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ABSTRACT
In this paper we address the problem of coordination in
multi-agent sequential decision problems with infinite state-
spaces. We adopt a game theoretic formalism to describe the
interaction of the multiple decision-makers and propose the
novel approximate biased adaptive play algorithm. This al-
gorithm is an extension of biased adaptive play to team Mar-
kov games defined over infinite state-spaces. We establish
our method to coordinate with probability 1 in the optimal
strategy and discuss how this methodology can be combined
with approximate learning architectures. We conclude with
two simple examples of application of our algorithm.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems, Coherence and coordination

General Terms
Algorithms, Theory

Keywords
Team Markov games, coordination, biased adaptive play

1. INTRODUCTION
Research on cooperative multi-agent systems (MAS) typ-

ically focuses on three fundamental issues [4]: the task to
accomplish, the mechanism of cooperation and the perfor-
mance of the MAS. In this paper we adopt the model of
team Markov games or fully cooperative Markov games to de-
scribe the interaction of multiple decision-makers that must
cooperatively complete a pre-specified task. The use of this
interaction model settles two of the fundamental issues re-
ferred above, by considering a reward structure that, simul-
taneously, defines the task and is used to evaluate the per-
formance of the team.

The class of problems considered herein describe multi-
agent sequential decision tasks in which all decision-makers
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must commit upon a common joint behavior. We assume
that no explicit communication takes place. Instead, con-
sensus in this common joint strategy must emerge from the
mutual interaction among the different agents and with the
environment.1 Therefore, with respect to the third of the
above issues, we feature cooperation as coordination: the
multiple decision-makers must coordinate their individual
decisions to yield an optimal joint behavior.

The paper contributes an extension of biased adaptive
play [19] to Markov games with infinite state-spaces (hence-
forth referred as infinite Markov games). We identify the
conditions under which our method, dubbed as approximate
biased adaptive play (ABAP), is guaranteed to coordinate in
all but a negligible part of the state-space. Like the widely
known fictitious play process [3], ABAP relies on approx-
imate statistics describing the strategies of each player to
achieve coordination.

Coordination in multi-agent sequential decision making
problems has been a widely covered topic of research [2,5,7,
9, 10, 19]. However, few works address the problem of coor-
dination in infinite domains. In [8], coordination graphs are
used to achieve coordination in infinite multi-agent prob-
lems. The coordination mechanism uses structured com-
munication and a variable elimination procedure to achieve
coordination. In [9], coordination graphs are also used to
achieve coordination in continuous domains, this time with
no communication assumed.

The ABAP method proposed in this paper differs from
the previously referred methods in several aspects. First of
all, ABAP assumes that no communication takes place. Fur-
thermore, no assumption is made regarding previous knowl-
edge or the coordination algorithm of the other decision-
makers. In particular, we do not assume that all decision-
makers follow the same decision-making or coordination al-
gorithm. This is an important advantage of ABAP: in the
presence of a heterogeneous group of decision-makers, ABAP
is still able coordinate to the best decision-rule possible if, for
some reason, the other decision-makers act sub-optimally.

The paper is organized as follows. We start by describing
the original biased adaptive play (BAP) algorithm as pro-
posed in [19]. We proceed by describing the framework of
team Markov games used throughout the paper. We then
present our main contribution: we describe the ABAP algo-

1The consideration of no explicit communication can be sup-
ported by several arguments (bandwidth constraints, cost of
communication, possible added complexity to the problem,
etc.). We do not pursue such argument here and refer to sev-
eral works that discuss these issues in greater detail [6, 18].
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rithm and establish its convergence properties. Finally, we
conclude the paper with a simple illustrative example and
discuss some issues to be addressed in future work.

2. BIASED ADAPTIVE PLAY
We start by introducing some terminology and notation.

2.1 Strategic games
AN -player strategic game is a tuple

(
N, (Ak), (rk)

)
, where

N is the number of players, A = ×Nk=1Ak is the set of all
joint actions and rk is a function assigning a utility or payoff
rk(a) to player k, when the joint action is a ∈ A.2 A joint
action a ∈ A is a tuple a = (a1, . . . , aN ) and we denote by
a−k a reduced action, obtained by removing the individual
action ak from a.

An individual strategy σk is a probability distribution over
Ak and defines the probability of player k playing each ac-
tion ak ∈ Ak in the game. A strategy σk is a pure strategy
if σk(ak) = 1 for some action ak ∈ Ak and a mixed strategy
otherwise. A joint strategy is a vector σ = (σ1, . . . , σN ) of
individual strategies and σ(a) represents the probability of
the joint action a being played when all agents follow the
joint strategy σ. We refer to σ−k as a reduced joint strategy
or simply as reduced strategy, obtained from σ by removing
the individual strategy of player k.

The individual strategy σ∗k of player k is a best response
to a reduced strategy σ−k if player k cannot improve its ex-
pected reward using any other individual strategy σk, i.e., if

E(σ∗
k
,σ−k) [rk(a)] ≥ E(σk,σ−k) [rk(a)] . (1)

A Nash equilibrium is a joint strategy σ∗ = (σ∗1 , . . . , σ
∗
N ) in

which each individual strategy σ∗k is a best response to the
reduced strategy σ∗−k. Every finite strategic game has at
least one Nash equilibrium [13]. A Nash equilibrium σ∗ is
strict if the inequality in (1) is strict for every σ∗k ∈ σ∗.

A game in which r1(a) = . . . = rN (a) for all a ∈ A is
fully cooperative. In this class of games there is always (at
least) one Pareto optimal pure Nash equilibrium that yields
maximum payoff for all players. In this paper, we consider
only fully cooperative games.

2.2 Biased adaptive play
When considering finite, fully cooperative games, ficti-

tious play [3] is known to converge in beliefs to a Nash
equilibrium [12]. If agents follow fictitious play, each agent
maintains an estimate on the strategy of the other agents.
Convergence in beliefs means that as t → ∞, the estimates
of all agents will converge to a Nash equilibrium. However,
such guarantees do not extend in behavior, i.e., it is not
guaranteed that the policies of the fictitious play agents will
converge to a Nash equilibrium [20]. And, if there are multi-
ple such equilibria with different values, even if convergence
is attained there are no guarantees that the limit equilibrium
is the one with highest value.

Consider, for example, the 2-player, fully cooperative game
in Fig. 1. The boldface entry represents the Pareto optimal
equilibrium, (a1, b1). However, the action (a2, b2) is also a
Nash equilibrium, and there are no guarantees that fictitious
play will not converge to such equilibrium. The problem
is even more evident if r(a2, b2) = 10. In this case, both

2We use the notation ×k=1,...,NXk to represent the cartesian
product of N sets Xk, k = 1, . . . , N .

equilibria are equally “desirable” and it may happen that
one agent chooses the equilibrium (a1, b1) while the other
chooses the equilibrium (a2, b2), which leads to the non-
equilibrium joint action (a1, b2). This problem is known as
an equilibrium selection problem in the game theory litera-
ture, or as a coordination problem in the multi-agent systems
literature [1]. As seen in [19], BAP effectively settles the
equilibrium selection problem and ensures that all players
coordinate in a Pareto optimal Nash equilibrium.

b1 b2

a1 10 −20

a2 −20 5

(a1, b1) (a1, b2)

(a2, b2)(a2, b1)

a) Payoff matrix b) Best-response graph

Figure 1: Simple two-agent, two-action team strate-
gic game. The Pareto optimal equilibrium is marked
in bold in the payoff matrix and with a double line
in the best-response graph.

We now briefly describe the BAP mechanism for repeated
games, as introduced in [19].3 Let Γ =

(
N, (Ak), (rk)

)
be a

repeated game with finite action-space A = ×Nk=1Ak. The
best response graph for Γ is a directed graph G = (V,E),
where V = A and, given any two vertices a, b ∈ V , (a, b) ∈ E
if and only if a 6= b and there is exactly one agent k for
which bk is a best response to a−k and a−k = b−k. A best
response graph is build by considering all joint actions in A
as vertices and setting a directed edge from a joint action a
to a joint action b if the two actions are composed of the same
individual actions for all agents except one. For that single
agent k, bk is a best response to the reduced action a−k. The
best-reponse graph for the 2-agent, 2-action example above
is depicted in Fig. 1.b).

We need one additional concept. Let Γ =
(
N, (Ak), (rk)

)
be a matrix game and D ⊂ A a set containing some of the
Nash equilibria in Γ (and no other joint actions).

Definition 1. A strategic game Γ =
(
N, (Ak), (rk)

)
is

weakly acyclic if, given any vertex a in its best response
graph, there is a directed path to a vertex a∗ from which
there is no exiting edge. It is weakly acyclic with respect
to (w.r.t.) the bias set D if, given any vertex a in the best
response graph of Γ, there is a directed path to either a Nash
equilibrium in D or a strict Nash equilibrium.

Now, considering a fully cooperative repeated game Γ =(
N, (Ak), r

)
, we construct an auxiliary virtual game V G =(

N, (Ak), rV
)
, where rV (a) = 1 if a is an optimal equi-

librium for Γ and rV (a) = 0 otherwise. By setting D =
{a ∈ A | rV (a) = 1}, the game V G is weakly acyclic w.r.t.
the set D. By construction, all Nash equilibria in V G cor-
respond to Pareto optimal equilibria in Γ.
3A repeated game is a Markov game with a single state. No-
tice that, unlike strategic games which are one-shot games,
repeated games are played repeatedly.
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Let K and m be two integers such that 1 ≤ K ≤ m and let
H(t) be a vector with the last m joint plays at the tth play
of the game. We refer to any set of K samples randomly
drawn from H(t) without replacement as a K-sample and
denote it as K(H(t)). A player k following BAP draws a
K-sample K(H(t)) from the history of the m most recent
plays and checks if

1. There is a joint action a∗ ∈ D such that, for all the
actions a ∈ K(H(t)), a−k = a∗−k;

2. There is at least one action a∗ ∈ D ∩ K(H(t)).

If these two conditions are verified, player k is “lead to be-
lieve” that the remaining players have coordinated in the
action a∗−k in D. Therefore, if conditions 1 and 2 are met,
player k chooses its best response a∗k from the joint action

a∗ = arg max
a∈H(t)

{τ | A(τ) = a | A(τ) ∈ K(H(t)) and a ∈ D} ,

where A(t) denotes the joint action at time t. If either 1 or 2
(or both) does not hold, then player k uses the K-sample to
estimate the strategies of the other players and chooses its
action as a best response to this estimate. It has been shown
that BAP ensures coordination with probability 1 (w.p.1) as
t→∞ as long as m ≥ K(N +2) (see Theorems 1 and 3 and
Lemma 4 in [19]).

3. MARKOV MODELS
In this section we introduce some important concepts re-

garding Markov chains, processes and games. These con-
cepts will later be used in establishing our main result.

3.1 Markov chains and processes
A time-homogeneous Markov chain is a discrete-time sto-

chastic process {X(t)} defined by a pair (X ,P), where X
is the state-space and P is a transition probability kernel
defining the transition probabilities

P(x, U) = P [X(t) ∈ U | X(t− 1) = x] ,

which are independent of the particular time instant t con-
sidered. Given an arbitrary measurable set U ⊂ X , the first
return time to U , τU , is defined as

τU = min
t∈T
{X(t) ∈ U, t ≥ 1} .

A Markov chain is ψ-irreducible if, for any x ∈ X ,

P [τU <∞ | X(0) = x] > 0 (2)

for any measurable set U ⊂ X such that ψ(U) > 0 and
ψ is maximal in the sense that if ν is some other measure
verifying (2), then ν � ψ.

If ηU is the number of visits to a measurable set U ⊂ X
in an infinite trajectory of the chain, the set U is said to be
Harris recurrent if, for any x ∈ X ,

P [ηU =∞ | X(0) = x] = 1.

A ψ-irreducible Markov chain is Harris recurrent if all mea-
surable sets U ⊂ X such that ψ(U) > 0 are Harris recurrent.

Let now {X(t)} be a X -valued controlled Markov chain.
The transition probabilities for the chain are now given by
the action-dependent kernel

Pa(x, U) = P [X(t+ 1) ∈ U | X(t) = x,A(t) = a] ,

for any measurable set U ⊂ X . The A-valued process {A(t)}
represents the control process: A(t) is the control action at
time instant t and A is the finite set of possible actions. A
decision-maker must determine the control process {A(t)}
so as to maximize the functional

V ({A(t)} , x) = E

[
∞∑
t=0

γtR(X(t), A(t)) | X(0) = x

]
, (3)

where 0 ≤ γ < 1 is a discount-factor and R(x, a) represents
a random “reward” received for taking action a ∈ A in state
x ∈ X . We assume that there is a bounded, deterministic
function r : X × A × X −→ R assigning a reward r(x, a, y)
every time a transition from x to y occurs after taking the
joint action a and such that

E [R(x, a)] =

∫
X
r(x, a, y)Pa(x, dy).

The tuple (X,A,P, r, γ) thus defined is a Markov decision
process (MDP).

Given an MDP (X,A,P, r, γ), the optimal value function
V ∗ is defined for each state x ∈ X as

V ∗(x) = max
{A(t)}

E

[
∞∑
k=0

γtR(X(t), A(t)) | X(0) = x

]
(4)

and verifies

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy), (5)

which is a form of the Bellman optimality equation. The
optimal Q-values Q∗(x, a) are defined for each state-action
pair (x, a) ∈ X ×A as

Q∗(x, a) =

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (6)

If V ∗(x) “measures” the total discounted reward obtained
during an expectedly optimal trajectory starting at state
x, Q∗(x, a) measures the total discounted reward obtained
during an expectedly optimal trajectory starting at state x
when the first action is a.

3.2 Team Markov games
Markov games [14] can be interpreted as generalizations

of MDPs to multiple decision-makers. Therefore, a Markov
game is a tuple

(
N,X , (Ak),P, (rk), γ

)
, where N is the num-

ber of players, X is the state-space, A = ×Nk=1Ak is the set
of joint actions, P is the controlled transition kernel and rk
is the reward function for player k.

In this paper, we are interested in fully cooperative Mar-
kov games, also known as team Markov games.4 In team
Markov games all players share the same goal, which is to
maximize the total expected reward over all joint control
sequences {A(t)}. This total expected reward is defined as
in (3), where now R(x, a) is the random reward received by
all players for taking the joint action a in state x. It is im-
mediate to define the optimal value function V ∗ for a team
Markov game as in (4), where now A(t) stands for the joint
action at time t. This optimal value function also verifies
(5) and we can define the optimal Q-function, Q∗, as in (6).

It is also straightforward to extend the concepts of in-
dividual strategy, joint strategy and reduced strategy from

4In the literature, team Markov games are sometimes re-
ferred as multi-agent MDPs (MMDPs) [2].
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strategic games to team Markov games. For example, an in-
dividual strategy for player k is a state and time-dependent
probability distribution σk(t) over the set Ak. The corre-
sponding control sequence {Ak(t)} should verify

P [Ak(t) = ak | X(t) = x] = σk(t;x, a).

We write V σ(t)(x) instead of V ({A(t)} , x) whenever the con-
trol sequence {A(t)} is generated by the joint strategy σ(t),

and refer to V σ(t) as the value function associated with strat-
egy σ(t). A joint or individual strategy that does not depend
on t is said to be stationary.

Two important remarks are now in order. First of all, if
the definition of V ∗ and the existence of an optimal joint
control strategy follow immediately from the corresponding
results for MDPs, the fact that the decision process in team
Markov games is distributed implies that coordination must
be addressed explicitly [2].

On the other hand, we note that the function Q∗ defines at
each state x ∈ X a strategic game Γx =

(
N, (Ak), Q∗(x, ·)

)
that we refer as a stage game. If the players coordinate in an
optimal Nash equilibrium in each stage game Γx, they co-
ordinate in a Pareto optimal Nash equilibrium for the team
Markov game [1]. Each stage-game is fully cooperative and
weakly acyclic and we can thus apply BAP to each such
game. As seen in Section 2, BAP converges to a Pareto
optimal Nash equilibrium as t → ∞. Therefore, all players
will coordinate in a Pareto optimal Nash equilibrium for the
team Markov game as long as every state x ∈ X is visited in-
finitely often. In [19] this idea is used to ensure coordination
in team Markov games with finite state-space. However, if
X is not finite, this is generally not possible, as we discuss
in the continuation.

4. APPROXIMATE BAP
As seen in the previous section, if BAP is to be applied

to a team Markov game, coordination at each stage game
requires that the corresponding state be visited a sufficient
number of times. Recall that BAP uses incomplete sam-
ples from the history of past plays to estimate the average
strategies of the players in the game, providing a method to
choose upon a best response to such strategy, as long as the
game is known. The successive visits to each state provide
each player with a sample of the other players’ strategies in
the particular state considered. Hence the need of “infinite”
visits to every state in order to ensure convergence [19].

Formally, the condition of infinite visits amounts to re-
quiring the underlying Markov chain to be irreducible (ev-
ery state is “visitable”) and recurrent (each “visitable” state
is visited infinitely often). In the infinite state-space case,
these conditions translate in ψ-irreducibility (all but a neg-
ligible part of the state-space is “visitable”) and Harris re-
currence (every “visitable” region is visited infinitely often).
We discuss these requirements further ahead.

In adapting BAP to cope with infinite state-spaces, co-
ordination at each state should rely not only in past visits
to that particular state but should also use the information
provided by plays in several nearby states. The intuition be-
hind this idea can be easily clarified. Each agent k can no
longer use the past history at a particular state x to infer the
other agents’ strategy in that state, since there is the possi-
bility that it was never visited before. Instead, agent k will
assume that the policies of the other agents do not change

significatively in the states sufficiently close to x, this clearly
depending on the continuity of Q∗ in x. If this assumption
holds, agent k can use the past history at nearby states to
estimate the strategy of the other agents at state x. To im-
plement this idea, we rely on the distance between two states
x and y in X as an indication on the“closeness”of the states.
As will soon become apparent, the use of such approxima-
tion mechanism suitably adapts BAP to team Markov games
with infinite state-spaces while ensuring coordination in all
but a negligible part of the state-space.

Let Γ =
(
N,X , (Ak),P, r, γ

)
be a team Markov game with

compact state-space X ⊂ Rp and finite joint action-space A.
Let Q∗ be the optimal Q-function for Γ and define, for each
x ∈ X , the team matrix game Γ∗x =

(
N, (Ak), Q∗(x, ·)

)
. To

introduce and analyze ABAP, we resort to an auxiliary pro-
cess {Y (t)} evolving in X . We assume this process {Y (t)}
to be a ψ-irreducible and Harris recurrent Markov chain,
with a irreducibility measure ψ that is absolutely continu-
ous w.r.t. the Lebesgue measure in Rp.

At each time instant t, N agents engage in the repeated
game Γ∗Y (t) where Y (t) is the state of the auxiliary process
{Y (t)} at time t. The sole purpose of the agents is to co-
ordinate in a Pareto optimal equilibrium strategy in each
state-game Γ∗x; the agents have no knowledge otherwise on
the Markov game Γ or on the auxiliary process {Y (t)}, and
consider the payoffs Q∗(x, ·) at different state-games Γ∗x to
be independent. This technical artifice allows us to discard
the effect of the joint actions of the agents on the state evolu-
tion of the Markov game. The agents merely visit the states
in X along the trajectories of {Y (t)} and coordinate in each
visited stage-game Γ∗x.5

Consider the past history up to time t,

H(t) = {y(0), a(0), y(1), a(1), . . . , y(t− 1), a(t− 1)} ,

where the sequence {y(t)} is a sample trajectory of the pro-
cess {Y (t)} and each joint action a(τ) corresponds to that
chosen by the agents in game Γ∗y(τ). At each time instant
t, each agent determines the distance between the current
state Y (t) and each state y(τ) occurring in H(t), given by
‖Y (t)− y(τ)‖ for some norm ‖·‖ in Rp. It then chooses m
occurrences from this history so as to minimize the corre-
sponding distance. The sample set thus obtained, denoted
as Sm(Y (t),H(t)), contains the m elements in H(t) closer
to Y (t), i.e., those minimizing

m∑
i=1

‖Y (t)− y(ti)‖ . (7)

We remark that a particular state x ∈ X may occur in
Sm(Y (t),H(t)) more than once. On the other hand, if two
occurrences y(ti) and y(tj) verify

‖Y (t)− y(ti)‖ = ‖Y (t)− y(tj)‖

and only one such occurrence must be chosen, then the most
recent one should be picked (e.g., if tj > ti above, then
y(tj) would be chosen). We also notice that, due to the
ψ-irreducibility and Harris recurrence of the Markov chain,
given any state x ∈ X and a corresponding neighborhood
U with positive ψ-measure, there is a time T0(x, U) such
that, w.p.1, Sm(x,H(t)) ⊂ U for t > T0. Roughly speaking

5We note that, as discussed in Section 6, this assumption
has little impact on the validity of our result and merely
aims at simplifying the exposition and the proof.
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Goal I Goal II Goal I Goal II

a) Example 1: Single-room b) Example 2: Corridor

Figure 2: Example of two continuous indoor envi-
ronments.

this means that, as t → ∞, the elements in Sm(Y (t),H(t))
will all lie in a neighborhood of Y (t) on which the optimal
policies are“similar”. Therefore, once the set Sm(Y (t),H(t))
is determined, ABAP proceeds as standard BAP by drawing
a K-sample from the m plays in Sm(Y (t),H(t)).

The following result establishes the convergence of ABAP.

Theorem 2. Let {Y (t)} be a Markov chain evolving on
X as described above. In particular, assume that the chain is
ψ-irreducible and Harris recurrent, with irreducibility mea-
sure ψ absolutely continuous w.r.t. the Lebesgue measure.
Suppose that N agents following ABAP engage at each time
step in the coordination games described above. Suppose that
Q∗ is continuous in X in all but a ψ-null set of states. Then
all agents coordinate in a Pareto optimal equilibrium strategy
w.p.1 in ψ-almost every state in X , as long as the conditions
for convergence of standard BAP are met.

Proof. See the Appendix.

5. ILLUSTRATIVE EXAMPLES
We now analyze two applications of ABAP in simple multi-

robot navigation tasks. Consider the two indoor environ-
ments depicted in Fig. 2.

Two mobile robots (I and II) must navigate to the corre-
sponding goal regions, signaled with the bold, colored lines.
Both environments are 1× 1 squares, and the state of each
robot at each time instant is a pair (x,y) of coordinates.6

The coordinates of the corners in the goal regions are (1, 1)
and (0, 1), respectively, and the corresponding goal regions
are 0.1 × 0.1 squares, as depicted in Fig. 2. We denote the
goal region for robot k by Gk and by G the cartesian product
of GI and GII. In their trajectories, the robots learn must
not to crash into each other by avoiding to lie in the same
0.1× 0.1 area simultaneously (see Fig. 3 for an illustration).
We denote the state of robot k at time t by Xk(t), k = I, II.
The state of the robot group is a pair X(t) = (XI(t), XII(t))
and can take any value in ([0; 1]× [0; 1])× ([0; 1]× [0; 1]).

Each robot has 4 actions available, namely N , S, E and
W . Each individual action moves the robot 0.3 in the cor-
responding direction (with some zero-mean Gaussian noise)
within the limits of the depicted walls. We consider the
movements of the robots to be independent of each other.

6We use boldface symbols x and y to denote the physical co-
ordinates of one robot to distinguish these from the symbols
x and y used to denote generic elements of the state-space
X .

Robot I

Robot II

0.1

0.1

Figure 3: Situation of possible crash.

Both navigation problems can be modeled by team Mar-
kov games

(
N,X , (Ak),P, r, γ

)
where

• N = 2;

• X = ([0; 1]× [0; 1])× ([0; 1]× [0; 1]);

• Ak = {N,S,E,W} for k = I, II;

• For each problem, the transition probabilities are de-
fined by a kernel P given by

Pa(x, U) = PaII (xI, UI)P
aII
II (xII, UII)

where the kernels PI and PII define the single-robot
transition probabilities according to the description
above and U = UI × UII;

• The reward function r is defined as

r(x, a, y) =


20 if y ∈ G;

−10 if ‖yI − yII‖∞ < 0.1;

0 otherwise;

• We consider γ = 0.95.

To test ABAP, we first computed the optimal Q-function
for both problems, using a random exploration strategy for
105 time steps. To this purpose, we used Q-learning with
soft-state aggregation [15], where we considered a parti-
tion of the joint state-space into 81 non-uniform aggregated
states. This preliminary step is necessary as ABAP coor-
dinates given the optimal Q-function. We then allowed the
agents to “learn to coordinate” using ABAP for 103 time
steps. Notice that, because of the finite learning time, we
need to store a finite history of length 103.7

The total reward obtained during learning is depicted in
Fig. 4. It is worth remarking that the slope of the learning
curves, corresponding to the total reward obtained during
learning, provide a rough indication of the performance of
the robots. For purposes of comparison, we also present
the total reward obtained with an uncoordinated group of
robots interacting for the same period of time. It is clear
that, after an initial period where the ABAP robots “evalu-
ate” the strategies of the other robots, the group apparently
converges to a coordinated joint strategy (the slope of the
curve becomes positive). We also note that this actually
happens after not so many iterations. It is nevertheless im-
portant to remark that when the slope of the learning curve
becomes positive the robots need not have coordinated in
every state, but only on those around the followed joint tra-
jectory to the goal. However, the difference between the

7Since these problems have a total of only 16 joint actions,
storing the complete history of 1000 plays requires less than
2 Kb of memory.
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Figure 4: Cumulative reward during the 103-time-
units learning period for both problems. Example 1
refers to single-room scenario and Example 2 refers
to the corridor scenario.

Table 1: Comparative results of ABAP vs. no co-
ordination in both environments. The reported re-
sults were obtained after the learning period was
complete. We present the average total discounted
reward obtained over 2, 000 Monte-Carlo runs. Once
again, Example 1 refers to single-room scenario and
Example 2 refers to the corridor scenario.

Method Total Disc. Reward

Example 1
Uncoordinated 6.882

ABAP 44.5076

Example 2
Uncoordinated 2.016

ABAP 55.286

coordinated and the uncoordinated groups is evident: even
if initially the ABAP group performs worse than the unco-
ordinated group (since all robots initially “experiment” to
better explore the space of possible joint strategies), after
nearly 500 time-steps the performance of the former has al-
ready surpassed that of the latter.

To further understand the difference in performance be-
tween the coordinated and the uncoordinated robots, we
tested the learnt strategies in the corresponding environ-
ments. We ran the learnt policies for each environment
during 50 time units and determined the total discounted
reward obtained in each case. Table 1 represents the final
results obtained and Fig. 5 depicts the corresponding tem-
poral evolution. We ran 2, 000 independent Monte-Carlo
trials and present the average total discounted reward ob-
tained in both scenarios. For the purpose of comparison,
we also present the results obtained with no coordination
mechanism.

Note that the values presented in Table 1 correspond to
value attained by each group at the end of the Monte-Carlo
trials as depicted in Fig. 5. Also, the curves in Fig. 5 are
much smoother than those in Fig. 4 because of the Monte-
Carlo averaging.

5 10 15 20 25 30 35 40 45 50
−50

0

50

100

150

Time steps

T
ot

al
 r

ew
ar

d

Average total discounted reward (example 1)

 

 
ABAP
uncoordinated

5 10 15 20 25 30 35 40 45 50
−50

0

50

100

150

Time steps

T
ot

al
 r

ew
ar

d

Average total discounted reward (example 1)

 

 
ABAP
uncoordinated

Figure 5: Temporal evolution of the total discounted
reward obtained using the learnt joint strategy along
the 50-time-units trials, averaged over the 2, 000
Monte Carlo trials. As before, Example 1 refers
to single-room scenario and Example 2 refers to the
corridor scenario.

It is worth observing that the slope of the uncoordinated
team in Fig. 5 is similar to the one observed in Fig. 4. This
is expected since there is no adaptation of the joint strategy
on the uncoordinated team. On the other hand, the ABAP
team exhibits an exponential-like curve, this clearly due to
the effect of the discount factor. It is also worth mention-
ing that, unlike the uncoordinated team, the ABAP team
performs better in the corridor scenario than on the single-
room scenario. The observed difference is due to two main
factors: the size of the environment (that influences the per-
formance of both teams) and the how critical coordination
is (that greatly influences the performance of the uncoor-
dinated team in Example 2 and thus leads to the observed
difference).

6. DISCUSSION
We now discuss several important issues referred along the

text and postponed to these concluding remarks.

“On-strategy”coordination: When describing the ABAP
algorithm, considered an auxiliary process {Y (t)} that al-
lowed to separated the control of the dynamics of the game
and the problem of coordination. The coordination mech-
anism thus obtained was “off-strategy”, in that the actions
of the players did not affect the dynamics of the underlying
Markov chain. As argued before, the purpose of this math-
ematical device was to aleviate our analysis from concerns
on the underlying behavior of the Markov chain.

In a team Markov game, the coordination mechanism will
always be “on-strategy”: the actions of the players will in-
fluence the evolution of the underlying chain. Nevertheless,
the requirements of ψ-irreducibility and Harris recurrence in
Theorem 2 must still hold to ensure that the conclusions of
the latter theorem to hold. Therefore, the strategies used
by the players prior to coordination should be crafted so as
to ensure these properties.

We remark, however, that the requirements of most ap-
proximate learning methods in terms of the underlying Mar-
kov chain are usually much stronger than ψ-irreducibility
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or Harris recurrence. Moreover, the use of GLIE strategies
(greedy in the limit with infinite exploration) easily settles
this need, as it ensures sufficient exploration of the state-
space to guarantee both ψ-irreducibility and Harris recur-
rence of the underlying chain. A GLIE strategy converges
to the optimal (coordinated) strategy as t→∞ and guaran-
tees that all “significant” parts of the state-space are visited
infinitely often.8 Theorem 3 of [19] describes how GLIE poli-
cies can be combined with standard BAP. The extension of
this result to ABAP is immediate.

Storage of infinite histories: The ABAP algorithm, as
formulated, stores the complete history H(t) of the process.
Since we are considering the algorithm to eventually run
along an infinite trajectory, storing the complete history
would be infeasible. However, in any practical implementa-
tion such requirement can easily be alleviated without any
loss in performance. This was particularly evident from the
results portrayed in the previous section.

In fact, at each state X(t) ABAP uses K samples drawn
from the m points closest to X(t). This means that, in prac-
tice, implementation of ABAP can rely on a fixed-size his-
tory, chosen sufficiently large to properly sample the state-
space in a representative way. The exact length of the his-
tory to be chosen will depend on the irreducibility measure
associated with the sampled chain and with the support
of the optimal Q-function for the game. For example, if
ABAP is combined with approximate learning algorithms
(see ahead), the history to be maintained can be crafted
from the function approximation architecture.

In any case, there are numerous applications in which the
agents are only allowed to “learn” for a finite period of time,
as seen in the examples in Section 5. After this finite learning
period, the agents all stick the learnt strategy, and no further
storing of past plays is necessary.

Absolute continuity of ψ with respect to µLeb: An-
other requirement in Theorem 2 is related with the absolute
continuity of the irreducibility measure ψ with respect to
the Lebesgue measure µLeb.

This requirement can also be alleviated, although requir-
ing a more evolved proof. The central idea is as follows: if
ψ is not absolutely continuous w.r.t. µLeb, there must be
at least one probability atom α ⊂ X . Each such atom is
visited infinitely often (due to the Harris recurrence of the
chain) and the argument proceeds by reducing the coordina-
tion problem to each such atom. A complete, formal proof of
this result will be provided in a longer version of the paper.

Combination of ABAP with approximate learning
algorithms: In all developments considered in this pa-
per we implicitly admitted that the optimal Q-function was
known. In this situation, coordinating in the Markov game
amounts to coordinating in each of the corresponding stage
games. However, since ABAP addresses coordination in in-
finite Markov games, it must often rely on some approxima-
tion of Q∗, since only in very particular problems can this
function be represented exactly in a computer. Therefore,
it may prove useful to construct the sets Sm(x,H(t)) taking
into account the approximation considered.

8An example of a GLIE strategy is Boltzmann exploration
with decreasing temperature factor. More details on GLIE
strategies can be found in [16].

For example, suppose that Q∗ is represented as a linear
combination of a set of basis functions φ1, . . . , φM . Then
Sm(X(t),H(t)) could be chosen to minimize∑

i

‖φ(X(t))− φ(x(ti))‖

instead of (7).
Another important aspect is concerned with simultane-

ous learning and coordination. In many situations of inter-
est, decision-makers must learn or approximate the function
Q∗ and coordinate at the same time. When dealing with
infinite state-spaces, approximate learning methods must
be used, such as interpolation based Q-learning [17] or Q-
learning with soft state-aggregation [15]. Convergence of
these methods usually requires the underlying Markov chain
be geometrically ergodic, which is a stronger condition than
ψ-irreducibility or Harris recurrence, as the latter two are
implied by the former [11].

Extending such convergence results to team Markov games
will require similar conditions, which are compatible with
the conditions of Theorem 2. Therefore, combination of
ABAP with any of the mentioned learning algorithms is far
from complicated and can be attained by mimicking the pro-
cedure in [19] with due modifications.
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APPENDIX
A. PROOF OF THEOREM 2

The proof of this theorem will require several intermediate
results before being properly established.

We first assume Q∗ to be continuous. This means that
the function V a(x) = Q∗(x, a) is continuous for each a ∈ A.
Take an arbitrary point x ∈ X and an arbitrary action a0 ∈
A. Then, one of two statements below holds:

1. Q∗(x, a0) < maxa∈AQ
∗(x, a). If this is the case, due

to the continuity of Q∗ in x, the inequality above holds
for some neighborhood U of x. In other words, there is
a neighborhood U of x such that

Q∗(y, a0) < max
a∈A

Q∗(y, a), ∀y ∈ U.

This has an interesting implication: for every point x ∈
X there is a neighborhood U such that

opt(y) ⊂ opt(x), (8)

for all y ∈ U , where opt(x) is the set of optimal joint
actions at state x.

2. Q∗(x, a0) = maxa∈AQ
∗(x, a). If this is the case, two

possible situations can occur:

(a) There is a neighborhood U of x such that a0 ∈
opt(y) for all y ∈ U ;

(b) Given any neighborhood U of x there is a point
y ∈ U such that a0 /∈ opt(y);

Denote by D(a0) the set of points x ∈ X verifying 2b and
define the sets D =

⋃
a∈AD(a) and C = X − D. We now

show that

Lemma 3. Given the sets C and D above, D = ∂C.

Proof. We prove the lemma by establishing that ∂C ⊂
D and that D ⊂ ∂C.

From 1 and 2a, we see that a point x ∈ C has a neighbor-
hood U such that U ∩D = ∅. Then C = int (C) and since
D = X − C, ∂C ⊂ D. Since C and D are complementary
and C = int (C), the conclusion of the lemma follows.

Since D = ∂C, it is immediate that D is closed and there-
fore measurable. In turn, C must be open (in the subspace
topology) and also measurable. We now proceed with the
following result.

Lemma 4. The set D defined above verifies µLeb(D) = 0.

Proof. Recall that the function Q∗ is continuous in x.
Therefore, the function V ∗(x) = maxa∈AQ

∗(x, a) is also
continuous. We define a new function Ga(x) = V a(x) −
V ∗(x). Clearly, Ga is continuous and Ga(x) ≤ 0 for all
x ∈ X . We will show the set

ΩGa = {x ∈ X | Ga(x) < 0}

to be a p-dimensional topological manifold. Clearly, such set
is a subset ofRp and, hence, Hausdorff and second countable
(in the subspace topology). On the other hand, any point
x ∈ ΩGa has a neighborhood U ⊂ ΩGa , due to the continuity
of Ga. This neighborhood is a neighborhood in Rp and
therefore ΩGa is locally Euclidean and a topological manifold
of dimension p. Its boundary is a manifold of dimension p−1
and its Lebesgue measure is therefore zero.

By construction, we have that

∂C ⊂
⋃
a∈A

∂ΩGa ,

and the conclusion follows.

We remark that, for each point x ∈ C, there is a neigh-
borhood U such that opt(x) = opt(y), for all y ∈ U . This
can be seen by noticing that a point in C either verifies Con-
dition 1 or Condition 2a for every action a ∈ A. Therefore,
given one such point x and corresponding neighborhood U ,
it is immediate that the virtual game obtained by setting to
1 all optimal actions and to 0 all non-optimal actions is the
same in every point in U . This implies that, if ψ(U) > 0,
there is a time T0 such that, w.p.1, Sm(x,Ht) ⊂ U for t > T0

and ABAP reduces to BAP around x. Since, for all t > T0 all
K-samples are drawn from Sm(x,Ht), convergence of stan-
dard BAP ensures that, for all points in C, ABAP coor-
dinates in an optimal Nash equilibrium w.p.1. Therefore,
since ψ is absolutely continuous w.r.t. µLeb, Lemma 4 suf-
fices to conclude that convergence to an optimal policy in
all but a ψ-null set of points. Now if Q∗ is continuous in all
but a -null set of points, the previous proof holds for every
point x in which Q∗ is continuous (with some care when
defining the p-dimensional manifolds ΩGa), and the proof is
complete.
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