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ABSTRACT
Partial implication semantics in the context of a background the-
ory has been introduced to formalize partial goal satisfaction in the
context of beliefs. In this paper, we introduce strong partial im-
plication prohibitingredundanciesand weak partial implication al-
lowing side effects, we study their semantic as well as complexity
properties, and we apply the three notions of partial implication to
goal change in the context of beliefs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent agents

General Terms
Theory

Keywords
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1. INTRODUCTION
Consider the following four scenarios for a shopping agent de-

siring to buy apples and oranges today, represented byx ∧ y, and
believing from the only shop on-line today that either thereare:

1. apples (x), or

2. apples and bananas (x ∧ z), or

3. apples but no oranges (x ∧ ¬y), or

4. bananas (z).

In none of the scenarios the agent can achieve its goal, because none
of the scenarios classically implies the goalx ∧ y. Many agents
would therefore drop the goal, but Zhou and Chen [13] argue that it
is rational for the agent in scenario 1 and 2 to go to the store.They
formalize their intuition by introducing a notion so-called partial
implication, wherex andx ∧ z partially implyx ∧ y while x ∧¬y

andz do not.
In this paper we formalize partial goal satisfaction of an agent

going to the store only in the first scenario, and we call the corre-
sponding logical notion strong partial implication, whichprohibits
Cite as: Partial Implication Semantics for Goal Change, Yi Zhou, Leen-
dert van der Torre, and Yan Zhang,Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.
pp. 413-420.
Copyright c© 2008, International Foundation for Autonomous Agents and
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what we call redundancies, like the bananas in the example. It is an
intermediate solution between dropping the goal and using partial
implication. Moreover, we formalize partial goal satisfaction of an
agent that goes to the shop in the first three scenarios, and wecall
the corresponding logical notion weak partial implication, which
allows what we call side effects, like the absence of oranges. All
notions are defined in the context of background knowledge repre-
senting the beliefs of the agent.

- strong partial partial weak partial
partial satisfaction yes yes yes

redundancy no maybe maybe
side effect no no maybe

Table 1: The family of partial implication

Another perspective on the example is that the agent is firstchang-
ing its goal using partial implication, fromx ∧ y to for examplex,
x ∧ z or x ∧ ¬y, and thereafter using classical implication again.
In this paper we therefore address the following questions:

1. How to define strong and weak partial implication in the con-
text of background knowledge?

2. What are their properties and complexity?

3. How to define the problem of changing a goal rather than
simply dropping it?

4. How to use partial implication for goal change in the context
of beliefs?

Thedynamics of goalshas attracted a lot of research recently [2,
12, 11, 9, 8, 7, 10]. Goal change is inevitable in real domainsfor
several reasons. Firstly, the agent has bounded resources so that it
cannot make "perfect" plans. Secondly, the environment is unpre-
dictable and uncertain, which means that it is impossible topredict
the future. Finally, the agent’s information about the environment
maybe ambiguous, even wrong. Therefore, the agent’s plans may
lead to unexpected results. All of these would possibly result in a
situation where the agent’s original goal is infeasible or meaning-
less. Hence, the agent should change its goal.

This paper is organized as follows. In Section 2 we discuss the
use of prime implicants for partial goal satisfaction, and in Sec-
tion 3-5 we formalize partial goal satisfaction semantically as three
kinds of partial implication, and investigate the main properties. In
Section 6, we propose a framework based on partial implication for
the problem of how to change the agent’s goal in the context ofbe-
liefs. In Section 7, we address the complexity issues for thethree
kinds of partial implication.
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2. PARTIAL GOAL SATISFACTION
Zhou and Chen [13] argue thatpartial satisfaction of goalsis an

important issue in rational decision making of autonomous agents.
In the traditional logical approach, agents always try to find plans to
completelyachieve their goals, which is usually formalized based
on classical implication.

P satisfies a goalQ if P logically impliesQ.

However, people often perform planspartially achieving their goals.
Informally, Zhou and Chen characterize partial goal satisfaction as
follows.

P partially satisfies a goal to achieveQ if for all cases
of P , there is a case ofQ such that the former is related
to a part of the latter.

The reason for this complex definition is that they assume that
P andQ are represented by propositional formulas, where incon-
sistent propositions cannot both be achieved. For example,a goal
to achievep and a goal to achieve¬p cannot both be satisfied by
achievingp and¬p simultaneously, like switching on and off the
light. In such a case, whenp stands for having the light on at some
points in the future,¬p would stand for never having the light on.
Likewise a goal to achievep together with a belief in¬p implies
that either the goal cannot be achieved, or the belief is wrong. If P

andQ would be represented by sets of literals, for example, then
they would say thatP partially satisfies goal to achieveQ if P is
related to a part ofQ. However, in propositional logic they also
have to deal with disjunction, for which they introduce the cases in
the definition of partial goal satisfaction.

Therefore, they introduce a notion ofpartial implication using
propositional language to capture partial satisfaction relationship
between two propositional formulas with respect to a background
formula set. For instance,x ∧ z does not implyx ∧ y in classical
propositional logic. However, it partially impliesx ∧ y sincex,
which can be considered as apart of x∧y, is a logical consequence
of x∧z. Thus, we may treat a proposition as a choice among several
cases, where each case consists of a set of literals. We may say,
for example, thatP partially implies goalQ, whereP andQ are
propositional formulas, i.e., not necessarily propositional atoms,
when every case ofP is a part of a case ofQ.

Before we make this idea more precise, we introduce some no-
tations. We denote the propositional language byL. Formulas in
L are composed recursively by a finite setAtom of atoms (also
called variables) with{⊤,⊥} and standard connectives¬ and→.
The connectives∧, ∨, ↔ are defined as usual. Literals are atoms
and their negations. We use lower case letters, upper case letters,
lower Greek letters and upper Greek letters to denote atoms and lit-
erals, formulas, literal sets and formula sets respectively. We write
−l to denote the negation of a literall, −π to denote the set of
negations of all literals inπ. We useΓ itself to denote the conjunc-
tion of a set of formulas inΓ if it is clear from the context. We
write Atom(l), Atom(P ), Atom(π), Atom(Γ) to denote the sets
of atoms occurred in literall, formulaP , literal setπ and formula
setΓ respectively. We say that a literal setπ is an assignment over
a set of atomsA ⊆ Atom (assignment for short ifA = Atom)
if for each atomx ∈ A, exactly one ofx and¬x is in π. Notice
that both a literall and an assignmentπ can also be considered as
formulas. Hence, in the rest of this paper, bothl andπ also denote
their corresponding formulas for convenience if it is clearfrom the
context. We writeP |l to denote the formula obtained fromP by
replacing every occurrence ofl into ⊤ and every occurrence of−l

into ⊥ simultaneously. Letπ = {l1, l2, ..., lk}, we writeP |π to
denote the formula(((P |l1)|l2)|...)|lk .

To formalize their notion of case, Zhou and Chen use Quine’s
notion of a prime implicant of a formula [5] as a minimal set (in
the sense of set inclusion) of literals satisfying this formula. Prime
implicants are used in many areas of logic, but they also relativize
the notion of prime implicant to a belief setΓ.

DEFINITION 1 (PRIME IMPLICANT ). A literal setπ is a prime
implicant of a formulaP with respect to formula setΓ1 if:

(1) Γ ∪ π is consistent.

(2) Γ ∪ π |= P .

(3) There is no literal setπ′ satisfying the above two conditions
andπ′ ⊂ π.

The set of all prime implicants ofP with respect toΓ is denoted by
PI(Γ, P ).

The prime implicants of a formulaP w.r.t. a formula setΓ play
two roles.

CasesOn the one hand, if there exists an assignmentπ satisfying
bothΓ andP , then there exists a subset ofπ which is a prime
implicant of P w.r.t. Γ. On the other hand, ifπ is a prime
implicant of P w.r.t. Γ, then it can be extended into an as-
signment satisfying bothΓ andP . This means that the prime
implicants ofP w.r.t. Γ are corresponding to the possible
worlds satisfying bothΓ andP . In other words, intuitively,
they represent all thecaseswhich make the proposition true
w.r.t. the background theory.

Part Suppose thatπ is a prime implicant ofP w.r.t. Γ and l is
a literal such thatl ∈ π. Then we have thatΓ ∪ π |= P

andΓ ∪ π\{l} 6|= P . Intuitively, this means thatl plays an
essential role for achievingP w.r.t. Γ via π. Thus,l can be
considered as apart of P w.r.t. Γ.

Both roles of prime implicants are exploited by the notions of
partial implication introduced in the following sections.P strongly
partially impliesQ means thatP implies some parts ofQ and noth-
ing else, and this corresponds roughly to a weakening ofQ to P . P

(weakly) partially impliesQ means thatP implies some parts ofQ,
but may have something more (redundancies). In this sense, strong
partial implication captures thatP is a part ofQ, while (weak) par-
tial implication captures thatP implies part ofQ. Before we are
going into the technical details, we mention three general proper-
ties of prime implicants which are used in the following sections.

LEMMA 1. Let P be a formula,Γ a set of formulas andπ a
literal set such thatΓ∪ π is consistent andΓ∪π |= P . Then there
existsπ′ ⊆ π such thatπ′ is a prime implicant with respect toΓ.

LEMMA 2. Let P be a formula andΓ a set of formulas. We
have thatΓ |= ¬P if and only ifPI(Γ, P ) = ∅; Γ |= P if and
only if PI(Γ, P ) = {∅}.

Lemma 2 also shows the difference betweenPI(Γ, P ) = ∅ and
PI(Γ, P ) = {∅}. The former means that there is no prime im-
plicant ofP w.r.t. Γ, while the latter means that there is a unique
prime implicant ofP w.r.t. Γ, which is the empty set. We say that
a formulaP is trivial w.r.t. a formula setΓ if Γ |= P or Γ |= ¬P .
Otherwise we say thatP is non-trivial w.r.t. Γ.

LEMMA 3. LetP andQ be two formulas andΓ a set of formu-
las. Γ |= P ↔ Q iff PI(Γ, P ) = PI(Γ,Q).

1In [13], this is calledΓ-prime implicant.
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3. STRONG PARTIAL IMPLICATION
A formula P strongly partially implies a formulaQ when for

all the cases inP , there is a case inQ that extends it in the sense
that all the literals of the case ofP are also appeared in the case
of Q. Moreover, this basic definition is extended with respect toa
formula setΓ and it eliminates trivial cases by excluding thatP is
implied by the beliefs, or contradictory with it.

DEFINITION 2 (STRONG PARTIAL IMPLICATION). We say that
a formulaP strongly partially implies a formulaQ with respect to
a formula setΓ, denoted byP ≻S

Γ Q, if:

1. PI(Γ, P ) is not empty andPI(Γ, P ) 6= {∅}.

2. For eachπ ∈ PI(Γ, P ), there existsπ′ ∈ PI(Γ,Q), such
thatπ ⊆ π′.

We writeP ⊁S
Γ Q if it it not the case thatP ≻S

Γ Q. For conve-
nience, we omitΓ when it is empty.

The following example illustrates the apples and oranges exam-
ple for strong partial implication.

EXAMPLE 1. x strongly partially impliesx ∧ y while x ∧ z,
x ∧ ¬y andz do not.

Strong partial implication should not be considered as a variant
of classical implication such as relevant implication, andit should
not be applied iteratively. The following example illustrates some
of its properties.

EXAMPLE 2. p partially satisfies bothp ∧ q andp ∨ q, repre-
sented byp ≻S p∧ q andp ≻S p∨ q respectively, but for different
reasons. In the former, suppose that an agent has a goal to ac-
complish every element in a set of goals, then accomplishingone of
them is helpful to the original goal. In the latter, if it has agoal to
accomplish one of the goals in a set of goals, then accomplishing
one of them is of course "helpful" in the sense that this behavior
achieves the goal.

p ∧ q partially impliesp, but p ∨ q does not partially implyp,
represented byp ∧ q ≻S p and p ∨ q ⊁S p respectively, which
illustrates that in some examples conjunction and disjunction are
distinct. The latter does not hold, because the caseq is in no way
helpful for the goal to achievep.

Theorem 1 shows that a proposition already true or always false
w.r.t. a background theory does not strongly partially satisfy any
other formulas, and it is not strongly partially satisfied byany other
formulas.

THEOREM 1 (NON-TRIVIALITY ). Let P and Q be two for-
mulas andΓ a set of formulas. If eitherP or Q is trivial w.r.t. Γ,
thenP 6≻S

Γ Q.

PROOF. This assertion can be easily proved by Lemma 2 since
the strong partial implications require the intersectionsof two prime
implicants not to be empty.

Theorem 2 means that strong partial implications are syntacti-
cally independent. Propositions equivalentw.r.t. the background
theory play the same roles in partial implication semantics. Theo-
rem 2 also shows that we can substitute a proposition with an equiv-
alent onew.r.t. the background theory. In classical propositional
logic, we can also substitute an atom with a formula. However, this
can not be done in partial implications. For instance, observe that
x ≻ x ∧ y (x ≻W x ∧ y, x ≻S x ∧ y). If we replacex by ¬y,
then by Theorem 1, this strong partial implication relationship no
longer holds.

THEOREM 2 (INDEPENDENCY OFSYNTAX ). Let P , Q and
R be three formulas andΓ a set of formulas such thatΓ |= P ↔ Q.
Then,P ≻S

Γ R implies thatQ ≻S
Γ R; R ≻S

Γ P implies that
R ≻S

Γ Q.

PROOF. This assertion follows directly from Lemma 3 since
strong partial implication is defined only based on the sets of prime
implicants.

Theorem 3 states that relevancy for partial implication holds.

THEOREM 3 (RELEVANCY). Let P and Q be two formulas
such thatP ≻S R. Then,Atom(P ) ∩ Atom(Q) 6= ∅.

PROOF. According to the definitions of strong partial implica-
tion, there existsπ ∈ PI(Γ, P ) and π′ ∈ PI(Γ,Q) such that
π ∩ π′ 6= ∅. Thus,Atom(π)∩ Atom(π) 6= ∅. SinceAtom(π) ⊆
Atom(P ) andAtom(π′) ⊆ Atom(Q), Atom(P )∩Atom(Q) 6=
∅.

PROPOSITION1 (NON MONOTONICITY). LetP andQ be two
propositions,Γ and Γ′ two sets of formulas such thatΓ ⊂ Γ′.
P ≻S

Γ Q does not imply thatP ≻S
Γ′ Q.

PROOF. For instance,x ≻S x ∧ y. However,x 6≻S
{¬y} x ∧

y. This shows that monotonicity does not hold for strong partial
implication in general.

THEOREM 4 (TRANSITIVITY ). LetP , Q andR be three for-
mulas andΓ a set of formulas. IfP ≻S

Γ Q and Q ≻S
Γ R, then

P ≻S
Γ R.

PROOF. By Theorem 1,P , Q andR are all non-trivialw.r.t. Γ.
Let π be a prime implicant ofP w.r.t. Γ. SinceP ≻S

Γ Q, there
exists a literal setπ1 consistent withΓ such thatπ1 ∈ PI(Γ,Q)
andπ ⊆ π1. Moreover, sinceQ ≻S

Γ R, there exists a literal setπ2

consistent withΓ such thatπ2 ∈ PI(Γ,R) andπ1 ⊆ π2. Hence,
π ⊆ π2. This shows thatP ≻S

Γ R.

4. PARTIAL IMPLICATION
Strong partial implication is an intuitive replacement of material

implication, but in some cases it may be too strong, and a weaker
notion may be called for. Zhou and Chen [13] say that a formulaP

partially implies a formulaQ when for all the cases inP , there is
a case inQ that is not disjoint and does not conflict with it, in the
sense that some literals appeared in the case ofP are also appeared
in the case ofQ, and there are no literals in the case ofP such that
the negated literal is in the case ofQ. For example, consider two
setsπ andπ′ of consistent literals. On the one hand,π ∩ π′ 6= ∅
means thatπ achieves some parts ofπ′ since all elements ofπ′ can
be considered as parts ofπ′. On the other hand,π ∩ −π′ = ∅
means thatπ has no side effect toπ′ since the side effects ofπ′ can
be considered as the negations of all elements inπ′. Moreover, this
definition is relativized to belief setΓ, and condition 1 ensures that
there exists at least one case inP .

DEFINITION 3 (PARTIAL IMPLICATION). A formulaP par-
tially implies a formulaQ with respect to a formula setΓ, denoted
byP ≻Γ Q2, if:

1. PI(Γ, P ) is not empty.

2. For eachπ ∈ PI(Γ, P ), there existsπ′ ∈ PI(Γ,Q), such
thatπ ∩ π′ 6= ∅ andπ ∩ −π′ = ∅.

2In [13], this is denoted asΓ |= P ≻ Q.
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We writeP ⊁Γ Q if it it not the case thatP ≻Γ Q.

The following example illustrates the apples and oranges exam-
ple for partial implication.

EXAMPLE 3. x andx ∧ z partially imply x ∧ y while x ∧ ¬y

andz do not.

Theorem 5 shows that strong partial implication implies partial
implication.

THEOREM 5 (STRONG AND PARTIAL IMPLICATION). LetP ,
Q be two formulas andΓ a set of formulas.P ≻S

Γ Q implies
P ≻Γ Q.

PROOF. Suppose thatP ≻S
Γ Q. Let π ∈ PI(Γ, P ). We have

that π 6= ∅, otherwise,∅ is the only prime implicant ofP with
respect toΓ, a contradiction. By condition 2 in Definition 2, there
existsπ′ ∈ PI(Γ,Q) such thatπ ⊆ π′. Thus,π ∩ π′ = π 6= ∅.
Moreover,π ∩ −π′ = ∅, otherwise, there existsl ∈ π ∩ −π′.
Thus, l 6∈ π′ sinceπ′ is a consistent literal set, a contradiction.
This shows thatP ≻Γ Q.

Non-triviality (Theorem 1, Theorem 4 in [13]), Independency of
Syntax (Theorem 2), Relevancy (Theorem 3, Proposition 8 in [13])
hold for partial implication just as for strong partial implication.
However, transitivity does not hold for partial implication. For in-
stance,x ≻ x∧ y andx∧ y ≻ y ∧ z. Howeverx 6≻ y ∧ z. Finally,
Zhou and Chen [13] show that partial implication is an extension
of classical implication in the nontrivial cases: ifP andQ are two
formulas non-trivialw.r.t. Γ andΓ |= P → Q, thenP ≻Γ Q.
However, this does not hold for strong partial implication in gen-
eral. For example,|= x ∧ y → x but x ∧ y 6≻S x. For further
discussion on the properties of partial implication, see [13].

5. WEAK PARTIAL IMPLICATION
Even partial implication may be too strong for some applications,

and we therefore also consider weak notion of partial implication.
A formulaP weakly partially implies a formulaQ when for all the
cases inP , there is a case inQ that is not disjoint, in the sense
that some literal part of the case ofP is also part of the case ofQ.
Weak partial implication is a weaker notion of partial implication
by allowing possible side effects. Thus, it can be captured simply
by π ∩ π′ 6= ∅.

DEFINITION 4 (WEAK PARTIAL IMPLICATION). We say that
a formulaP weakly partially implies a formulaQ with respect to
a formula setΓ, denoted byP ≻W

Γ Q, if:

1. PI(Γ, P ) is not empty.

2. For eachπ ∈ PI(Γ, P ), there existsπ′ ∈ PI(Γ,Q), such
thatπ ∩ π′ 6= ∅.

We writeP ⊁W
Γ Q if it it not the case thatP ≻W

Γ Q.

The following example illustrates the apples and oranges exam-
ple for weak partial implication.

EXAMPLE 4. x, x∧ z andx∧¬y weakly partially implyx∧ y

whilez does not.

Theorem 6 shows that partial implication implies weak partial
implication.

THEOREM 6 (PARTIAL AND WEAK PARTIAL ). Let P , Q be
two formulas andΓ a set of formulas.P ≻Γ Q impliesP ≻W

Γ Q.

PROOF. ThatP ≻Γ Q impliesP ≻W
Γ Q follows directly from

Definition 3 and 4.

Theorem 5 and Theorem 6 state the basic relationships among
the family of partial implications which coincide with our intu-
itions. However, the converses of Theorem 5 do not hold in general.

Again, non-triviality (Theorem 1), independency of syntax(The-
orem 2), and relevancy (Theorem 3) hold for weak partial implica-
tion just as for strong and normal partial implication, and transitiv-
ity does not hold for weak partial implication like it does not hold
for partial implication. For example,x ≻W x ∧ y andx ∧ y ≻W

y ∧ z butx 6≻W y ∧ z.

THEOREM 7. LetP , Q andR be three formulas andΓ a set of
formulas. IfP ≻W

Γ Q andQ ≻S
Γ R, thenP ≻W

Γ R.

PROOF. By Theorem 1,P , Q andR are all non-trivialw.r.t. Γ.
Let π be a prime implicant ofP w.r.t. Γ. SinceP ≻W

Γ Q, there
exists a literal setπ1 consistent withΓ such thatπ1 ∈ PI(Γ,Q)
andπ ∩ π1 6= ∅. Moreover, sinceQ ≻S

Γ R, there exists a literal
setπ2 consistent withΓ such thatπ2 ∈ PI(Γ,R) andπ1 ⊆ π2.
Thus,π ∩ π1 ⊆ π ∩ π2. Thereforeπ ∩ π2 6= ∅. This shows that
P ≻W

Γ R.

THEOREM 8. Let P , Q and R be three formulas andΓ a set
of formulas. IfP ≻W

Γ Q andP ∧ R is non-trivial w.r.t. Γ, then
P ∧ R ≻W

Γ Q.

PROOF. Let π be a prime implicant ofP ∧ R w.r.t. Γ. We have
thatΓ ∪ π |= P ∧ R. Then,Γ ∪ π |= P . By Lemma 1, there is a
subsetπ1 of π, which is a prime implicant ofP w.r.t. Γ. Moreover,
P ≻W

Γ Q. Then, there exists a prime implicantπ2 of Q w.r.t.
Γ such thatπ1 ∩ π2 6= ∅. Thus,π ∩ π2 6= ∅. This shows that
P ∧ R ≻W

Γ Q.

Theorem 8 does not hold for either partial implication or strong
partial implication. For example, we have thatx ≻S x ∧ y and
x ≻ x ∧ y. But x ∧ ¬y ⊁S x ∧ y andx ∧ ¬y ⊁ x ∧ y.

Weak partial implication is also an extension of classical impli-
cation in the nontrivial cases.

COROLLARY 1. Let Γ be a set of formulas,P andQ two for-
mulas non-trivial w.r.t.Γ. If Γ |= P → Q thenP ≻W

Γ Q.

PROOF. This assertion follows directly from this property for
partial implication [13] and Theorem 6.

The family of partial implications is related to the notion of rel-
evance [3], but also distinct in various ways. There are two major
differences between Lakemeyer’s relevance and weak partial im-
plication. Firstly, weak partial implication is defined by a∀ − ∃
style (See Definition 4), while Lakemeyer’s notion of relevance
is defined by a∃ − ∃ style. Secondly, the background theory is
not considered in Lakemeyer’s approach. Another related notion
is probabilistic positive relevance, introduced in [14]. According to
the definition in [14],x∨y is positive relevant tox, whilex∨y ⊁ x

(x ∨ y ⊁W x, x ∨ y ⊁S x).
Finally, not that the following definition does not capture partial

satisfaction. A formulaP partially implies a formulaQ w.r.t. a
formula setΓ iff there exists a formulaR such thatΓ ∪ {R} 6|= Q

but Γ ∪ {P, R} |= Q. Actually, for every formulaP such that
Γ 6|= P → Q, there always exists such a formulaR (Let R be
¬Γ∨¬P ∨Q). Even if we restrictR with set of consistent literals,
this definition cannot capture partial satisfaction either. If so, for
instance,x ∨ ¬y should partially implyx ∧ y according to this
definition since(x ∨ ¬y) ∧ y |= x ∧ y. However, this conclusion
is counter-intuitive.
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6. GOAL CHANGE
Since goals play a central role in agent theory, goal change is

a central problem in, for example, agent theory and programming,
planning, learning, communication and coordination. [2, 12, 11, 9,
8]. Several strategies have been proposedwhenthe agents’ goals
ought to be changed. The first one is so called "blind" [11]. That is,
an agent will never change its goal unless it believes this goal has
been achieved. Another one is that the agent will never change its
goal unless it believes this goal has been achieved or is unachiev-
able [1, 6]. The third strategy introduces a trigger condition for
each goal [12], if this condition becomes true then the agentshould
change that goal associated with this condition. In the fourth strat-
egy, the agent may change its goal if it receives a request from
another agent to cancel this goal [9].

Few approaches are concerned with how to change the agents’
goals. For almost all of them, the answer is quite simple, that is to
drop the goal. Huang and Bell [2] propose to represent the agents’
goals with preferences, an then to change the goals according to this
preference structure. However, a reasonable way is changing the
goal instead of simply dropping it, especially in the case where the
agent has to drop his goal due to requirements from other agents.

6.1 From partial goal satisfaction to goal change
How to change the goals of agents depends on the context and

application, and we therefore propose a logical framework based
on partial implication for goal change in the context of beliefs. The
inspiration for our approach is that partial goal satisfaction may be
seen as combination of goal change and full goal satisfaction.

P partially satisfies a goal to achieveQ if the goal to
achieveQ can be changed into a goal to achieveQ′,
andP satisfies the goal to achieveQ′, i.e.,P logically
impliesQ′.

The relation between partial goal satisfaction and goal change is
illustrated by the following example.

EXAMPLE 5. p∧ r partially satisfies the goal to achievep∧ q,
because the goal to achievep ∧ q can be changed to the goal to
achievep, andp ∧ r logically impliesp.

We therefore characterize goal change analogously to partial goal
satisfaction.

A goal to achieveQ can be changed into a goal to
achieveQ′ if for all cases ofQ′, there is a case ofQ
such that a part of the former is related to a part of the
latter.

This suggests that the three notions of partial implicationcan be
used to define goal change operators. Before we consider which
notion of partial implication is best suited for goal change, we have
to discuss the role of beliefs in goal change.

6.2 Introducing beliefs in goal change
Goal change takes place in the context of the agent’s beliefs. In

particular, a goal may be changed to a logically unrelated proposi-
tion, when the agent believes that the propositions are related. The
following definition models this role of beliefs in goal change by
representing the beliefs as the background knowledgeΓ. We only
consider strong partial implication, the other definitionsare analo-
gous.

DEFINITION 5. The goal to achieveQ can be changed to the
goal to achieveQ′ in the context of a set of beliefsΓ, if and only if
Q′ ≻S

Γ Q.

The following example illustrates how beliefs can be used ingoal
change using strong partial implication.

EXAMPLE 6. A goal to achievep∧ q may be changed to a goal
to achievep, represented byp ≻S

∅ p ∧ q. When the agent believes
thats impliesp, then the goal to achievep∧q may also be changed
to a goal to achieves, represented bys ≻S

{s→q} p ∧ q.

The following combination of Example 5 and 6 illustrates the
use of beliefs in goal change to relate partial goal satisfaction in the
context of beliefs to goal change in the context of beliefs.

EXAMPLE 7. s ∧ r partially satisfies the goal to achievep ∧ q

in the context ofs → p, as represented bys ∧ r ≻{s→p} p ∧ q.
Moreover, the goal to achievep ∧ q may also be changed to a goal
to achieves, represented bys ≻S

{s→p} p ∧ q. Consequently,s ∧ r

partially satisfies the goal to achievep ∧ q in the context ofs → p,
because the goal to achievep ∧ q in the context ofs → p can
be changed to the goal to achieves, ands ∧ r logically impliess.
However, if the beliefs are not used in the goal change, and the goal
to achievep∧ q is changed to the goal to achievep, then we do not
have tos ∧ r logically impliesp.

The following example illustrates that strong partial implication
cannot be used when a goal conflicts with a belief (the same holds
for the other notions of partial implication).

EXAMPLE 8. A goal for p ∧ q conflicts with the belief for¬q

and, maybe, thereforep ∧ q may be changed top, but not toq.
However, neitherp ≻S

{¬q} p ∧ q nor q ≻S
{¬q} p ∧ q holds, be-

causep ≻S
Γ q implies that bothPI({¬q}, p) andPI({¬q}, q) are

nonempty.

The latter example can be modeled with a contraction operator
‘−’ as developed in the context of belief change, and as it has been
studied in the AGM framework. For example, the goal to achieve
p∧q may be changed to the goal to achievep in the context of belief
¬q, sinceCn(p ∧ q) − q = Cn(p). However, in most examples
of goal contraction it seems dangerous to change a goal because
it conflicts with a belief, because the belief may later turn out to
be wrong. In case of conflict between a goal to achievep ∧ q and
a belief¬q, it is better to keep the goalp ∧ q, and add one of its
subgoals like the goal to achievep.

6.3 Which partial implication?
If an agent has to change its goal to achievep∧q, and it can freely

choose how to change its goal, it seems most reasonable to change
it to either a goal to achievep or to a goal to achieveq. Deliberately
introducing a side effect such as changing its goal top ∧ r, or even
side effects such asp ∧ ¬q, seems irrational. For example, if the
agent changes its goal top ∧ r, it has to make some effort to see
to r, which does not seem to serve any purpose. In other words,
in an unconstrained situation, it seems best to use strong partial
implication.

However, in other circumstances the other notions of partial im-
plication may be used too. For example, consider the fourth strat-
egy to change goals mentioned at the beginning of this section, in
which the agent may change its goal if it receives a request from an-
other agent to cancel this goal [9]. If the other agent requesting the
cancelation also gives some suggestions how to change the goal, the
agent has to decide which alternative to accept. In such constrained
cases, in which the agent has to choose from a set of alternatives,
and in which none of the alternatives strongly partially implies the
goal, weaker notions of partial implication can be adopted too.
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7. COMPLEXITY ISSUES
In this section, we analyze the complexity issues related toall

three kinds of partial implications. We assume that the readers are
familiar with some basic notions of computational theory. More
details can be found in [4]. We recall some complexity classes
here:

• DP is the complexity class of all languagesL such thatL =
L1∩L2, whereL1 is in NP andL2 is in coNP. The canonical
problem of DP isSAT − UNSAT : a pair of propositional
formulas〈P, Q〉 is in SAT −UNSAT if and only if P is in
SAT andQ is in UNSAT .

• ΣP
2 = NP NP is the complexity class of all languages that

are recognizable in polynomial time by a non-deterministic
Turing Machine equipped with an NP oracle. The canonical
problem ofΣP

2 = NP NP is 2−QBF : let X andY be two
disjoint sets of atoms andP a formula such thatAtom(P ) ⊆
X ∪Y , a triple〈X, Y, P 〉 is in 2−QBF if and only if there
exists an assignmentπ overX such that for all assignments
π′ overY , π ∪ π′ |= P .

• ΠP
2 = coΣP

2 = coNP NP is the complexity class of all
languages whose complementary problems are inΣP

2 . The
canonicalΠP

2 problems is2 − QBF : let X andY be two
disjoint sets of atoms andP a formula such thatAtom(P ) ⊆
X ∪ Y , a triple〈X, Y, P 〉 is in 2 − QBF if and only if for
all assignmentsπ overX, there exists an assignmentπ′ over
Y such thatπ ∪ π′ |= P .

• ΠP
3 is the complexity class of all languages whose comple-

mentary problems are recognizable in polynomial time by a
non-deterministic Turing Machine equipped with aΣP

2 ora-
cle. The canonicalΠP

3 problems is3 − QBF : let X, Y and
Z be three disjoint sets of atoms andP a formula such that
Atom(P ) ⊆ X ∪ Y ∪ Z, a quadruple〈X, Y, Z, P 〉 is in
3 − QBF if and only if for all assignmentsπ overX, there
exists an assignmentπ′ overY such that for all assignments
overπ′′, π ∪ π′ ∪ π′′ |= P .

We first start our complexity analysis when the background for-
mula setΓ is empty.

LEMMA 4. A literal l is in one of the prime implicants of a
formulaP if and only if 6|= P |l → P | − l.

PROOF. "⇒:" Assume that|= P |l → P | − l andl ∈ π, π ∈
PI(P ). Letπ1 = π\{l}. Thenπ1∪{l} |= (l∧P |l)∨(−l∧P |−l).
It follows thatπ1 ∪ {l} |= l ∧ P |l. Thereforeπ1 |= P | − l, which
means thatπ1 |= P . Hence,π is not a prime implicant ofP , a
contradiction.

"⇐:" First, P |l can be satisfied. Suppose thatπ satisfiesP |l but
not P | − l. By Lemma 1, there exists a subsetπ1 ⊂ π which is
a prime implicant ofP |l. Thereforeπ1 6|= P but π1 ∪ {l} |= P .
By Lemma 1, there is a subsetπ2 ⊂ π1 ∪ {l} which is a prime
implicant ofP . Moreover,l ∈ π2 sinceπ1 6|= P .

THEOREM 9. To determine whether a literall is in at least one
of the prime implicants of a formulaP is NP complete. To deter-
mine whether a literall partially (or weak partially, strong par-
tially) implies a formulaP are all NP complete as well.

PROOF. Membership of point 1 follows directly from Lemma 4.
Hardness of point 1 follows from the fact thatP is satisfiable iffx
is in at leat one of the prime implicants ofx ∧ P , wherex is a new
atom not occurred inP . Point 2 is obvious.

THEOREM 10. To determine whether a literall is in all prime
implicants of a formulaP is DP complete.

PROOF. It is easy to prove thatl occurring in all prime impli-
cants ofP iff P can be satisfied and|= P → l. It immediately
follows that the membership of this assertion. Hardness follows
from the fact thatP is satisfiable andQ is unsatisfiable iffx is in
all prime implicants of(x ∧ P ) ∨ (¬x ∧ Q), wherex is a new
atom.

LEMMA 5. Let π = {l1, ..., lk} be a consistent literal set and
P a formula.π is a prime implicant ofP if and only if|= P |π and
6|= P |πi 1 ≤ i ≤ k, whereπi = π\{li} ∪ {−li}, 1 ≤ i ≤ k.

PROOF. "⇒:" By the definition,π |= P . Therefore|= P |π.
Moreover, 6|= P |πi. Otherwise,π\{li} |= P , which shows thatπ
is not a prime implicant ofP , a contradiction.

"⇐:" Firstly, π |= P since|= P |π. Secondly, by Lemma 1, there
existsπ′ ⊂ π such thatπ′ ∈ PI(P ). Thus, for alli, li ∈ π′. Oth-
erwise,π\{li} |= P , which means thatπi |= P , a contradiction.
Thus,π′ = π.

THEOREM 11. To determine whether a literal setπ is a prime
implicant of a formulaP is DP complete.

PROOF. Membership follows from Lemma 5. For hardness, we
construct a reduction fromSAT −UNSAT . 〈P, Q〉 is in SAT −
UNSAT if and only if {x} is a prime implicant of(x ∨ ¬P ) ∧
(¬x ∨ ¬Q), wherex is a new atom.

THEOREM 12. To determine whether a literal setπ weakly par-
tially implies a formulaP is NP complete.

PROOF. Hardness follows directly from Theorem 9. For mem-
bership, letπ = {l1, ..., lk}. Thenπ weakly partially impliesP if
and only ifπ is consistent and there existsli, 1 ≤ i ≤ k such thatli
is in one of the prime implicant ofP . By Theorem 9, this problem
is in NP.

LEMMA 6. A literal setπ partially implies a formulaP iff there
is an assignmentπ1 overAtom\Atom(π) and an assignmentπ2

overAtom(π) such thatπ ∪ π1 |= P andπ1 ∪ π2 |= ¬P .

PROOF. "⇒:" By Definition 3, there is a prime implicantπ′

of P such thatπ ∩ π′ 6= ∅ and π ∩ −π′ = ∅. Let l ∈ π′ ∩
π. Thenπ′\{l} ∪ {−l} 6|= P . It can be extended into an as-
signmentπ0 over Atom, which satisfies¬P . Let π1 ⊆ π0 and
Atom(π1) = Atom\Atom(π); let π2 ⊆ π0 andAtom(π2) =
Atom(π). Clearly,π ∪ π1 |= P andπ1 ∪ π2 |= ¬P .

"⇐:" By Lemma 1, there is a prime implicantπ′ of P such that
π′ ⊆ π ∪ π1. It follows thatπ′ ∩ π 6= ∅ andπ′ ∩−π = ∅. Hence,
π partially impliesP .

THEOREM 13. To determine whether a literal setπ partially
implies a formulaP is NP complete.

PROOF. Hardness follows directly from Theorem 9. For mem-
bership, the following algorithm determines whetherπ partially im-
pliesP : 1. guessπ1, π2 in Lemma 6; 2. check the conditions in
Lemma 6. Step 2 can be done in polynomial time.

THEOREM 14. To determine whether a literal setπ strongly
partially implies a formulaP is ΣP

2 complete.

PROOF. "Membership:" The following algorithm determines
whetherπ strongly partially impliesP : 1. guess a consistent literal
setπ′; 2. check whetherπ′ is a prime implicant ofP ; 3. if yes,
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check that whetherπ is a subset ofπ′. By Theorem 11, step 2
requires anNP oracle. Hence, this problem is inΣP

2 .
"Hardness:" Reduction from2 − QBF . Let X andY be two

disjoint sets of atoms andP a formula such thatAtom(P ) ⊆ X ∪
Y . Let Y = {y1, y2, ..., yk}; T1 be y1 ∨ ... ∨ yk; T2 be¬y1 ∨
... ∨ ¬yk; x andy be two new atoms different withX ∪ Y ; Q be
(x ∧ y ∧ P ) ∨ (x ∧ ¬y ∧ T1) ∨ (¬x ∧ y ∧ T2). It is easy to prove
that∃X∀Y P holds if and only ifx ∧ y strongly partially implies
Q.

THEOREM 15. To determine whether a formulaP partially im-
plies another formulaQ is ΠP

2 complete.

PROOF. "Membership:" The following algorithm determines
whetherP does not partially implyQ: 1. guess a consistent literal
setπ; 2. check whetherπ is a prime implicant ofP ; 3. if yes, check
that whetherπ does not partially implyQ. By Theorem 11 and
Theorem 13, step 2 and step 3 requires anNP oracle respectively.
Hence, this problem is inΠP

2 .
"Hardness:" Reduction from2 − QBF . Let X andY be two

disjoint sets of atoms andP a formula such thatAtom(P ) ⊆ X ∪
Y . Let X = {x1, x2, ..., xk}; X ′ = {x′

1, x
′
2, ..., x

′
k} be k new

atoms different withAtom. FormulaK is (x1 ↔ x′
1) ∧ (x2 ↔

x2)∧ ...∧(xk ↔ xk). It is easy to prove that∀X∃Y P holds if and
only if x ∧ K partially impliesx ∧ P , wherex is a new atom.

THEOREM 16. To determine whether a formulaP weakly par-
tially implies another formulaQ is ΠP

2 complete.

PROOF. "Membership:" The following algorithm determines
whetherP does not weakly partially implyQ: 1. guess a consistent
literal setπ; 2. check whetherπ is a prime implicant ofP ; 3. if
yes, check that whetherπ does not weakly partially implyQ. By
Theorem 11 and Theorem 12, step 2 and step 3 requires anNP

oracle respectively. Hence, this problem is inΠP
2 .

"Hardness:" reduction from2 − QBF . Let X andY be two
disjoint sets of atoms andP a formula such thatAtom(P ) ⊆ X ∪
Y . LetY = {y1, y2, ..., yk}. FormulaT is (y1∨ ...∨yk)∧(¬y1 ∨
... ∨ ¬yk). It is easy to prove that∃X∀Y P holds if and only ifP
does not weakly partially implyT .

THEOREM 17. To determine whether a formulaP strongly par-
tially implies another formulaQ is ΠP

3 complete.

PROOF. "Membership:" The following algorithm determines
whetherP does not strongly partially implyQ: 1. guess a consis-
tent literal setπ; 2. check whetherπ is a prime implicant ofP ; 3. if
yes, check that whetherπ doesn’t strongly partially impliesQ. By
Theorem 11, step 2 requires anNP oracle; by Theorem 14, step 3
requires anΣP

2 oracle. Hence, this problem is inΠP
3 .

"Hardness:" Reduction from3 − QBF . Let X, Y andZ be
three disjoint sets of atoms andP a formula such thatAtom(P ) ⊆
X ∪ Y ∪ Z. Let X = {x1, x2, ..., xk}; X ′ = {x′

1, x
′
2, ..., x

′
k}

bek new atoms;Z = {z1, z2, ..., zk}; T1 bez1 ∨ ... ∨ zk; T2 be
¬z1 ∨ ... ∨ ¬zk; K be (x1 ↔ x′

1) ∧ (x2 ↔ x2) ∧ ... ∧ (xk ↔
xk), wherex be y are two new atoms;R be x ∧ y ∧ K, Q be
(x ∧ y ∧ P ∧ K) ∨ (x ∧ ¬y ∧ T1 ∧ K) ∨ (¬x ∧ y ∧ T2 ∧ K).

We will prove that∀X∃Y ∀ZP holds if and only ifR strongly
partially impliesQ. Suppose that∀X∃Y ∀ZP holds. Given a
prime implicant ofR, which is{x, y} ∪ π ∪ π′. By the assump-
tions, there exists an assignmentπ1 overY such thatπ ∪ π1 |= P .
Then{x, y} ∪ π ∪ π′ ∪ π1 |= x ∧ y ∧ P ∧ K. It follows that
{x, y} ∪ π ∪ π′ ∪ π1 |= Q. By Lemma 1, there exists a subset
π2 of {x, y} ∪ π ∪ π′ ∪ π1, which is a prime implicant ofQ. We
have thatx ∈ π2 (otherwise{y} ∪ π ∪ π′ ∪ π1 |= Q. Therefore

{y} ∪ π ∪ π′ ∪ π1 |= x ∨ T2, a contradiction). Symmetrically,
y ∈ π2. Moreover, for each atoml ∈ (π∪π′), we have thatl ∈ π2

sinceπ2 |= K. Therefore{x, y} ∪ π ∪ π′ ⊆ π2. It means that for
all prime implicantsπ3 of R, there exists a prime implicantπ4 of
Q such thatπ3 ⊆ π4. Hence,R strongly partially impliesQ.

On the other hand, suppose thatR strongly partially impliesQ.
Then for all assignmentsπ over X, {x, y} ∪ π ∪ π′ is a prime
implicant ofR. By the assumptions, there is a prime implicant of
Q, which contains{x, y} ∪ π ∪ π′. Let it be{x, y} ∪ π ∪ π′ ∪ π1,
whereπ1 ∩ (X ∪ −X) = ∅. Thenπ1 6|= T1 (otherwise{x} ∪
π ∪ π′ ∪ π1 |= Q, a contradiction). Symmetrically,π1 6|= T2.
Henceπ1 ∩ (Z ∪ −Z) = ∅. It follows that π1 ⊆ (Y ∪ −Y ).
It can be extended to an assignmentπ3 over Y , which satisfies
{x, y} ∪ π ∪ π′ ∪ π3 |= Q. Therefore{x, y} ∪ π ∪ π′ ∪ π3 |=
x∧y∧P ∧K, π∪π3 |= P . It means that for all assignmentsπ over
X, there is an assignmentπ3 overY , such that for all assignments
π4 overZ, π ∪ π3 ∪ π4 |= P .

We now face to the cases with background formula sets.

LEMMA 7. LetΓ be a set of formulas,P a formula andπ a set
of literals. π ∈ PI(Γ, P ) if and only ifπ is consistent withΓ and
π ∈ PI(Γ → P ).

PROOF. Suppose thatπ is consistent withΓ. π ∈ PI(Γ, P ) iff
a)Γ∪π |= P and b) there is no subsetπ′ of π such thatΓ∪π′ |= P

iff a) π is a model ofΓ → P and b) there is no subsetπ′ of π such
thatπ′ |= Γ → P iff π ∈ PI(Γ → P ).

THEOREM 18. To determine whether a literal setπ is a prime
implicant of a formulaP w.r.t. a formula setΓ is DP complete.

PROOF. Membership follows from Lemma 7 and Theorem 11.
Hardness follows from Theorem 11.

THEOREM 19. To determine whether a literall is in at least
one of the prime implicants of a formulaP w.r.t. a formula setΓ is
ΣP

2 complete.

PROOF. Membership is easy by guessing a literal setπ and check-
ing if l ∈ π and π ∈ PI(Γ, P ). For hardness, we will show
that∃X∀Y P iff x is in one of the elements inPI(Γ, F ), where
Γ = ¬(x ∧ ∧P ∧ (y1 ∨ · · · ∨ yk)), F = x ∧ P ∧ ¬(y1 ∨ · · · ∨
yk) ∨ ¬x ∧ (¬y1 ∨ · · · ∨ ¬yk) andx is a new atom.
x is in one of the elements ofPI(Γ, F )
iff
∃ π, x ∈ π, π 6|= ¬Γ, π |= Γ → F and∀π′ ⊂ π, π′ 6|= Γ → F .
iff
∃ π1, π1∪{x} 6|= ¬Γ, π1∪{x} |= Γ∪¬Γ∨F andπ1 6|= ¬Γ∨F .
iff
∃ π1, π1 6|= (¬Γ)|x, π1 |= (¬Γ)|x ∨ F |x andπ1 6|= (¬Γ)|¬x ∨
F |¬x.
iff
∃ π1, π1 6|= F∧(y1∨· · ·∨yk), π1 |= P andπ1 6|= ¬y1∨· · ·∨¬yk.
iff
∃X∀Y P .

THEOREM 20. To determine whether a formulaP strongly par-
tially implies another formulaQ w.r.t. a formula setΓ is ΠP

3 com-
plete.

PROOF. Hardness follows from Theorem 17. Given a literal set
π, it is easy to see that checking whether there exists a prime im-
plicantπ′ of a formulaP w.r.t. a formula setΓ such thatπ ⊆ π is
in ΣP

2 . Thus, it follows directly that this problem is inΠP
3 .
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8. CONCLUSION
Partial goal satisfaction has been formalized as three kinds of

partial implication with respect to a background theory. Roughly,
while ignoring the borderline conditions as well as the roleof the
background theory, the three kinds of partial implication have been
defined as follows.

P strongly partially implies Q if for every case ofP there is a
case ofQ such that the case ofP is a subset of the case ofQ.
If there is a part of a caseP which does not occur in any case
of Q, which we call redundancy, thenP does not strongly
partially implyQ.

P partially implies Q if for every case ofP there is a case ofQ
such that a part of the case ofP is a part of the case ofQ,
and there is no part of the case ofP which conflicts with the
case ofQ. There may be redundancy. If there is a part of a
caseP which conflicts with any case ofQ, which we call a
side effect, thenP does not partially implyQ.

P weakly partially implies Q if for every case ofP there is a
case ofQ such that a part of the case ofP is a part of the
case ofQ. There may be redundancy or side effects inP .

We show that the properties in Table 2 hold for the three notions
of partial implication. Moreover, we show relations between the
three kinds of partial implication, for example that strongpartial
implication implies partial implication, and that partialimplication
implies weak partial implication.

- strong partial partial weak partial
Non triviality yes yes yes

Independence of syntax yes yes yes
Relevancy yes yes yes
Transitivity yes no no

Extension classical no yes yes
Left strengthening no no yes

Table 2: Properties of partial implication

We define the problem of changing a goal by relating the prob-
lem to partial goal satisfaction:P partially satisfies a goal to achieve
Q if the goal to achieveQ can be changed into a goal to achieve
Q′, andP satisfies the goal to achieveQ′, i.e., P logically im-
pliesQ′. We show how to use partial implication for goal change
in the context of belief, by defining that the goal to achieveQ can
be changed to the goal to achieveQ′ in the context of a set of be-
liefs Γ, if and only if Q′ ≻S

Γ Q. We show that beliefs can be used
only if they do not conflict with the goals, and we argue that incase
of conflict other techniques might be used. We argue also thatin
unconstrained cases of goal change strong partial implication is the
most intuitive alternative, but in more constrained applications the
other notions of goal change may be used too.

All the complexity results addressed in this paper are on thefirst
three levels of polynomial heterarchy (i.e. from NP complete toΠP

3

complete). Surprisingly, checking strong equivalence between two
formulas isΠP

3 complete, even when the background formula set
is empty. Our complexity results shows that checking partial im-
plications with background formula set are often harder than that
without backgrounds. One of the unexpected result is Theorem
19, which states that literal checking in general case is even ΣP

2

complete. Our complexity results also shows that checking partial
implication and checking weak partial implication have almost the
same difficulties, while checking strong partial implication is some-
times more complex. The complexity results of checking weakpar-
tial implication and partial implication in general case (i.e. with

background formula set) have not been addressed in this paper and
are left for further research. We believe both of them are in the
third level of polynomial hierarchy. More precisely, we believe that
checking weak partial implication in general case is∆P

3 O(log n)
complete while checking partial implication in general case isΠP

3

complete.
For future work, the notion of partial implication can be extended

to the case between actions (or action sequences) and propositions.
Moreover, the consequences of goal change on plan and intention
reconsideration approaches could be considered. At this moment,
most of these approaches abort the goals, ignore logical connec-
tions between goals, do not consider goals as propositionalformu-
las, and are restricted to an agent language. Since our work can be
embedded into those approaches since our work is independent of
agent languages (we only use the logic connections). Also the ap-
plication of the partial implication to other related problems about
reasoning about goals should be studied, such as subgoal genera-
tion: create subgoals to achieve a main goal, typically using a goal
hierarchy. For such other applications of partial implication, the
question can be raised about the role of beliefs, how partialimpli-
cation can be used, which kind of partial implication may be used
in which cases, and whether other kind of partial implication can
be defined.
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