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ABSTRACT
When autonomous agents decide on their bidding strategies in real
world auctions, they have a number of concerns that go beyond
the models that are normally analyzed in traditional auction the-
ory. Oftentimes, the agents have budget constraints and the auc-
tions have a reserve price, both of which restrict the bids the agents
can place. In addition, their attitude need not be risk-neutral and
they may have uncertainty about the value of the goods they are
buying. Some of these issues have been examined individually for
single-unit sealed-bid auctions. However, here, we work towards
extending this analysis to the multi-unit case, and also analyzing
the multi-unit sealed-bid auctions in which a combination of these
issues are present. In this paper, we present the initial results of
this work. More specifically, we present the equilibria that exist in
multi-unit sealed-bid auctions, when either the agents can have any
risk attitude, or the auction has a reserve price.
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I.2.11 [ARTIFICIAL INTELLIGENCE ]: Multiagent Systems;
I.2.11 [ARTIFICIAL INTELLIGENCE ]: Intelligent Agents
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1. INTRODUCTION
Auctions have become commonplace; they are used to trade all
kinds of commodity, from flowers and food to industrial commodi-
ties and keyword targeted advertisement slots, from bonds and se-
curities to spectrum rights and gold bullion. Once the preserve
of governments and large companies, the advent of online auc-
tions has opened up auctions to millions of private individuals and
small commercial ventures. Given this, it is desirable to develop
autonomous agents that will let the masses participate effectively
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in such settings, even though they do not possess professional ex-
pertise in this area. To achieve this, however, these agents should
account for the features of real-world auctions that expert bidders
take into consideration when determining their bidding strategies.

While game theory is widely used in multi-agent systems as a
way to model and predict the interactions between rational agents
in auctions, the models that are canonically analyzed are rather lim-
ited. As discussed below, some work has been done towards ex-
tending these models to incorporate features that are important in
real auctions, but this work invariably looks at each feature sepa-
rately; additionally the cases examined are almost all instances of
single-unit auctions. While this is useful for economists and per-
haps expert bidders, who can integrate the lessons learned using
human intuition and imagination, an automated agent cannot do
this. It is therefore necessary to analyze the strategic behavior in
multi-unit (mth and(m + 1)th price) auction models that incor-
porate all the relevant features. To this end, we have looked at a
number of auctions, ranging in scope from the eBay auctions (held
mainly between individuals) to B2B auctions (used by businesses
to procure materials and commodities), with various different rules,
ranging from the traditional English auction to the position auction
used by Google Adwords. Despite their differences, a number of
common features are present. We list the most important of these
below and highlight what is already known about each of them.

First,budget constraintsare very important, whenever businesses
and individuals place bids, because they limit the upper range of
these bids. Here, we will assume that the available budget consti-
tutes an absolute spending limit. Now, this case has been examined
for single-unit auctions [2], but not for multi-unit ones; it has also
been proven that the revenue generated by a1st price auction is
always higher than that of the equivalent2nd price one.

Second, bidders may adopt differentattitudes towards risk. Es-
sentially, this indicates whether bidders are conservative or not, and
their willingness to take risk in order to gain additional profit. Nor-
mally bidders are assumed to be “risk-neutral”, meaning their util-
ity equals their profit. However, they can also be “risk-averse”,
“risk-seeking”, or even have a more complicated risk attitude. The
equilibrium strategy of a risk-averse agent participating in a1st

price auction has been analyzed in [6].
Third, setting areserve price(i.e. a minimum transaction price)

in the auction is a common way for the seller to increase her profit.
This case has been examined for single-unit sealed-bid auctions
in [7, 9].

Fourth, there may beuncertainty in the bidders’ valuationof
the offered commodity. For example, when businesses bid in the
Google Adwords keyword auction, they can’t precisely know the



additional revenue that advertising in this way will bring them, and
therefore they can’t evaluate the actual economic value of the ad.
Nevertheless, it can be assumed that the agent has some idea about
his own value and this can be represented by a probability distri-
bution. In the literature, this problem has been mostly looked at
from the point of view of having a cost for introspection, which
allows the agent to determine his valuation more precisely [5, 10].
However, in many practical settings, introspection is simply not
possible, because of the lack of further relevant data, or excessive
costs that cannot be justified by the increased accuracy.1

The last important feature is considering a bidder’s desire topur-
chase multiple items, with a different valuation for each. In this
case, it is known that bidders should shade their bids, compared to
the case when only one item is desired, even to the point of bidding
for less items than desired, in order to gain more profit (strategic
demand reduction) [13]. To date, however, an optimal strategy is
not known for this feature; it is open problem. This is the reason
why we make the usual assumption that each agent wishes to buy
only one unit, like e.g. in [11].

This paper is organized as follows:

• In section 2, we give the multi-unit auction model that will
be used in our analysis.

• We then proceed to derive novel equilibria for the multi-unit
mth price sealed-bid auction case, for the individual cases
of reserve prices (in section 3), and of agents having any risk
attitude (in section 4). From this analysis, we go on to discuss
how these features affect the bidding strategies of the agents
in each of these cases.

• Finally, in section 5, we discuss about the extention of this
work, in order to examine the remaining cases that are of
interest, and conclude.

2. THE MULTI-UNIT AUCTION SETTING
In this section we formally describe the auction setting to be ana-
lyzed and define the objective function that the agents wish to max-
imize. We also give the notation that we use.

In particular, we will compute and analyze the symmetric Bayes-
Nash equilibria2 for sealed-bid auctions wherem ≥ 1 identical
items are being sold; these equilibria are defined by a strategy,
which maps the agents’ valuationsvi to bids bi. The two most
common settings in this context are themth and(m + 1)th price
auctions, in which the topm bidders win one item each at a price
equal to themth and(m + 1)th highest bid respectively. We as-
sume that there is a reserve pricer ≥ 0 in our setting; this means
that bidders, who wish to participate in the auction, must place bids
bi ≥ r.

We assume thatN indistinguishable bidders (whereN ≥ m)
participate in the auction and they have a private valuation (utility)
vi for acquiring any one of the traded items; these valuations are
assumed to be i.i.d. from a distribution with cumulative distribution
function (cdf)F (u), which is the same for all bidders. In the case

1In most of the above settings, the dominant strategy in the case of
a2nd price auction is some variation of truth-telling [4]. This result
is generalized trivially to the multi-unit variant (the(m+1)th price
auction).
2The Bayes-Nash equilibrium is the standard solution used in game
theory to analyze auctions. The equilibria being symmetric means
that all agents use the same bidding strategy. This is a common
assumption made in game theory, in order to restrict the space of
strategies that we examine. It is likely that in addition to the sym-
metric equilibria we compute there are also asymmetric ones.

that there is uncertainty about the valuationvi, the agent knows that
it is drawn from distributionGi(vi), but not the precise value.

We also assume that each bidder has a certain budgetci, which
is known only to himself and which limits the maximum bid that
he can place in the auction. The available budgets of the agents are
i.i.d. drawn from a known distribution with cdfH(c).

According to utility theory, every rational agent has a strictly
monotonically increasing utility functionu() that maps profit into
utility; the alternative with the highest expected utility is the pre-
ferred outcome. This function determines the agent’s risk attitude.
In this paper, we will be initially using the function used in [6],
which is u(x) = −γx, γ ∈ [0, 1]; this function is used to indi-
cate risk-averse agents, but here we extend it to also indicate risk-
seeking bidders:

u(x) = sign(γ − 1) · γx,∀γ ≥ 0 (1)

wheresign(x) is the sign function, which returns+1, whenx > 0,
−1 whenx < 0 and0 whenx = 0. Other functionsu(x) used
widely in economics are:u(x) = xα, α ∈ (0, 1) (CRRA), and
u(x) = 1 − exp(−α · x), α > 0 (CARA), both of which indicate
risk-averse bidders.

We also use the following additional notation in the proofs:Z(x)
is the probability distribution of any opponent’s bidbj . ThusZ(x) =

Prob[bj ≤ x], andB(k) is thekth order statistic of these bids of
the opponents. Since there are(N − 1) opponents for each agent,
the distribution ofB(k) is Φk(x) = Prob[B(k) ≤ x]. It can be
computed as [8]:

Φk(x) =

k−1X
i=0

C(N − 1, i) · (Z(x))N−1−i · (1− Z(x))i (2)

where the notationC(n, k) is the total number of possible combi-
nations ofk items chosen fromn.

As shown in [11], for allN andm, such thatN ≥ m the fol-
lowing equation holds:

Φ′m(x) = (N −m) · �Φm(x)− Φm−1(x)
� · Z′(x)

Z(x)
(3)

The equilibria that we compute in this paper, as well as the equi-
libria that exist in the more general cases, which will be examined
in the continuation of this work, are the solutions of differential
equations of the form described by the following theorem [1]:

THEOREM 1. Let f(x, z) and ∂f(x,z)
∂z

be continuous functions
of x andz at all points(x, z) in some neighborhood of the initial
point (x0, Y0). Then there is a unique functionY (x) defined on
some interval[x0 − α, x0 + β], satisfying:

Y ′(x) = f(x, Y (x)), ∀x : x0 − α ≤ x ≤ x0 + β (4)

with boundary condition:Y (x0) = Y0

This theoremguarantees the existence and uniqueness of the
equilibria we compute in the next sections.

3. EQUILIBRIA IN THE PRESENCE OF RE-
SERVE PRICES

In this section we examine the equilibria that exist in the case that
the reserve price of the auction isr ≥ 0. Here we assume the
bidders have no budget constraints and they are risk-neutral.

THEOREM 2. In the case of anmth price sealed-bid auction,
with reserve pricer ≥ 0, withN participating risk-neutral bidders,
in which each bidderi is interested in purchasing one unit of the



good for sale with inherent utility (valuation) for that item equal
to vi, wherevi are i.i.d. drawn fromF (v), the following bidding
strategy constitutes a symmetric Bayes-Nash equilibrium:

g(u) = u− (F (v))−(N−m) ·
Z v

r

(F (z))N−m · dz (5)

PROOF. Because of the reserve pricer, there is a chance that
an agent will not be able to participate in the auction, because his
valuation for the item isvi < r.3 We therefore begin by analyzing
the case when exactlyn ≤ N agents can participate in the auction;
these agents haveci ≥ r andvi ≥ r. The probability that a particu-
lar agent participates in the auction is:Prob[vi ≥ r] = (1−F (r)).
The probability that exactlyn (out of theN total) agents participate
in this auction is thus:

πn = C(N − 1, n− 1) · (1− F (r))n−1 · (F (r))N−n (6)

The distributionFr(v) from which the participating agents’ valua-
tionsvi are drawn, is the initial distributionF (), conditional on the
fact thatvi ≥ r. Thus it is:

Fr(v) = F (v)−F (r)
1−F (r)

, if v ≥ r & Fr(v) = 0, if v < r.

The distribution, from which the opponents’ bidsbj are drawn,
is:

Zr(x) =
F (g−1(x))− F (r)

1− F (r)
(7)

The distribution of thekth highest opponent bidB(k) is:

Φn,r
k (x) =

k−1X
i=0

C(n− 1, i) · (Zr(x))n−1−i · (1− Zr(x))i (8)

To analyze the expected profit of a bidder who places a bidbi in
the auction, we distinguish the following cases:

• If bi < B(m), then bidderi is outbid and doesn’t win any
items, therefore his utility isui = 0.

• If B(m) ≤ bi ≤ B(m−1), then bidderi has placed the last
winning bid. Thus the payment equals his bid and his utility
isui = vi−bi. This happens with probability:Prob[B(m) ≤
bi ≤ B(m−1)] = Φn,r

m (bi)− Φn,r
m−1(bi).

• If B(m−1) < bi, then bidderi is a winner, the payment is
equal to bidB(m−1) and his utility isui = vi − B(m−1).
Note that:Prob[B(m−1) ≤ ω] = Φn,r

m−1(ω).

Therefore the expected utility of bidderi, when he places a bid
equal tobi, is equal to:

Eun,r
i (bi) = (vi − bi) · Φn,r

m (bi) +

Z bi

r

Φn,r
m−1(ω) · dω (9)

From Bayes’ rule, we know that the expected utility that bidder
i gets, by placing bidbi, for any possible numbers of total partic-
ipating agents, is:Eui(bi) =

PN
n=1 πn · Eun,r

i (bi). Then using
equations 6, 7, 8 and 9, this becomes:

Eui(bi) = (vi − bi) · Φm(bi) +

Z bi

r

Φm−1(ω) · dω (10)

where the termsΦk(x) (for k = m− 1 andk = m) are:

Φk(x) =

k−1X
i=0

C(N−1, i)(F (g−1(x)))N−1−i(1−F (g−1(x)))i (11)

3Note that, as part of the work we did in [12], we looked at the ex-
pected utility of an agent who participates in an auction with a non-
zero starting price; this proof borrows elements from that work.

To find the bid which maximizes the expected utility, we set
dEui
dbi

= 0. Using equation 3, and the factbi = g(vi), since it
is the bidbi that maximizes the expected utility, we substitute this
in the equation to get:

g′(vi) =
(N −m) · (vi − g(vi)) · F ′(vi)

F (vi)
(12)

As the boundary condition isg(r) = r, the solution of this differ-
ential equation is equation 5.

From equation 5, it is evident that, for the same valuationvi, the
bid bi increases with each increase of the reserve price.

In the case of an(m + 1)th price auction, the optimal strategy
is [4]:

THEOREM 3. In an(m+1)th price auction, with reserve price
r, where the bidders are risk-neutral, have valuationsvi and no
budget constraints, it is a dominant strategy to bid truthfully:bi =
vi, if vi ≥ r, and not to participate otherwise.

4. EQUILIBRIA IN THE CASE OF VARY-
ING RISK ATTITUDES

In this section we examine the equilibria that exist in the case that
agents are not risk-neutral, but rather have a utility functionu() that
maps profit into utility. If this function is concave, the agents are
risk-averse; if it is convex, they are risk-seeking. The bidders have
no budget constraints and the reserve price of the auction isr = 0.

THEOREM 4. In the case of anmth price sealed-bid auction
with N participating bidders, in which each bidderi is interested
in purchasing one unit of the good for sale with inherent utility
(valuation) for that item equal tovi, wherevi are i.i.d. drawn from
F (v), the bidders have no budget constraints and they have a risk
attitude which is described by utility functionu(), the bidding strat-
egyg(v), which constitutes a symmetric Bayes-Nash equilibrium,
is the solution of the differential equation:

g′(vi) =
u(vi − g(vi))− u(0)

u′(vi − g(vi))
· (N −m) · F ′(vi)

F (vi)
(13)

with boundary conditiong(0) = 0.

PROOF. Once again we assume that the equilibrium strategy is
described by a functiong() which maps valuations to bids. We
consider any bidderi, who places a bidbi in the auction. The dis-
tributionZ(x) of the bidbj , that any opponentj (j 6= i) of agenti
places, is:

Z(x) = F (g−1(x)) (14)

Thekth order statistic of these bidsB(k) is drawn from distribution
Φk(x), described by equation 2.

Depending on the value ofbi, the following three cases are pos-
sible:

• If bi < B(m), then bidderi is outbid and doesn’t win any
items, therefore his utility isui = u(0).4 The probability of
this case happening is:Prob[bi ≤ B(m)] = 1− Φm(bi).

• If B(m) ≤ bi ≤ B(m−1), then bidderi has placed the last
winning bid. Thus the payment equals his bid, his profit is
(vi − bi), and his utility isui = u(vi − bi). The probability
of this case happening is:Prob[B(m) ≤ bi ≤ B(m−1)] =
Φm(bi)− Φm−1(bi).

4Note that profit0 does not necessarily mean that the utility is0; it
depends on the form of the utility functionu().



• If B(m−1) < bi, then bidderi is a winner, the payment is
equal to bidB(m−1), his profit is equal to(vi−B(m−1)) and
his utility is ui = u(vi−B(m−1)). Note that the probability:
Prob[B(m−1) ≤ ω] = Φm−1(ω).

The expected utility of bidderi, who places bidbi, is:

Eui(bi) =u(0)·(1− Φm(bi)) + u(vi − bi)·(Φm(bi)−Φm−1(bi))

+

Z bi

0

u(vi − ω)· d

dω
Φm−1(ω)·dω (15)

The bid which maximizes this expected utility, is found by setting:
dEui
dbi

= 0. This becomes:

(u(vi−bi)−u(0)) ·Φ′m(bi) = u′(vi−bi) ·(Φm(bi)−Φm−1(bi))

Using equation 3, to simplify this equation, we derive:

(u(vi−bi)−u(0)) ·(N−m) · F ′(g−1(bi))

g′(g−1(bi)) · F (g−1(bi))
= u′(vi−bi)

This valuebi is equal tobi = g(vi), since it maximizes the ex-
pected utilityEui(bi). Using this substitution, we derive the dif-
ferential equation 13.

The boundary condition isg(0) = 0, because an agent with val-
uationvi = 0 will bid bi = 0.

If we use the functionu(x) from equation 1, we can solve equa-
tion 13, to get the following equilibrium strategy:

g(vi) = vi− logγ

h
1+

ln γ

F (vi)N−m
·
Z vi

0

F (ω)N−m ·γvi−ω ·dω
i

(16)
In [6], the authors take the limits of this equation asγ approaches
1 and0, which represent the cases when the agent becomes risk-
neutral and very risk-averse respectively. Here, we do the same,
and also compute the limit asγ approaches∞, which represents
the case when the agent becomes very risk-seeking:

lim
γ→0

g(vi) =vi (17)

lim
γ→1

g(vi) =vi −
R vi

0
F (ω)N−m · dω

F (vi)N−m
(18)

lim
γ→∞

g(vi) =0 (19)

We observe that, whenγ → 1, i.e. the agents tend to become risk-
neutral, equation 16 gives the same solution as the one known from
the literature, for the case when agents just maximize their profit
(risk-neutral agents) [4]. Whenγ → 0, i.e. the agents become very
risk-averse, they bid truthfully, because they are worried too much
about losing no matter how small this possibility is.5 Whenγ →
∞, i.e. the agents become very risk-seeking, they bid0 (or ε > 0,
if zero bids are not allowed), gambling on the unlikely chance that
there is no competition and they receive the item for free. These
results can be generalized to any family of utility functions; the
agents bid according to equations 17, 18 and 19, when they are
respectively very risk-averse, risk-neutral and very risk-seeking.

In the case of an(m + 1)th price auction, the agents submit
truthful bids [4]:

THEOREM 5. In an(m+1)th price auction, where the bidders
have valuationsvi, they have no budget constraints and they have
a risk attitude described by utility functionu(), it is a dominant
strategy to bid truthfully:bi = vi

5Both these results are consistent with those reported in [6] for the
case of single-unit auctions.

5. DISCUSSION
In this paper, we examined the behavior of agents participating in
multi-unit sealed-bid auctions, when the auction has a reserve price,
or the agents have varying risk attitudes. In the future, we aim
to continue this work to include budget constraints, and valuation
uncertainty. Not only will we derive equilibria for the remaining
cases, but we will present the dominant strategy for the case of
uncertainty in the valuation that bidders have, when the bidders
are not risk-neutral, in the setting of the(m + 1)th price auction.
Furthermore, we will combine all the features in our analysis and
derive the equilibrium strategies for both themth and the(m+1)th

price auction, in the presence of budget constraints, reserve prices
and any possible bidder risk attitude. Then we will also include
the uncertainty of bidders’ valuation for the case of the(m + 1)th

price auction and present the dominant strategy. Finally, we will
use simulations to show that this analysis is useful, in practice, both
for the bidding agents in order to maximize their utility, and also
for the seller in order to select the correct reserve price and thus
maximize her revenue.

Other directions for future work include enriching our model and
then analyzing themth price auction equilibria, in the presence of
valuation uncertainty. In addition, we would like to extend this
work by examining the case of identical items being sold inmul-
tiple concurrent auctions[3], and the case of competition between
the agents [11].
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