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ABSTRACT

Partial implication semantics in the context of a backgrbtime-
ory has been introduced to formalize partial goal satigfadh the
context of beliefs. In this paper, we introduce strong paith-
plication prohibitingredundanciesand weak partial implication al-
lowing side effectswe study their semantic as well as complexity
properties, and we apply the three notions of partial ingpian to
goal change in the context of beliefs.
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1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent agents
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1. INTRODUCTION

Consider the following four scenarios for a shopping agent d
siring to buy apples and oranges today, represented by, and
believing from the only shop on-line today that either theme:

1. apples¢), or

2. apples and bananas A z), or

3. apples but no oranges ( —y), or
4. bananas).

In none of the scenarios the agent can achieve its goal, became
of the scenarios classically implies the gaah y. Many agents
would therefore drop the goal, but Zhou and Chen [13] argatith
is rational for the agent in scenario 1 and 2 to go to the sfney
formalize their intuition by introducing a notion so-call@artial
implication, wherer andz A z partially imply z A y while x A —y
andz do not.

In this paper we formalize partial goal satisfaction of aergg
going to the store only in the first scenario, and we call theeco
sponding logical notion strong partial implication, whigfohibits
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what we call redundancies, like the bananas in the exantpteah
intermediate solution between dropping the goal and usartigb
implication. Moreover, we formalize partial goal satigfan of an
agent that goes to the shop in the first three scenarios, amaive
the corresponding logical notion weak partial implicatiovhich
allows what we call side effects, like the absence of orangdis
notions are defined in the context of background knowledgeere
senting the beliefs of the agent.

- strong partial  partial weak partial

partial satisfaction yes yes yes
redundancy no maybe maybe
side effect no no maybe

Table 1. The family of partial implication

Another perspective on the example is that the agent i€fiestg-
ing its goal using partial implication, from A y to for exampler,
x A z orz A =y, and thereafter using classical implication again.
In this paper we therefore address the following questions:

1. How to define strong and weak partial implication in the-con
text of background knowledge?

2. What are their properties and complexity?

3. How to define the problem of changing a goal rather than
simply dropping it?

4. How to use partial implication for goal change in the cahte
of beliefs?

Thedynamics of goalbas attracted a lot of research recently [2,
12, 11, 9, 8, 7, 10]. Goal change is inevitable in real dom#&ins
several reasons. Firstly, the agent has bounded resourdbatst
cannot make "perfect” plans. Secondly, the environmenhjse+
dictable and uncertain, which means that it is impossibferédlict
the future. Finally, the agent’s information about the eswinent
maybe ambiguous, even wrong. Therefore, the agent’s plays m
lead to unexpected results. All of these would possiblyltésia
situation where the agent’s original goal is infeasible @aming-
less. Hence, the agent should change its goal.

This paper is organized as follows. In Section 2 we discuss th
use of prime implicants for partial goal satisfaction, andSec-
tion 3-5 we formalize partial goal satisfaction semantjcas three
kinds of partial implication, and investigate the main @udjes. In
Section 6, we propose a framework based on partial imptiadtr
the problem of how to change the agent’s goal in the contelaeof
liefs. In Section 7, we address the complexity issues fottlihee
kinds of partial implication.



2. PARTIAL GOAL SATISFACTION

Zhou and Chen [13] argue thpéartial satisfaction of goal$s an
important issue in rational decision making of autonomagenés.
In the traditional logical approach, agents always try td filans to
completelyachieve their goals, which is usually formalized based
on classical implication.

P satisfies a goal) if P logically implies@.

However, people often perform plapartially achieving their goals.
Informally, Zhou and Chen characterize partial goal satisén as
follows.

P partially satisfies a goal to achie¢gif for all cases
of P, thereis a case @ such that the former is related
to a part of the latter.

The reason for this complex definition is that they assume tha
P and(Q are represented by propositional formulas, where incon-
sistent propositions cannot both be achieved. For exarageal
to achievep and a goal to achievep cannot both be satisfied by
achievingp and —p simultaneously, like switching on and off the
light. In such a case, whenstands for having the light on at some
points in the future;p would stand for never having the light on.
Likewise a goal to achievp together with a belief in-p implies
that either the goal cannot be achieved, or the belief is gurtdnP
and @ would be represented by sets of literals, for example, then
they would say thaP partially satisfies goal to achiev@ if P is
related to a part of). However, in propositional logic they also
have to deal with disjunction, for which they introduce tlses in
the definition of partial goal satisfaction.

Therefore, they introduce a notion pértial implication using
propositional language to capture partial satisfactidatie@nship
between two propositional formulas with respect to a bamlgd
formula set. For instance; A z does not implyr A y in classical
propositional logic. However, it partially implies A y sincex,
which can be considered apart of x Ay, is a logical consequence

To formalize their notion of case, Zhou and Chen use Quine’s
notion of a prime implicant of a formula [5] as a minimal set (i
the sense of set inclusion) of literals satisfying this fatan Prime
implicants are used in many areas of logic, but they alsdivila
the notion of prime implicant to a belief sBt

DEFINITION1 (PRIME IMPLICANT). Aliteral setr is aprime
implicant of a formulaP with respect to formula sét* if:

(1) T' U is consistent.
@ TunEP.

(3) There is no literal setr’ satisfying the above two conditions
andn’ C 7.

The set of all prime implicants @ with respect td" is denoted by
PI(T, P).

The prime implicants of a formul® w.r.t. a formula sef play
two roles.

CasesOn the one hand, if there exists an assignmesatisfying
bothT" and P, then there exists a subsetoihich is a prime
implicant of P w.r.t. I". On the other hand, it is a prime
implicant of P w.r.t. T', then it can be extended into an as-
signment satisfying both and P. This means that the prime
implicants of P w.r.t. T" are corresponding to the possible
worlds satisfying boti® and P. In other words, intuitively,
they represent all theaseswhich make the proposition true
w.r.t. the background theory.

Part Suppose thatr is a prime implicant ofP w.rt. T and! is
a literal such that € n. Then we have thaf Un = P
andI’ U w\{l} [~ P. Intuitively, this means thdtplays an
essential role for achieving w.r.t. " via w. Thus,l can be
considered as part of P w.r.t. T".

Both roles of prime implicants are exploited by the notiofis o

of z/\z. Thus, we may treat a proposition as a choice among several partial implication introduced in the following section8.strongly
cases, where each case consists of a set of literals. We may sa partially impliesQ) means thaf’ implies some parts a and noth-

for example, thatP partially implies goal@, where P andQ are
propositional formulas, i.e., not necessarily proposgioatoms,
when every case dP is a part of a case df.

Before we make this idea more precise, we introduce some no-

tations. We denote the propositional languagefbyFormulas in
L are composed recursively by a finite sétom of atoms (also
called variables) wit{ T, L} and standard connectivesand—.
The connectives\, V, < are defined as usual. Literals are atoms
and their negations. We use lower case letters, upper ctises/e
lower Greek letters and upper Greek letters to denote atachbta
erals, formulas, literal sets and formula sets respegtiWe write
—I to denote the negation of a litergl —= to denote the set of
negations of all literals imr. We usel itself to denote the conjunc-
tion of a set of formulas i if it is clear from the context. We
write Atom(1), Atom(P), Atom(w), Atom(T) to denote the sets
of atoms occurred in literd| formula P, literal setr and formula
setT respectively. We say that a literal sets an assignment over
a set of atomsA C Atom (assignment for short it = Atom)

if for each atomz € A, exactly one ofr and—z is in =. Notice
that both a literal and an assignment can also be considered as
formulas. Hence, in the rest of this paper, bb#nd= also denote
their corresponding formulas for convenience if it is clram the
context. We writeP|l to denote the formula obtained frof by
replacing every occurrence bfnto T and every occurrence of]
into L simultaneously. Letr = {l1,l2,...,lx}, we write P|x to
denote the formul@((P|l1)|l2)]...)| k.
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ing else, and this corresponds roughly to a weakenirn@ tf P. P
(weakly) partially implies) means thaP’ implies some parts a,
but may have something more (redundancies). In this seimeags
partial implication captures thdt is a part ofQ, while (weak) par-
tial implication captures thaP implies part ofQ). Before we are
going into the technical details, we mention three genenaber-
ties of prime implicants which are used in the following sa&ts.

LEMMA 1. Let P be a formula,I' a set of formulas and a
literal set such that” U = is consistent and’ U = P. Then there
existst’ C 7 such thatr’ is a prime implicant with respect .

LEMMA 2. Let P be a formula and™ a set of formulas. We
have thatl’ = —P if and only if PI(T', P) = 0; T = P if and
only if PI(T", P) = {0}.

Lemma 2 also shows the difference betwdeH(T", P) = () and
PI(T',P) = {0}. The former means that there is no prime im-
plicant of P w.r.t. T, while the latter means that there is a unique
prime implicant of P w.r.t. I', which is the empty set. We say that
aformulaP is trivial w.r.t. aformulasel’ if I' = P orI" |= —P.
Otherwise we say tha® is non-trivial w.r.t. T'.

LEMMA 3. Let P and(@ be two formulas and' a set of formu-
las.T = P < Qiff PI(I', P) = PI(T, Q).

In [13], this is called-prime implicant.



3. STRONG PARTIAL IMPLICATION

A formula P strongly partially implies a formul& when for
all the cases irP, there is a case iy that extends it in the sense
that all the literals of the case @ are also appeared in the case
of Q. Moreover, this basic definition is extended with resped to
formula setl” and it eliminates trivial cases by excluding tHais
implied by the beliefs, or contradictory with it.

DEFINITION 2 (STRONG PARTIAL IMPLICATION). We say that
a formula P strongly partially implies a formul&) with respect to
a formula sefl”, denoted byP >1§ Q,Iif:

1. PI(T, P) is not empty and”I(T", P) # {0}.

2. For eachr € PI(T, P), there existsr’ € PI(T,Q), such
thatm C «’.

We writeP £¢ Q if it it not the case thatP? > (. For conve-
nience, we omiE’ when it is empty.

The following example illustrates the apples and orangasnex
ple for strong partial implication.

ExAMPLE 1. x strongly partially impliesz A y while z A z,
x A -y andz do not.

Strong partial implication should not be considered as @wmar
of classical implication such as relevant implication, @ghould
not be applied iteratively. The following example illugega some
of its properties.

EXAMPLE 2. p partially satisfies botlp A ¢ andp V ¢, repre-
sented by = pAgandp =5 pV q respectively, but for different

reasons. In the former, suppose that an agent has a goal to ac-

complish every element in a set of goals, then accompligimiegf
them is helpful to the original goal. In the latter, if it hagyaal to
accomplish one of the goals in a set of goals, then acconipgish
one of them is of course "helpful” in the sense that this biehav
achieves the goal.

p A q partially impliesp, butp Vv ¢ does not partially implyp,
represented by A ¢ =° pandp V ¢ #° p respectively, which
illustrates that in some examples conjunction and disjoncare
distinct. The latter does not hold, because the caiein no way
helpful for the goal to achievge.

Theorem 1 shows that a proposition already true or alwage fal
w.r.t. a background theory does not strongly partially satisfy any
other formulas, and it is not strongly partially satisfieddany other
formulas.

THEOREM1 (NON-TRIVIALITY ). Let P and @ be two for-
mulas andl” a set of formulas. If eitheP or Q is trivial w.r.t. T,
thenP %2 Q.

PROOF This assertion can be easily proved by Lemma 2 since
the strong partial implications require the intersectioftsvo prime
implicants not to be empty. (I

Theorem 2 means that strong partial implications are syintac
cally independent. Propositions equivalent.t. the background
theory play the same roles in partial implication semantidseo-
rem 2 also shows that we can substitute a proposition witlgaive
alent onew.r.t. the background theory. In classical propositional
logic, we can also substitute an atom with a formula. Howehés
can not be done in partial implications. For instance, oles#nat
z=axAy@ =" zAy z =%z Ay). If wereplacex by —y,
then by Theorem 1, this strong partial implication relasioip no
longer holds.
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THEOREM?2 (INDEPENDENCY OFSYNTAX). Let P, @ and
R be three formulas anH a set of formulas such tht= P — Q.
Then,P > R implies thatQ =2 R; R =2 P implies that
R % Q.

PROOF This assertion follows directly from Lemma 3 since
strong partial implication is defined only based on the sEpsime
implicants. [

Theorem 3 states that relevancy for partial implicatiordbol

THEOREM3 (RELEVANCY). Let P and @ be two formulas
such thatP =* R. Then,Atom(P) N Atom/(Q) # 0.

PrROOF According to the definitions of strong partial implica-
tion, there existst € PI(I', P) andn’ € PI(T,Q) such that
7N’ # (. Thus,Atom(m) N Atom(7) # 0. SinceAtom(r) C
Atom(P) andAtom(n") C Atom(Q), Atom(P) N Atom(Q) #

0. O

PrROPOSITIONLI (NON MONOTONICITY). LetP and@ be two
propositions,I" and I two sets of formulas such th&t c I".
P ~¢ Q does notimply thaP >3, Q.

PROOF. For instancex ~° = A y. However,z /7, = A
y. This shows that monotonicity does not hold for strong pérti
implication in general. []

THEOREM4 (TRANSITIVITY). LetP, @ and R be three for-
mulas andl’ a set of formulas. 1P =2 Q andQ =2 R, then
P>~ R.

PrROOFR By Theorem 1P, @Q andR are all non-trivialw.r.t. T".
Let  be a prime implicant of? w.rt. I". SinceP =g Q, there
exists a literal setr; consistent withl® such thatr; € PI(T', Q)
andr C 1. Moreover, since) =2 R, there exists a literal set
consistent with® such thatr, € PI(T", R) andm C m2. Hence,
7 C my. This shows thaP > R. [

4. PARTIAL IMPLICATION

Strong partial implication is an intuitive replacement cditerial
implication, but in some cases it may be too strong, and a reak
notion may be called for. Zhou and Chen [13] say that a fornfula
partially implies a formula) when for all the cases i®, there is
a case inQ that is not disjoint and does not conflict with it, in the
sense that some literals appeared in the cageak also appeared
in the case of), and there are no literals in the casefbfuch that
the negated literal is in the case @f For example, consider two
setst andn’ of consistent literals. On the one hand 7’ # ()
means thatr achieves some parts of since all elements of’ can
be considered as parts of. On the other handzy N —7’ =
means thatr has no side effect to’ since the side effects af can
be considered as the negations of all elements.iMoreover, this
definition is relativized to belief sét, and condition 1 ensures that
there exists at least one casefin

DEFINITION 3 (PARTIAL IMPLICATION). A formula P par-
tially implies a formulaQ with respect to a formula sét, denoted
by P >r Q2 if:

1. PI(T', P) is not empty.

2. For eachr € PI(T, P), there existst’ € PI(T,Q), such
thatr N7’ # P andm N —7’ = (.

2In [13], this is denoted aB = P > Q.




We writeP #r Q if itit not the case tha? >r Q.

The following example illustrates the apples and orangasnex
ple for partial implication.

EXAMPLE 3. z andzx A z partially imply z A y while z A —y
andz do not.

Theorem 5 shows that strong partial implication impliestiphr
implication.

THEOREM5 (STRONG AND PARTIAL IMPLICATION). LetP,
Q be two formulas and” a set of formulas.P =£ Q implies
P >r Q

PROOF. Suppose thaP =2 Q. Letw € PI(I', P). We have
thatw # 0, otherwise,( is the only prime implicant of? with
respect td", a contradiction. By condition 2 in Definition 2, there
existst’ € PI(T',Q) such thatr C «'. Thus,m N7’ = 7 # 0.
Moreover,m N —7’ = (), otherwise, there exists € = N —7’.
Thus,! ¢ =’ sincen’ is a consistent literal set, a contradiction.
This shows thaf” ~r Q. O

Non-triviality (Theorem 1, Theorem 4 in [13]), Independgrmd
Syntax (Theorem 2), Relevancy (Theorem 3, Proposition &3i)[
hold for partial implication just as for strong partial ingation.
However, transitivity does not hold for partial implicatioFor in-
stancex = x Ay andz Ay > y A z. Howeverx i y A z. Finally,
Zhou and Chen [13] show that partial implication is an exi@ms
of classical implication in the nontrivial cases:Afand@ are two
formulas non-trivialw.rt. T' andT" = P — @, thenP >r Q.
However, this does not hold for strong partial implicationgen-
eral. For example= = Ay — = butz Ay #° x. For further
discussion on the properties of partial implication, ses.[1

5. WEAK PARTIAL IMPLICATION

Even partial implication may be too strong for some appiore,
and we therefore also consider weak notion of partial inapioe.
A formula P weakly partially implies a formul& when for all the
cases inP, there is a case i) that is not disjoint, in the sense
that some literal part of the case Bfis also part of the case @j.
Weak partial implication is a weaker notion of partial ingalfion
by allowing possible side effects. Thus, it can be captunenply
byr Nz’ #£0.

DEFINITION 4 (WEAK PARTIAL IMPLICATION). We say that
a formula P weakly partially implies a formul& with respect to
a formula sefl”, denoted byP -V Q,if:

1. PI(T, P) is not empty.

2. For eachr € PI(T, P), there existst’ € PI(T,Q), such
thatw N7’ # 0.

We writeP %1 Q if it it not the case that” =}V Q.

The following example illustrates the apples and orangasnex
ple for weak partial implication.

EXAMPLE 4. z,x Az andz A —y weakly partially implyz Ay
while z does not.

Theorem 6 shows that partial implication implies weak [gérti
implication.

THEOREM6 (PARTIAL AND WEAK PARTIAL ). Let P, @ be
two formulas and” a set of formulasP >r @ impliesP =% Q.
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PROOF ThatP »-r Q impliesP =} Q follows directly from
Definition 3 and 4. [

Theorem 5 and Theorem 6 state the basic relationships among

the family of partial implications which coincide with ountu-
itions. However, the converses of Theorem 5 do not hold iregEn

Again, non-triviality (Theorem 1), independency of syn@ke-
orem 2), and relevancy (Theorem 3) hold for weak partial icapl
tion just as for strong and normal partial implication, arahsitiv-
ity does not hold for weak partial implication like it doestimwld
for partial implication. For example; =" = Ay andz Ay ="
yAzbute £V y Az

THEOREM 7. Let P, Q and R be three formulas antl a set of
formulas. IfP =} Q andQ 2 R, thenP =}V R.

PrROOFR By Theorem 1P, Q andR are all non-trivialw.r.t. T".
Let = be a prime implicant of” w.r.t. I'. SinceP ~{" Q, there
exists a literal set; consistent withl* such thatr, € PI(I",Q)
andr N # (. Moreover, since) >‘§ R, there exists a literal
setrmy consistent withl" such thatr, € PI(T', R) andm; C mo.
Thus,m N1 C 7 N w2, Thereforer N w2 # (. This shows that
P~V R O

THEOREM 8. Let P, Q and R be three formulas andl' a set
of formulas. IfP =% Q and P A R is non-trivial w.rt. T, then
PAR S Q.

PROOF. Letw be a prime implicant oP A R w.r.t. I". We have
that U7n = P A R. ThenT' U |= P. By Lemma 1, there is a
subsetr; of 7, which is a prime implicant o w.r.t. T". Moreover,
P~ Q. Then, there exists a prime implicant of Q w.r.t.
I such thatr; N2 # 0. Thus,m N w2 # (. This shows that
PARSY Q. O

Theorem 8 does not hold for either partial implication oosty
partial implication. For example, we have that-° z A y and
x>z Ay Butz A -y S a Ayandz A -y ¥z Ay.

Weak partial implication is also an extension of classiogbli-
cation in the nontrivial cases.

COROLLARY 1. LetT be a set of formulasP and @ two for-
mulas non-trivial w.rtI. If T' = P — Q thenP =¥ Q.

PROOF This assertion follows directly from this property for
partial implication [13] and Theorem 6.[]

The family of partial implications is related to the notiofrel-
evance [3], but also distinct in various ways. There are tvagom
differences between Lakemeyer’s relevance and weak partia
plication. Firstly, weak partial implication is defined bya— 3
style (See Definition 4), while Lakemeyer’s notion of releva
is defined by ad — 3 style. Secondly, the background theory is
not considered in Lakemeyer’s approach. Another relatéidmo
is probabilistic positive relevance, introduced in [14kodrding to
the definition in [14],x VVy is positive relevant te, whilexz Vy # x
(@Vy Wz vy S a).

Finally, not that the following definition does not captumtal
satisfaction. A formulaP partially implies a formula@ w.r.t. a
formula sefl iff there exists a formulak such thaf” U {R} }~ Q
butT" U {P,R} = Q. Actually, for every formulaP such that
I' £ P — @, there always exists such a formuta(Let R be
—-I'v =PV Q). Even if we restric? with set of consistent literals,
this definition cannot capture partial satisfaction eithéso, for
instance,x vV —y should partially implyz A y according to this
definition since(z V —y) A y = = A y. However, this conclusion
is counter-intuitive.



6. GOAL CHANGE

The following example illustrates how beliefs can be usegbial

Since goals play a central role in agent theory, goal chasge i change using strong partial implication.

a central problem in, for example, agent theory and progriaxgym
planning, learning, communication and coordination. (2,11, 9,
8]. Several strategies have been proposbénthe agents’ goals
ought to be changed. The first one is so called "blind" [11fatT$,
an agent will never change its goal unless it believes thid lgas
been achieved. Another one is that the agent will never chidrg
goal unless it believes this goal has been achieved or ishimac
able [1, 6]. The third strategy introduces a trigger cooditfor
each goal [12], if this condition becomes true then the agkotild
change that goal associated with this condition. In thetfostrat-

egy, the agent may change its goal if it receives a request fro

another agent to cancel this goal [9].

Few approaches are concerned with how to change the agents

goals. For almost all of them, the answer is quite simplé, ithtp
drop the goal. Huang and Bell [2] propose to represent thetage
goals with preferences, an then to change the goals acgdadihis
preference structure. However, a reasonable way is chguige
goal instead of simply dropping it, especially in the caseretthe
agent has to drop his goal due to requirements from othettsigen

6.1 From partial goal satisfaction to goal change

EXAMPLE 6. A goal to achieve A ¢ may be changed to a goal
to achievep, represented by >§ p A q. When the agent believes
that s impliesp, then the goal to achievyeA ¢ may also be changed
to a goal to achieve, represented by >fﬁq} PAg.

The following combination of Example 5 and 6 illustrates the
use of beliefs in goal change to relate partial goal satigfaén the
context of beliefs to goal change in the context of beliefs.

EXAMPLE 7. s A r partially satisfies the goal to achieyen ¢
in the context ok — p, as represented by A r >3 p A q.
Moreover, the goal to achieveA ¢ may also be changed to a goal
to a(_:hieva,' re_presented by >‘{9_9__>p} PAG Consequently A r
partially satisfies the goal to achieyen g in the context ok — p,
because the goal to achieyeA ¢ in the context ofs — p can
be changed to the goal to achieveand s A r logically impliess.
However, if the beliefs are not used in the goal change, aadtial
to achievep A ¢ is changed to the goal to achiepethen we do not
have tos A r logically impliesp.

The following example illustrates that strong partial ilngtion

How to change the goals of agents depends on the context and:annot he used when a goal conflicts with a belief (the samtshol

application, and we therefore propose a logical framewarsed
on partial implication for goal change in the context of bidi The
inspiration for our approach is that partial goal satistactay be
seen as combination of goal change and full goal satisfactio

P partially satisfies a goal to achie¢g if the goal to
achieve@ can be changed into a goal to achi&yé
and P satisfies the goal to achie@, i.e., P logically
impliesQ’.

The relation between partial goal satisfaction and goahghas
illustrated by the following example.

EXAMPLE 5. p A r partially satisfies the goal to achieyeA g,
because the goal to achieyen ¢ can be changed to the goal to
achievep, andp A r logically impliesp.

We therefore characterize goal change analogously t@pgasal
satisfaction.

A goal to achieve) can be changed into a goal to
achieveQ' if for all cases ofQ’, there is a case af
such that a part of the former is related to a part of the
latter.

This suggests that the three notions of partial implicatiam be

used to define goal change operators. Before we considehwhic

notion of partial implication is best suited for goal change have
to discuss the role of beliefs in goal change.

6.2 Introducing beliefs in goal change

Goal change takes place in the context of the agent’s beliefs
particular, a goal may be changed to a logically unrelategqsi-
tion, when the agent believes that the propositions aréackla he
following definition models this role of beliefs in goal clgenby
representing the beliefs as the background knowlddgé/e only
consider strong partial implication, the other definiti@me analo-
gous.

DEFINITION 5. The goal to achievé) can be changed to the
goal to achieve)’ in the context of a set of beliefs if and only if

Q - Q.
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for the other notions of partial implication).

ExampPLE 8. A goal forp A g conflicts with the belief forg
and, maybe, thereforg A ¢ may be changed tp, but not tog.
However, neithep -{_,, p A g nor g ={_,; p A ¢ holds, be-
causep -2 ¢ implies that bothP 1 ({—q}, p) and PI1({—q}, q) are
nonempty.

The latter example can be modeled with a contraction operato
‘—"as developed in the context of belief change, and as it has be
studied in the AGM framework. For example, the goal to achiev
p/Ag may be changed to the goal to achigva the context of belief
—q, sinceCn(p A ¢) — q = Cn(p). However, in most examples
of goal contraction it seems dangerous to change a goal $ecau
it conflicts with a belief, because the belief may later tum
be wrong. In case of conflict between a goal to achjeveq and
a belief—g, it is better to keep the goal A ¢, and add one of its
subgoals like the goal to achiepe

6.3 Which partial implication?

If an agent has to change its goal to achigxe, and it can freely
choose how to change its goal, it seems most reasonablerigeha
it to either a goal to achieveor to a goal to achieve. Deliberately
introducing a side effect such as changing its goal tor, or even
side effects such gs A —q, seems irrational. For example, if the
agent changes its goal foA r, it has to make some effort to see
to r, which does not seem to serve any purpose. In other words,
in an unconstrained situation, it seems best to use strortgalpa
implication.

However, in other circumstances the other notions of dantia
plication may be used too. For example, consider the four#t-s
egy to change goals mentioned at the beginning of this sgdtio
which the agent may change its goal if it receives a request &n-
other agent to cancel this goal [9]. If the other agent retijugshe
cancelation also gives some suggestions how to change ahelyD
agent has to decide which alternative to accept. In suchrzonsd
cases, in which the agent has to choose from a set of altezeati
and in which none of the alternatives strongly partially liepthe
goal, weaker notions of partial implication can be adopted t



7. COMPLEXITY ISSUES

In this section, we analyze the complexity issues relateallto
three kinds of partial implications. We assume that theeeadre
familiar with some basic notions of computational theoryor#
details can be found in [4]. We recall some complexity classe
here:

e DP is the complexity class of all languagkésuch thatl. =
L1N L2, whereL; isin NP andL- is in coNP. The canonical
problem of DP isSAT — UNS AT a pair of propositional
formulas(P, Q) isin SAT —UNSAT ifand only if P is in
SAT andQ isinUNSAT.

e L = NPNP s the complexity class of all languages that
are recognizable in polynomial time by a non-deterministic
Turing Machine equipped with an NP oracle. The canonical
problem of£y = NPMF is2 — QBF: let X andY be two
disjoint sets of atoms anfl a formula such thatitom (P) C
X UY, atriple(X,Y, P)isin2— QBF if and only if there
exists an assignment over X such that for all assignments
' overY,rUn’' |= P.

o IIY = coXf = coNPNT is the complexity class of all
languages whose complementary problems arg4in The
canonicallll problems is2 — QBF: let X andY be two
disjoint sets of atoms anfl a formula such thatitom(P) C
X UY,atriple(X,Y, P)isin2 — QBF if and only if for
all assignments over X, there exists an assignmetitover
Y such thatr U n’ = P.

e II is the complexity class of all languages whose comple-
mentary problems are recognizable in polynomial time by a
non-deterministic Turing Machine equipped witiEd ora-
cle. The canonicall} problems i3 — QBF: let X, Y and
Z be three disjoint sets of atoms afta formula such that
Atom(P) C X UY U Z, a quadruple X, Y, Z, P) is in
3 — QBF ifand only if for all assignments over X, there
exists an assignment overY such that for all assignments
overt’, rUn’ Urn" &= P.

We first start our complexity analysis when the backgroumel fo
mula sefl” is empty.

LEMMA 4. A literal [ is in one of the prime implicants of a
formula P if and only if = P|l — P| — 1.

PROOF "=:" Assume that= P|l — P|—landl € m, 7 €
PI(P). Letm; = n\{l}. Thenm  U{l} = (IAP|l)V(—=IAP|-1).
It follows thatm, U {I} = I A P|l. Thereforer; = P| — [, which
means thatr; = P. Hence,r is not a prime implicant o, a
contradiction.

"«:" First, P|l can be satisfied. Suppose thasatisfiesP|! but
not P| — I. By Lemma 1, there exists a subsat C = which is
a prime implicant ofP|l. Thereforer; = P butm U {l} = P.
By Lemma 1, there is a subset C w1 U {/} which is a prime
implicant of P. Moreover, € w5 sincer; [~ P. [

THEOREM 9. To determine whether a literdlis in at least one
of the prime implicants of a formul® is NP complete. To deter-
mine whether a literal partially (or weak partially, strong par-
tially) implies a formulaP are all NP complete as well.

PrROOF Membership of point 1 follows directly from Lemma 4.
Hardness of point 1 follows from the fact th&tis satisfiable iffz
is in at leat one of the prime implicants ofA P, wherex is a new
atom not occurred i?. Point 2 is obvious. []
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THEOREM 10. To determine whether a literdlis in all prime
implicants of a formulaP is DP complete.

PROOF It is easy to prove thatoccurring in all prime impli-
cants of P iff P can be satisfied ang= P — [. It immediately
follows that the membership of this assertion. Hardneds\isl
from the fact thatP is satisfiable and) is unsatisfiable iff is in
all prime implicants of(z A P) V (-z A Q), wherez is a new
atom. [

LEMMA 5. Letw = {l4,...,1x} be a consistent literal set and
P aformula.r is a prime implicant of? if and only if = P|r and
b& P|7Ti 1 <4 <k, wherer; = W\{lz} U {—li}, 1< <k

PROOF "=-" By the definition,7 = P. Therefore= P|r.
Moreover,}= P|r;. Otherwiser\{l;} &= P, which shows thatr
is not a prime implicant o, a contradiction.

"«<:"Firstly, * = P since= P|x. Secondly, by Lemma 1, there
existst’ C m such thatr’ € PI(P). Thus, for alli, I; € =’. Oth-
erwise,7\{l;} = P, which means that; = P, a contradiction.
Thus, " = .

THEOREM 11. To determine whether a literal setis a prime
implicant of a formulaP is DP complete.

PrROOF Membership follows from Lemma 5. For hardness, we
construct a reduction frotfSAT — UNSAT. (P, Q) isin SAT —
UNSAT if and only if {z} is a prime implicant ofz V =P) A
(mz V =Q), wherez is a new atom. [J

THEOREM 12. To determine whether a literal setweakly par-
tially implies a formulaP is NP complete.

PrROOF Hardness follows directly from Theorem 9. For mem-
bership, letr = {l1,...,lx}. Thent weakly partially impliesP if
and only ifr is consistent and there exigts1 < ¢ < k such thai;
is in one of the prime implicant aP. By Theorem 9, this problem
isinNP. [

LEMMA 6. Aliteral setr partially implies a formulaP iff there
is an assignment; over Atom\ Atom(w) and an assignment,
over Atom(w) such thatr U, = P andm, Ums | —P.

PrROOF "=:" By Definition 3, there is a prime implicant’
of Psuch thatt N 7' # 0 andm= N -7 = (. Letl € 7' N
. Thenm/\{l} U {-I} & P. It can be extended into an as-
signmentry over Atom, which satisfies-P. Letm; C 7 and
Atom(m1) = Atom\Atom(r); let o C mo and Atom(mz) =
Atom(r). Clearly,mr Um |= P andm, Ums |= —P.

"«:" By Lemma 1, there is a prime implicant of P such that
7 C 7 Um. Itfollows thatr’ N7 # ) andx’ N —= = (. Hence,
= partially impliesP. [

THEOREM 13. To determine whether a literal set partially
implies a formulaP is NP complete.

PrROOF Hardness follows directly from Theorem 9. For mem-
bership, the following algorithm determines whethgartially im-
plies P: 1. guessr, w2 in Lemma 6; 2. check the conditions in
Lemma 6. Step 2 can be done in polynomial timé&l

THEOREM 14. To determine whether a literal set strongly
partially implies a formulaP is X1 complete.

PrROOF "Membership:" The following algorithm determines
whetherr strongly partially impliesP: 1. guess a consistent literal
setr’; 2. check whether’ is a prime implicant ofP; 3. if yes,



check that whetherr is a subset ofr’. By Theorem 11, step 2
requires anV P oracle. Hence, this problem is 1.

"Hardness:" Reduction fro@ — QBF. Let X andY be two
disjoint sets of atoms an# a formula such thatitom(P) C X U
Y. LetY = {y1,y2,..,yr}; Th bey1 V ... V yx; To be =y, V
..V =y, x andy be two new atoms different witk' U Y'; Q be
(xAyANP)V(x A=y ATi)V (mx Ay ATz). ltis easy to prove
that 3XVY P holds if and only ifz A y strongly partially implies
Q. O

THEOREM 15. To determine whether a formula partially im-
plies another formula is TIZ complete.

PrRoOOF "Membership:" The following algorithm determines
whetherP does not partially implyQ: 1. guess a consistent literal
setr; 2. check whether is a prime implicant of?; 3. if yes, check
that whetherr does not partially implyQ. By Theorem 11 and
Theorem 13, step 2 and step 3 requires\aR oracle respectively.
Hence, this problem is ifi%.

"Hardness:" Reduction fro@ — QBF. Let X andY be two
disjoint sets of atoms an#t a formula such thatitom(P) C X U
Y. Let X = {x1,22,...,2}; X' = {21,725, ...,2,} bek new
atoms different withAtom. FormulaK is (z1 < x}) A (72 <
z2)A...A(z < x1). Itis easy to prove thatX3Y P holds if and
only if x A K partially impliesz A P, wherex is a new atom. []

THEOREM 16. To determine whether a formuld weakly par-
tially implies another formula is II5’ complete.

PrROOF "Membership:" The following algorithm determines
whetherP does not weakly partially implg: 1. guess a consistent
literal setr; 2. check whetherr is a prime implicant ofP; 3. if
yes, check that whether does not weakly partially implg). By
Theorem 11 and Theorem 12, step 2 and step 3 requirééan
oracle respectively. Hence, this problem igi§ .

"Hardness:" reduction fro@ — QBF. Let X andY be two
disjoint sets of atoms an#t a formula such thatitom(P) C X U
Y. LetY = {y1,y2, ..., yx}. Formulal’is (y1 V...V yr) A (—y1 V

..V —yg). Itis easy to prove that XVY P holds if and only ifP
does not weakly partially impl§’. [

THEOREM 17. To determine whether a formulastrongly par-
tially implies another formula is I15’ complete.

PrRoOOF "Membership:" The following algorithm determines
whetherP does not strongly partially implg): 1. guess a consis-
tent literal setr; 2. check whether is a prime implicant of?; 3. if
yes, check that whether doesn’t strongly partially implie§). By
Theorem 11, step 2 requires aAhP oracle; by Theorem 14, step 3
requires arb! oracle. Hence, this problem is I .

"Hardness:" Reduction fro — QBF. Let X, Y and Z be
three disjoint sets of atoms attla formula such thatlitom(P) C
XUYUZ. LetX = {z1,22, ...,z }; X' = {x1,25, ..., 7}
bek new atomsZ = {z1, 22, ..., zi}; T1 bezi V ... V z; T> be
=21 V..V —zg K be(z « i) A (z2 < @2) Ao A (T8
zr), wherex be y are two new atomsR bex A y A K, Q be
(AYyANPAK)V(@A-yANTIANK)V (-2 Ay ATe AK).

We will prove thatvX3YVZP holds if and only if R strongly
partially implies@. Suppose that X3YVZP holds. Given a
prime implicant of R, which is{z,y} U = U n’. By the assump-
tions, there exists an assignmentoverY such thatr U m; |= P.
Then{z,y} Ur U Um = 2 AyAPAK. Itfollows that
{z,y}Unr U7 Um E Q. By Lemma 1, there exists a subset
o Of {z,y} Um Ur’ Umy, which is a prime implicant of). We
have thatr € m (otherwise{y} Ur U’ Um [ Q. Therefore
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{yyurur’Um E zV Ts acontradiction). Symmetrically,
y € m2. Moreover, for each atoihe (rUn"), we have that €
sincem, = K. Therefore{z,y} Um Un’ C 7. It means that for
all prime implicantsrs of R, there exists a prime implicant, of
Q@ such thatrs C m4. Hence,R strongly partially implie<).

On the other hand, suppose ttfastrongly partially implies?).
Then for all assignments over X, {z,y} Uw U« is a prime
implicant of R. By the assumptions, there is a prime implicant of
Q, which containgz, y} Ur Un’. Letitbe{z,y} UrUn' U,
wherem; N (X U —X) = 0. Thenm, [~ Ti (otherwise{z} U
rUr Um E Q, a contradiction). Symmetricallyr; = T.
Hencer N (Z U —Z2) = 0. It follows thatm; C (Y U —-Y).

It can be extended to an assignmemtover Y, which satisfies
{z,y}UrUn’ Unrs = Q. Therefore{z,y} UnUr' Ums |
xAyAPAK,mUrs = P. Itmeans that for all assignmentover
X, there is an assignment overY’, such that for all assignments
maoverZ, nUmsUms = P. O

We now face to the cases with background formula sets.

LEMMA 7. LetI' be a set of formulas? a formula andr a set
of literals. # € PI(T", P) if and only ifr is consistent with" and
T™E PI(F — P).

PROOF Suppose that is consistent witi". = € PI(T, P) iff
a)l'Ur | P andb) there is no subset of = such thal"un’ = P
iff a) 7 is a model off — P and b) there is no subset of = such
thatr' =T — Piff re PI(T — P). O

THEOREM 18. To determine whether a literal setis a prime
implicant of a formulaP w.r.t. a formula sel” is DP complete.

PrRoOOF Membership follows from Lemma 7 and Theorem 11.
Hardness follows from Theorem 11[]

THEOREM 19. To determine whether a literdlis in at least
one of the prime implicants of a formuRaw.r.t. a formula set" is
v complete.

PrROOF Membership is easy by guessing a literalsand check-
ing if ]l € mandw € PI(I',P). For hardness, we will show
that 3XVY P iff z is in one of the elements ik I(T", F'), where
F==(@AAPA(p1V---Vyp), F=xAPA=(y1V---V
yk) V oz A (—y1 V-V oyg) andz is a new atom.

x is in one of the elements @?I(T", F')

iff

AmrzemnaE-I,rEl— Fandvr' Cm, o’ T — F.
iff

Im,mU{z} E-I,mU{z} ETU-TVFandr & -T'VF.
iff

Im, m ¥ (D)|z, m E (2D)|z Vv Flz andm & (1) ]—z V
F|-z.

iff

I, m E FAYi1V---Vye), 1 |E Pandmy = -y Ve -V =y,
iff

JXvVYP. O

THEOREM 20. To determine whether a formulastrongly par-
tially implies another formula w.r.t. a formula sefl" is IT{” com-
plete.

PrROOF Hardness follows from Theorem 17. Given a literal set
m, it is easy to see that checking whether there exists a prime i
plicant=’ of a formulaP w.r.t. a formula sefl” such thatr C = is
in 2. Thus, it follows directly that this problem is . O



8. CONCLUSION

Partial goal satisfaction has been formalized as threeskaid
partial implication with respect to a background theory.ugaly,
while ignoring the borderline conditions as well as the r@iehe
background theory, the three kinds of partial implicatiandnbeen
defined as follows.

P strongly partially implies @ if for every case ofP there is a
case of) such that the case @t is a subset of the case @f.
If there is a part of a case which does not occur in any case
of @, which we call redundancy, theR does not strongly
partially imply Q.

P partially implies @ if for every case ofP there is a case af
such that a part of the case Bfis a part of the case af,
and there is no part of the case®fwhich conflicts with the
case of@). There may be redundancy. If there is a part of a
caseP which conflicts with any case @, which we call a
side effect, ther® does not partially imply?.

P weakly partially implies @ if for every case ofP there is a
case of@ such that a part of the case &fis a part of the
case ofQ. There may be redundancy or side effect®in

We show that the properties in Table 2 hold for the three natio
of partial implication. Moreover, we show relations betwehe
three kinds of partial implication, for example that strqoeytial
implication implies partial implication, and that partiaiplication
implies weak partial implication.

- strong partial partial weak partial
Non triviality yes yes yes
Independence of syntax yes yes yes
Relevancy yes yes yes
Transitivity yes no no
Extension classical no yes yes
Left strengthening no no yes

Table 2: Properties of partial implication

We define the problem of changing a goal by relating the prob-
lem to partial goal satisfactior®? partially satisfies a goal to achieve
Q if the goal to achieve) can be changed into a goal to achieve
Q’', and P satisfies the goal to achievg’, i.e., P logically im-
pliesQ’. We show how to use partial implication for goal change
in the context of belief, by defining that the goal to achiéyean
be changed to the goal to achie in the context of a set of be-
liefs T, if and only if Q" =2 Q. We show that beliefs can be used
only if they do not conflict with the goals, and we argue thatdse
of conflict other techniques might be used. We argue alsoithat
unconstrained cases of goal change strong partial imygicé the
most intuitive alternative, but in more constrained apgians the
other notions of goal change may be used too.

All the complexity results addressed in this paper are offitse
three levels of polynomial heterarchy (i.e. from NP congptef I’
complete). Surprisingly, checking strong equivalenceveen two
formulas isII} complete, even when the background formula set
is empty. Our complexity results shows that checking phirtia
plications with background formula set are often harden ttheat
without backgrounds. One of the unexpected result is Timeore
19, which states that literal checking in general case is &2
complete. Our complexity results also shows that checkartjg
implication and checking weak partial implication have astthe
same difficulties, while checking strong partial implicatis some-
times more complex. The complexity results of checking weaak
tial implication and partial implication in general cases(i with
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background formula set) have not been addressed in this page
are left for further research. We believe both of them arehin t
third level of polynomial hierarchy. More precisely, weieek that
checking weak partial implication in general case\i§ O (log n)
complete while checking partial implication in generale#sIT,
complete.

For future work, the notion of partial implication can beended
to the case between actions (or action sequences) and firopes
Moreover, the consequences of goal change on plan andiortent
reconsideration approaches could be considered. At thimeng
most of these approaches abort the goals, ignore logicalemen
tions between goals, do not consider goals as propositforalu-
las, and are restricted to an agent language. Since our \&orke
embedded into those approaches since our work is indepeafien
agent languages (we only use the logic connections). AB@ph
plication of the partial implication to other related preivls about
reasoning about goals should be studied, such as subgaalagen
tion: create subgoals to achieve a main goal, typicallygiaigoal
hierarchy. For such other applications of partial implicat the
question can be raised about the role of beliefs, how pantigli-
cation can be used, which kind of partial implication may bedu
in which cases, and whether other kind of partial implicatian
be defined.
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