-
less multi-agent games. More precisely, in this work we use
a combination of replicator dynamics and switching dynam-
ics to model multi-agent learning automata in multi-state
games. This is the first time that the dynamics of prob-
lems with more than one state is considered with replicator
equations. Previously, it was unclear how the replicator dy-
namics of stateless games had to be extended to account for
multiple states. We use our model to visualize the basin
of attraction of the learning agents and the boundaries of
switching dynamics at which an agent possibly arrives in
a new dynamical system. Our model allows to analyze and
predict the behavior of the different learning agents in a wide
variety of multi-state problems. In our experiments we il-
lustrate this powerful method in two games with two agents
and two states.

Categories and Subject Descriptors
I.2.6 [Learning]; I.2.11 [Distributed Artificial Intelli-
gence]

General Terms
Algorithms, Theory

Keywords
Multi-Agent Learning, Piecewise Replicator Dynamics

1. INTRODUCTION
Learning in Multi-Agent Systems is a complex and cum-

bersome task. The theoretical foundation of single agent
learning implies that as long as the environment an agent ex-
periences is stationary, and the agent can experiment enough,
Reinforcement Learning (RL) guarantees convergence to the
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optimal strategy [6]. This is no longer valid in the multi-
agent case because there are now multiple agents learning
in the same environment, facing unobservable actions and
rewards of other agents and non-stationarity of the environ-
ment. All these complicating properties of multi-agent sys-
tems make it hard to engineer learning algorithms capable
of finding optimal solutions.

Recent debate in the Multi-Agent Learning (MAL) com-
munity gave direction to a new research agenda for the field
[5]. An important problem of MAL that stands out is the
lack of a theoretical framework such as exists for the sin-
gle agent case. As discussed in previous work we employ
an evolutionary game theoretic approach to this problem
and the international research agenda [8]. We do this by
analyzing the relation between RL and replicator dynamics
(RD). More precisely, in [9, 10, 4] the authors derived a for-
mal link between the replicator equations of Evolutionary
Game Theory (EGT) and reinforcement learning techniques
as Q-learning and Learning Automata. In particular this
link showed that in the limit these learning algorithms con-
verge to a certain form of the RD. This allows to establish
equilibria using the RD that tell us what states a given learn-
ing system will settle into over time and what intermediate
states it will go through.

In previous work it was shown that there are a number
of benefits to exploiting this link: one, the model predicts
desired parameters to achieve Nash equilibriums with high
utility, two, the intuitions behind a specific learning algo-
rithm can be theoretically analysed and supported by using
the basins of attraction, three, it was shown how the frame-
work could easily be adapted and used to analyze new MAL
algorithms, such as for instance lenient Q-learning [4].

The major limitation of using the RD as a model of MAL
is that it has only been used in stateless repeated games. In
this work, however, we take the next step. We show how the
link between EGT and RL can be exploited in multiple state
problems for multiple agents using Learning Automata as
RL technique, while maintaining the above mentioned ben-
efits. We do this by introducing a combination of switch-
ing dynamics and RD, which we call Piecewise Replicator
Dynamics, to describe the learning processes over the mul-
tiple states. We calculate a new average reward game for
each state, which takes into account the rewards that are
obtained in the other states. This game can then be stud-
ied using the replicator dynamics. The resulting dynamic
works under the assumption that agents are only learning
in a single state. In reality, however, agents update their
action probabilities in all states, and these probabilities will

307



all change in parallel. Changes in action probabilities in one
state will cause the average reward games to change in other
states. The dynamics observed for an average reward state
game are only a snapshot of the true learning dynamics. To
account for these changes we model the system as a switch-
ing dynamical system. Based on the qualitative changes in
the dynamic, we partition the state space in a number of
cells which correspond to the different possible attractors in
the state games. We assume that each cell has its own fixed
replicator dynamic. The entire system can then be mod-
eled by updating the current action probabilities in each
state, according to the replicator dynamics of the current
cell. When the action probabilities leave this cell the equi-
libria of the state game change, and we get a new replicator
dynamic that drives the system. In this way we follow the
trajectory in all states through multiple cells and dynamics
until an equilibrium is reached.

The remainder of this paper is structured as follows. In
Section 2 we elaborate on the necessary background to un-
derstand the further developments of this paper. Section 3
introduces piecewise replicator dynamics for modeling multi-
learning in multi-state problems. Section 4 demonstrates
our approach with some experiments. Finally, we conclude
in section 5.

2. BACKGROUND
In this section we start by introducing the multi-agent

learning setting we consider. We continue with a concise
summary of Learning Automata and we end this section
with a description of the Replicator Dynamics.

2.1 Multi-agent learning setting
In this paper we adopt the formal setting of Markov games

(also called stochastic games). Markov games are a straight-
forward extension of single agent Markov decision problems
(MDPs) to the multi-agent case. A Markov game consists
of a set of states S and a set of agents N . In each state si

Ai
k = {ai

k1, . . . , a
i
kir

} is the action set available for agent k,
with k : 1 . . . |N |. Actions in the game are the joint result
of multiple agents choosing an action independently. The
transition function T (si, a

i) and reward function Rk(si, a
i),

determine the probability of moving to another state and
the reward for each agent k, depending on the current state
si and the joint action in this state si, i.e. ai = (ai

1, . . . a
i
|N|)

with ai
k ∈ Ai

k. The reward function Rk(s, a) can be indi-
vidual to each agent k, meaning that different agents can
receive different rewards for the same state transition.

The objective for each agent in the game is to find a policy
which maps each state to a strategy, in order to maximize its
reward. In this paper we consider the limit average reward,
meaning that agents try to maximize their average reward
over time. For a joint policy α consisting of a policy for each
agent in the system, the limit average reward to agent k is
defined as:

Jk(α) ≡ liml→∞
1

l
E

"

l−1
X

t=0

Rk(s(t), a1(t), . . . , a|N|(t))

#

(1)

In the remainder of this paper we will assume that the
Markov chain of system states under every joint policy is
ergodic. A Markov chain {xl}l≥0 is said to be ergodic when
the distribution of the chain converges to a limiting distribu-

tion π(α) = (π1(α), . . . , πN (α)) with ∀i, πi(α) > 0 as l → ∞.
This assumption allows us to rewrite the average reward to
agent k under a given joint policy α as:

Jk(α) =

|S|
X

i=1

πi(α)Eα

h

Rk(si, a
i)

i

(2)

.
where Eα

ˆ

Rk(si, a
i)

˜

is the expected reward for agent k

in state si under joint policy α.

2.2 Learning Automata
Learning Automata are simple reinforcement learners which

attempt to learn an optimal action, based on past actions
and environmental feedback. Formally, the automaton is
described by a tuple {A, β, p,U} where A = {a1, . . . , ar} is
the set of possible actions the automaton can perform, p is
the probability distribution over these actions, β is a ran-
dom variable between 0 and 1 representing the evironmental
response, and U is a learning scheme used to update p.

A single automaton is connected in a feedback loop with
its environment. Actions chosen by the automaton are given
as input to the environment and the environmental response
to this action serves as input to the automaton. Several
automaton update schemes with different properties have
been studied. In this paper we use the so called Linear
Reward Inaction (LR−I) scheme:

pm(t + 1) = pm(t) + αrβ(t)(1 − pm(t)) (3)

if am is the action taken at time t

pj(t + 1) = pj(t) − αrβ(t)pj(t) (4)

if aj 6= am

Where αr ∈ [0, 1] is a constant called the reward parameter
or learning rate.

Groups of learning automata can be interconnected by
letting them play in a repeated game. In such a game mul-
tiple automata interact with the same environment. A play
a(t) = (a1(t) . . . an(t)) of n automata is a set of strategies
chosen by the automata at stage t. Correspondingly, the
response is now a vector β(t) = (β1(t) . . . βn(t)), specifying
a payoff for each automaton.

At every instance, all automata update their probabil-
ity distributions based on the responses of the environment.
Each automaton participating in the game operates with-
out information concerning the number of participants, their
strategies, their payoffs or actions.

In general sum games it can be shown that when all au-
tomata use the LR−I scheme with a sufficiently small learn-
ing rate, and the game is such that a unique pure equilibrium
point exists, convergence to this point is guaranteed [7] . In
cases where the game matrix has more than one pure equi-
librium, which equilibrium is found depends on the initial
conditions.

LA can also be used in more complex, multi-state prob-
lems. We now explain an automata based algorithm, capable
of finding pure equilibria in Markov games [12]. The algo-
rithm is an extension of an LA algorithm for solving MDPs,
originally proposed by Wheeler and Narendra [14].

The main idea behind the algorithm is that agent k asso-
ciates a different learning automaton LAi

k with each state
si. The agents then defer the actual action selection in each
state to the automaton they have associated with that state.
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Each time step each agent k in the system activates LAi
k that

it associates with the current system state si. The joint ac-
tion ai consisting of the actions of all automata associated
with si, then triggers a transition to the next system state
sj and an individual reward Ri

k(si, a
i) for each agent. The

agents then repeat the process in state sj .
Automata in the system are not informed of the imme-

diate reward that their joint action triggers. Instead each
agent keeps track of the cumulative reward it has gathered
up to the current time step. When the system returns to a
state si, that was previously visited, each agent k computes
the time ∆ti that has passed since the last visit and the re-
ward ∆ri

k that it has gathered since. Automaton LAi
k then

updates the action it took last time using feedback 1:

β
i
k =

∆ri
k

∆ti
(5)

The interactions between all automata in the system de-
scribed above, can be approximated by a repeated automata
game [12] . In this game a play of all automata corresponds
to a pure joint policy for the Markov game. The payoff
that each automaton LAi

k receives for such a play is exactly
Jk(α), the expected average reward for agent k, as defined
in Equation 2. In [12] it is shown that the pure equilib-
ria of this game correspond to equilibria between the pure
agent policies. This means that if all automata use the LR−I

scheme with a sufficiently small learning rate, the algorithm
will converge to a pure equilibrium between agent policies,
if such a point exists.

2.3 Replicator Dynamics
Evolutionary Game Theory (EGT) has two central con-

cepts, i.e., evolutionary stable strategies (ESS) and the repli-
cator dynamics (RD). ESS is a refinement of the Nash equi-
librium from classical Game Theory. We will not discuss it
further in this paper.

The RD are formalized as a system of differential equa-
tions. Each replicator represents one (pure) strategy avail-
able to a player. EGT assumes that players will gradually
adjust their strategy over time in response to repeated obser-
vations of their own and others’ payoffs. The RD control this
learning, specifying the frequency with which different pure
strategies should be played depending on the mix of strate-
gies played by the remainder of the population of agents
playing the game. Simply stated, an abstraction of an evo-
lutionary process usually combines two basic elements: se-
lection and mutation. Selection favors some varieties over
others, while mutation provides variety in the population.
RD in its most elementary form highlights the role of se-
lection. More precisely, strategies that gain above-average
payoff become more likely to be played (or selected), and
the RD models a process in which agents switch to strate-
gies that appear to be more successful. Thus RD are a
system of differential equations describing how a population
of different strategies evolves through time.

The general form of an RD is the following:

dxi

dt
= [(Ax)i − x · Ax]xi (6)

1In this paper we made a small modification to the algo-
rithm. The original authors updated automata using a feed-
back calculated over all visits to the same state.

In equation (6), xi represents the density of strategy i in
the population, and A is the payoff matrix that describes
the different payoff values that each individual replicator
receives when interacting with other replicators in the pop-
ulation. The state of the population (x) can be described
as a probability vector x = (x1, x2, ..., xJ) which expresses
the different densities of all the different types of replicators
in the population. Hence (Ax)i is the payoff that replicator
i receives in a population with state x and x · Ax describes

the average payoff in the population. The growth rate
dxi

dt

xi

of the population share using strategy i equals the difference
between the strategy’s current payoff and the average pay-
off in the population. For further information we refer the
reader to [3, 13].

When we consider multiple agents that learn concurrently
we need more systems of differential equations. For sim-
plicity, we restrict the discussion to only two such learning
agents. As a result, we need two systems of differential equa-
tions: one for the row agent (P ) and one for the column
agent (Q). This setup corresponds to a RD for asymmetric
games. If B is the payoff matrix that describes the pay-
off values received by the second agent, and if A = B t, then
equation (6) would emerge again to characterize the dynam-
ics of the second learner.

This translates into the following replicator equations for
the two populations:

dpi

dt
= [(Aq)i − p · Aq]pi (7)

dqi

dt
= [(Bp)i − q · Bp]qi (8)

As can be seen in equation (7) and (8), the growth rate of
the types in each population is additionally determined by
the composition of the other population, in contrast to the
single learner case described by equation (6).

As an example for the application of RD in stateless games,
we illustrate the dynamics of the well known Prisoner’s Dillema
(PD) game. Figure 1(a) shows the direction field obtained
for this game, Figure 1(b) plots the action probability tra-
jectories generated by LA playing the repeated game.

3. PIECEWISE REPLICATOR DYNAMICS
We first describe the general approach of piecewise linear

dynamics for modeling dynamic interactions between agents
and their environment, after which we apply this approach
to MAL with the replicator dynamics from EGT as piecewise
approximation method.

The prevailing approach to modeling dynamical interac-
tions is by representing them as a set of ordinary differential
equations (ODEs). In many cases this will represent a sta-
tistical average over the entire ensemble of possible config-
urations, involving e.g. a mean field, steady state, or quasi
equilibrium assumption, rather than a fundamental law of
Nature [11]. So, these ODEs are statistical approximations
that – under certain conditions – predict the average evo-
lution of the system. Let us for the moment forsake the
numerous problems with regard to these conditions, and
consider the general dynamics of multi-agent switching sys-
tems. When we assume a stochastic differential equation as
model for the dynamics of the interaction, the relation can
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Figure 1: Dynamics for the stateless Prisoner’s Dilemma game (a) Direction field for the replicator equations
on this game. (b) Sample paths showing the evolution action probabilities in a repeated automata game.
Both automata use the LR−I update with learning rate 0.001.

be expressed as:

dx

dt
= f(x, u|θ) + ξ(t) (9)

Here x(t), called the state-vector, denotes the N parameters
at time t fully describing the agents – possibly involving
higher order time derivatives. u(t) denotes the P controlled
inputs to the system. ξ(t) denotes a stochastic Gaussian
white noise term. This expression involves a parameter vec-
tor θ, that contains the coupling constants between agents
and inputs. We can consider this system as being repre-
sented by the state vector x(t) that wanders through the (at
least) N-dimensional space of all possible configurations. In
the formalism of dynamic systems theory, eventually x will
enter an area of attraction, and become subject to the influ-
ence of an attractor. An attractor here can be an uniform
convergent attractor, a limit cycle, or a ’strange attractor’.
We can understand the entire space as being partitioned into
cells, where such attractors – or their antagonists so-called
repellers – reign. Thus, the behavior of x can be described
by motion through this collection of cells, swiftly moving
through cells of repellers, until they enter the basin of at-
traction of an attractor. Under the effects of external agents
via the vector u(t) or by stochastic fluctuations via ξ(t) they
can leave this cell, and start wandering again, thereby re-
peating the process. Now, a vital assumption is that in each
cell the behavior is governed by specific (un)stable equilib-
rium points (possibly outside this cell), and therefore it is
possible to make a linear approximation of equation 9 in the
cell with index l as:

dx

dt
(t) = Flx(t) + Glu(t) (10)

In case of a uniform attractor the largest eigen-value of Fl

will be negative, and in case of a uniform repeller the small-
est eigen-value will be positive.

We can now formalize the qualitative behavioral dynam-
ics of complex interactions as predominantly linear behavior
near the stable equilibria – called the steady states, inter-
rupted by abrupt transitions where the system quickly re-
laxes to a new steady state, either externally induced or by
process noise. This approach corresponds to the piecewise
linear models introduced by Glass and Kauffman [2], and
the qualitative piecewise linear models described by de Jong
et al. [1]. In biology such behavior is frequently observed, as
for instance in embryonic growth where the organism devel-
ops by transitions through a number of well-defined ’check

points’. Within each such checkpoint the system is in rela-
tive equilibrium.

We will follow the reasoning of piecewise linear behavior
(also known more appropriately as piecewise affine behav-
ior), with the revision that in the context of Evolutionary
Game Theory the atomic mode of propagation is not so
much a linear function but the Replicator Dynamics (RDs).
Following above line of reasoning, we therefore propose to
approximate the systems dynamics as a collection of piece-
wise RDs as:

dx

dt
(t) = RDl(x(t), u(t)) (11)

where RDl is the prevailing replicator dynamics in cell l, as
defined according to Equations 7 and 8, with x(t) = p(t)
and u(t) = q(t).

Analyzing the learning dynamics becomes significantly more
complex when we move from stateless games to multi-state
problems. As the agents have independent action proba-
bilities for each state, the result is a very high dimensional
problem. In order to deal with this high dimensionality we
present an approach to analyze the dynamics per state.

For each state of the Markov game, we define an average
reward state game. This game gives the expected reward
for each joint action in the state, under the assumption that
the agents play a fixed strategy in all other states. When
we assume that the action probabilities in the other states
remain fixed, we can use Formula 2 to calculate the expected
average rewards for each joint action in a state. The game
obtained by these rewards can then be studied using the
replicator dynamics, exactly as was described in the previous
section.

The main problem with analyzing the dynamic on an av-
erage reward state game, is that it assumes that agents are
only learning in a single state, and are keeping the action
probabilities in other states fixed. In reality agents update
their action probabilities in all states, and these probabili-
ties will all change in parallel. As the probabilities in other
states change, the state game and corresponding dynamic
will also change.

To account for these changes we model the system as
piecewise dynamical system. This means that for each state,
we partition the space of all action probabilities in all states
into a number of discrete cells. Each cell corresponds to a
different set of attractors in the average reward state game.
More precisely, for each state we examine the boundaries
were the replicator dynamics of the state game change qual-
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2 State PD Common Interest Game

State 1 State 2 State 1 State 2

Rewards
C D

C 0.3, 0.3 0, 1
D 1, 0 0.2, 0.2

C D
C 0.4, 0.4 0, 1
D 1, 0 0.1, 0.1

b1 b2
a1 0.5 0.6
a2 0.6 0.7

b1 b2
a1 0 1
a2 0.5 0

Transitions

(C,C)→(0.9,0.1)
(C,D)→(0.1,0.9)
(D,C)→(0.1,0.9)
(D,D)→(0.9,0.1)

(C,C)→(0.1,0.9)
(C,D)→(0.9,0.1)
(D,C)→(0.9,0.1)
(D,D)→(0.1,0.9)

(a1,b1)→(0.1,0.9)
(a1,b2)→(0.1,0.9)
(a2,b1)→(0.1,0.9)
(a2,b2)→(0.9,0.1)

(a1,b1)→(0.1,0.9)
(a1,b2)→(0.1,0.9)
(a2,b1)→(0.1,0.9)
(a2,b2)→(0.9,0.1)

(a) (b)
Table 1: Two example Markov games with 2 states and 2 agents with 2 actions in each state. Rewards for
joint actions in each state are given in the first row as matrix games. The second row specifies the transition
probabilities to both states under each joint action. (a) Conflicting interest game in which the immediate
rewards in both states have the same structure as the Prisoner’s Dillemma game. (b) Common Interest
Markov game in which both agents receive identical immediate rewards.

itatively. We do this by looking for points where equilibria
disappear or new equilibria appear. It is important to note
that we focus on qualitative changes of the dynamic system.
Within each region quantative changes of the dynamic can
still occur as the payoffs in the game change, but the same
attractor points remain present. When the action proba-
bilities cross a cell boundary, however, they will cause a
radical change in the dynamic in the corresponding state.
Inside each cell we assume that the probabilities for that
state evolve according to a fixed replicator dynamic.

This method can then be used to analyze the full dynamics
as follows. When we initialize the learning algorithm with
action probabilities, these probabilities define an average re-
ward state game and corresponding replicator dynamic for
each state. We then assume that the system follows this
dynamic, until the action probabilities cross one of the cell
boundaries. When this happens the attractors in the cor-
responding state change and we get new equilibria in the
state game with a new replicator dynamic. This dynamic
then drives the dynamics in that state until another bound-
ary is crossed. In this way we can follow the trajectory in
all states through multiple cells and dynamics until an equi-
librium is reached. In the next section we demonstrate this
approach on 2 example Markov games.

4. EXPERIMENTS
We first demonstrate our approach on the example 2 state

Markov game in Table 1(a). This problem is a 2 agents, 2
state system. In each state the agents play a Prisoner’s
Dilemma type game. When the agents both play the same
action (i.e joint action (D,D) or (C,C) ) the system has a 0.9
probability of staying in the same state and a 0.1 probability
of moving to the other state. When the agents play different
actions (i.e. joint actions (C,D) or (D,C) ) these probabilities
are reversed.

As the rewards in each state have the same structure as the
PD repeated game of the previous section, one might assume
that the agents will converge to the equilibrium point (D,D)
in both states. The only pure equilibria in the multi-state
example, however, are the points where one agent plays de-
fect(D) in state 1 and cooperate(C) in state 2, and the other
agent does exactly the opposite. This means that instead of
mutual defection, the agents converge to a situation, where
an agent is exploited in one state, but exploits the other
agent in the other state. This is an important change from
the stateless game. Table 2 gives an average reward game
obtained for state 1 of the 2 state PD game, when agent 1
and agent 2 have a fixed probability of 0.7 and 0.2 respec-

C D
C 0.28, 0.35 0.08, 0.78
D 0.48, 0.39 0.19, 0.26

Table 2: Average reward game for state 1 of the
2 state PD, when the agents 1 and 2 play action
cooperate in state 2 with probabilities 0.7 and 0.2,
respectively.

tively, to play action cooperate in state 2. The corresponding
direction field is shown in 3(d).

In Figure 2 we show how the average reward games for
both states change as a function of the current action prob-
abilities. Since we have only 2 states, the average reward
game in state 1 is completely determined by the strategies
in state 2, and vice versa. Figures 2 (a) and (b) show the
cells corresponding to different equilibria for state 1 and 2,
respectively. For both states we get 4 possible regions that
correspond to different dynamics. Figures 3 (a)-(d) give
direction fields for state 1 for each of the 4 regions in state
2. In Figure 3 (a) we see the direction field for state 1 when
action probabilities in state 2 are in region I . The result
is a single equilibrium at joint action (C,D). Figures 3 (c)
and (d) give the dynamics corresponding to regions III and
IV . Both regions result in a single equilibrium at joint ac-
tions (D,D) and (D,C), respectively. Figure 3 (b) shows the
dynamics for region II , where we have 2 pure equilibria at
(D,C) and (C,D) and an additional mixed equilibrium.

The first experiment demonstrates that the average re-
ward state games indeed approximates the dynamics of the
multi-state learning problem. Figure 3(d) shows the di-
rection field obtained by applying the replicator dynamic
to the game in Table 2. Figure 4 plots sample paths of
the action probabilities in state 1, corresponding to the sit-
uation in this game. These sample paths were obtained by
running the automata algorithm from Section 2.2 on the ex-
ample 2 state PD Markov Game. During these experiments
the agents only updated their action probabilities in state
1. The action probabilities in state 2 were kept fixed. It is
clear from the plot that the resulting paths closely mimic
the dynamic predicted by the direction fields of 4(a).

In the next experiment we allow the agents to update
all action probabilities in all states. This means that ac-
tion probabilities in state 1 and 2 change in parallel. The
boundaries in the plots mark where an update will cause a
change in the dynamics for the other state. Figure 5 (a)
shows that the action probabilities in state 1 stay in region
I the entire run. This means that the equilibria in state 2
will not switch and the dynamic drives the probabilities to
the equilibrium point (C,D). As the probabilities come closer
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Figure 2: Possible pure equilibria in the average reward state games of the 2-state PD problem.(a) Possible
pure equilibria in state 1 as a function of state 2 action probabilities.(b) Possible pure equilibria in state 2 as
a function of state 1 action probabilities.
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Figure 3: Example direction fields for state 1 of the 2 state PD. Each figure corresponds to one of the 4
regions shown in Figure 2(a). (a) Region I: (C,D) is the only pure equilibrium. (b) Region II: (C,D) and
(D,C) are both equilibria.(c) Region III: (D,D) is the only pure equilibrium.(d) Region IV: (D,C) is the only
pure equilibrium.
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Figure 4: Sample paths generated by the LA algo-
rithm in state 1 when agents use fixed strategy of
Table 2 in state 2. (learning rate: 0.0001).

to this point, however, the paths cross 2 region boundaries
moving first to region III and then into region IV . This
means that as the system evolves the dynamic in state 1
will change from those shown in Figure 3(a) to those shown
in Figure 3(c) and eventually to those shown in Figure 3(d).
The points where these changes in attractors occur are in-
dicated in Figure 5(a). The crosses indicate the move to
region III , while the asterisks indicate the switch to region
IV. As can be seen in the plot, the switch has little visible
effect on the dynamics. This is not surprising as both dy-
namics behave very similarly along these paths. When the
second transition takes place, however, the driving dynamic
completely reverses. This has a very noticeable effect on
the evolution of the probabilities as they suddenly change
from moving towards (D,D) to moving towards (C,D). This
change is clearly visible in Figure 5(b).

In a final experiment we show results for another Markov
game, shown in Table 1(b). This game is a common interest
game, with both agents receiving identical payoffs. In both
states, both agents have a choice between 2 actions: a1 and
a2 for agent 1, b1 and b2 for agent 2. Two pure equilibria ex-
ist in this game. In the first the agents play (a2,b1) in state 1
and (a1,b2) in state 2, while in the second they play (a1,b2)
in state 1 and again (a1,b2) in state 2. For the experiment
we completed multiple runs with different initial probabil-
ities in state 1, and using the same starting point in state
2. From this point the dynamics in state 2 always drive the
probabilities to the equilibrium point (a1,b2). As the tra-
jectory comes closer to this point, it crosses the boundary
indicated in Figure 6(b). When this happens the dynamics
in state 1 switch. In Figure 6(b) we see that the trajectories
in state 1 completely reverse as this boundary is crossed.
From following the dynamic shown in Figure 7(a) towards
(a2,b2), the trajectories follow the dynamic in Figure 7(b)
which takes the probabilities in very different directions to-
wards (a1,b2) or (a2,b1).

5. CONCLUSIONS
In this paper we introduced a new method for analyzing

the dynamics of multi-agent learning in multi-state prob-
lems. By combining piecewise linear dynamic systems with
the replicator equations from evolutionary game theory, we
obtained a new modeling system which we call Piecewise
Replicator Dynamics. In this system the dynamics for each
system state are modeled as a set of independent replicator
dynamics, between which the system switches based on the

current strategies in other states. This method allows us
to move from stateless to multi-state games, while retaining
the powerful methods EGT offers. More precisely, we are
still able to predict the learning system’s trajectories and
attractors by studying the piecewise replicator dynamics.

Even in rather abstract 2-state problems, such as the ones
experimented on for this paper, our methodology already
goes beyond the state-of-the-art, since thus far, MAL could
only be studied in stateless games using RD. Moreover, even
these 2-state problems have shown to be complex enough
to emphasize hard challenges for multi-agent reinforcement
learning algorithms. In future research we will scale our
experiments to systems with more than 2 states.
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Figure 5: Sample paths for both states of the 2 state PD, generated by automata using the LR−I scheme with
learning rate 0.0001. (a) State 1. (b) State 2.
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Figure 6: Sample paths for both states of the common interest Markov game, generated by automata using
the LR−I scheme with learning rate 0.0001. (a) State 1. (b) State 2.
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Figure 7: Two direction fields for state 1 of the common interest Markov game.
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