
Robust and Efficient Plan Recognition for Dynamic
Multi-agent Teams

(Short Paper)

Gita Sukthankar
School of EECS

University of Central Florida
4000 Central Florida Blvd.

Orlando, FL
gitars@eecs.ucf.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA
katia+@cs.cmu.edu

ABSTRACT
This paper addresses the problem of plan recognition for multi-
agent teams. Complex multi-agent tasks typically require dynamic
teams where the team membership changes over time. Teams split
into subteams to work in parallel, merge with other teams to tackle
more demanding tasks, and disband when plans are completed. We
introduce a new multi-agent plan representation that explicitly en-
codes dynamic team membership and demonstrate the suitability
of this formalism for plan recognition. From our multi-agent plan
representation, we extract local temporal dependencies that dramat-
ically prune the hypothesis set of potentially-valid team plans. The
reduced plan library can be efficiently processed to obtain the team
state history. Naive pruning can be inadvisable when low-level
observations are unreliable due to sensor noise and classification
errors. In such conditions, we eschew pruning in favor of priori-
tization and show how our scheme can be extended to rank-order
the hypotheses. Experiments show that this robust pre-processing
approach ranks the correct plan within the top 10%, even under
conditions of severe noise.

Categories and Subject Descriptors
I.5.m [Pattern Recognition]: Miscellaneous

General Terms
algorithms

Keywords
multi-agent plan recognition

1. INTRODUCTION
Proficient teams can accomplish goals that would not otherwise

be achievable by groups of uncoordinated individuals. Often when
a task is too complicated to be performed by an individual agent, it
can be achieved through the coordinated efforts of a team of agents
over a period of time. In real life, human teams can be found every-
where performing a wide variety of endeavors, ranging from the fun
(sports, computer games) to the serious (work, military). Moreover,

Cite as: Robust and Efficient Plan Recognition for Dynamic Multi-agent
Teams (Short Paper), Gita Sukthankar, Katia Sycara,Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.1383-1386.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

teams exist in the virtual world as well—in simulations, training
environments, and multi-player games.

In this paper, we address the problem ofmulti-agent plan recog-
nition, the process of inferring actions and goals of multiple agents
from a sequence of observations and a plan library. Although mul-
tiple frameworks have been developed for single-agent plan recog-
nition, there has been less work on extending these frameworks
to multi-agent scenarios. In the simplest case, where all of the
agents are members of one team and executing a single team plan
(e.g., players executing a single football play), plan recognition can
be performed by concatenating individual agent observations and
matching them against the team plan library [4]. However, this is
not possible for many complex multi-agent scenarios that require
agents to participate indynamic teamswhere team membership
changes over time [7]. In such scenarios, teams split into subteams
to work in parallel, merge with other teams to tackle more demand-
ing tasks, and disband when plans are completed. Although it is
possible to model and recognize such tasks using single-agent plan
recognition techniques, we demonstrate that the existence of agent
resource dependencies in the plan library can be leveraged to make
the plan recognition process more efficient, in the same way that
plan libraries containing certain temporal ordering constraints can
reduce the complexity of single-agent plan recognition [3].

2. REPRESENTATION
We formulate the multi-agent plan recognition problem as fol-

lows. LetA = {a0, a1, . . . , aN−1} be the set of agents in the
scenario. Ateam consists of a subset of agents, and we require
that an agent only participate in one team at any given time; hence
a team assignmentis a set partition onA. During the course of a
scenario, agents can assemble into new teams; similarly, teams can
disband to enable their members to form new teams. Thus the team
assignment is expected to change over time during the course of a
scenario. The observable actions of a team are specified by a set of
behaviors, B. We assume that the sequence of observed behaviors
is the result of an execution of a team plan,Pr drawn from a known
libraryP.

Let T = {T0, T1, . . . , Tm−1} be the set ofagent traces, where
each traceTi is a temporally-ordered sequence of tuples with ob-
served behaviors and their corresponding agent assignment:

Ti = ((B0,Ai,0), (B1,Ai,1), . . . (Bt,Ai,t)) ,

whereBt ∈ B is the observed behavior executed by a team of
agentsAi,t ⊂ A at timet. Note that the composition of the team
changes through time as agents join and leave the team. However,

each trace corresponds to the execution of some plan in the library.
Our goal is to identify the set of plans,Pi that is consistent with
each trace,Ti, and the corresponding execution path through each
plan.

Our work employs a multi-agent extension of the hierarchical
task network plan libraries commonly used for single-agent plan-
ning [2]. The principal purpose of our multi-agent representation is
to correctly model dependencies in parallel execution of plans with
dynamic team membership. Each plan is modeled as a separate
AND/OR tree, with additional directed arcs that represent order-
ing constraints between internal tree nodes. Observable actions are
represented as leaf nodes. These nodes are the only nodes permit-
ted to have sequential self-cycles; no other cycles are permitted in
the tree.

Additionally all plans are marked with anagent resource require-
ment, the number of agents required for the plan to commence exe-
cution (additional agents can be recruited during subsequent stages
of a plan). For our military team planning domain, most leaf nodes
represent observable multi-agent behaviors (e.g., movement in for-
mation) and thus require multiple agents to execute. Note that the
agent resource requirement specified in the top level node does not
represent the maximum number of agents required to execute all
branches of the plan, merely the number of agents required tocom-
menceplan execution.

We use two special node types,SPLIT andRECRUIT , to rep-
resent the splitting and merging of agent teams. ASPLIT node
denotes that the following portion of the plan can be decomposed
into parallel subtasks, each of which is handled by its own subteam.
The node specifies the composition of each subteam and their tasks
(which are simply plan trees). Any agents not allocated to a sub-
team will continue to execute the original plan until released. Merg-
ing teams are represented byRECRUIT nodes.RECRUIT nodes
are a mechanism for teams to acquire more members to meet an
agent resource requirement; if no agents can be found, plan execu-
tion blocks at theRECRUIT node until sufficient agents (released
from other tasks) become available.SPLIT and RECRUIT are
not directly observable actions and must be inferred from chang-
ing team sizes in observable leaf nodes. Since different observed
actions can vary in duration, we do not assume strong synchroniza-
tion across plans based on atomic action duration.

3. METHOD
In this section, we discuss our method of automatically recover-

ing and utilizing hidden structure embedded in user-defined multi-
agent plan libraries. This hidden structure can be efficiently dis-
covered when the plan library is created, indexed in tables that are
stored and updated along with the plan library, and used as part
of a pre-processing pruning step before invoking plan recognition
to significantly reduce the number of plan libraries considered for
each observation trace.

3.1 Implicit Temporal Dependencies
Traditional plan recognition would examine each traceTi inde-

pendently, and test each plan from the libraryPr ∈ P against the
trace to determine whetherPr can explain the observations inTi.
We propose uncovering the structure between related tracesTi and
Tj to mutually constrain the set of plans that need to be considered
for each trace.

Note that we cannot determine which traces are related simply
by tracking the observed actions of a single agent through time as
that agent may be involved in a series of unconnected team plans.
However, by monitoring team agent memberships for tracesTi and
Tj , we can hypothesize whether a subset of agentsAj from Ti

could have left as a group to formTj . In that case the candidate
plansPr andPs for tracesTi andTj , respectively, must be able
to generate observations that explain both the final observation of
Aj in Ti (not necessarily the final observation inTi) and the initial
observation ofAj in Tj .

Similar temporal dependencies also exist between consecutive
observations during a single execution trace. For instance, the ob-
servation sequence(Bp, Bq) can typically not be generated by every
plan in the library, particularly if|B| is large or when plans exhibit
distinctive behavior sequences. These dependencies are implicitly
employed by typical plan recognition algorithms; our work gener-
alizes this concept across related execution traces.

3.2 Plan Library Pruning
Our method exploits the implicit temporal dependencies between

observations, across and within traces, to prune the plan library
and to dramatically reduce the execution time of multi-agent plan
recognition. Our algorithm for recovering hidden dependencies
from the plan library proceeds as follows. First, we construct a
hash,h that maps pairs of observations to sets of plans. Specifi-
cally, h : Bp × Bq → {Pj} iff some parent planPi could emit
observationBp immediately before subteam formation and its sub-
planPj could emit observationBq immediately after execution.h
can be efficiently constructed in a single traversal of the plan library
prior to plan execution. Intuitively,h is needed because the forma-
tion of a subteam (i.e.,SPLIT) is an invisible event; one can indi-
rectly hypothesize the existence of a split only by noting changes in
agent behavior. The presence of aSPLIT node can also be detected
by observing a drop in team size in the parent trace. Specifically,
h captures relationships between pairs of plans of the form that an
observable behavior in the first plan can be followed by an observ-
able behavior in the second plan (i.e., a subset of agents executing
the first plan canSPLIT off to execute the second plan). Given a
pair of observations,h enables us to identify the set of candidate
plans that qualify as subplans for the identified parent plan. This
allows us to significantly restrict the plan library for the child trace.

The temporal dependencies that exist between consecutive ob-
servations in a single execution trace can be exploited to further
prune the set of potential plans. This is also implemented using
a hash,g, that maps pairs of potentially-consecutive observations
within a plan tree to sets of plans, which we also precompute using
a single traversal of the plan library. Some observable sequences
could only have been legally generated by one of those two trees
(e.g.,C,A), while others are ambiguous (e.g.,A,B).

The size of these hash can beO(|B|2|P|) in the worst case since
each entry could include the entire set of plans. In practiceh and
g are sparse both in entries and values. Applyingh requires one
lookup per execution trace whileg requires a linear scan through
the observations.

3.3 Robustness to Observation Noise
In some simulation environments, one can collect highly-accurate

low-level behavior traces from multiple agents and humans acting
in the virtual world. However most real-world activity recognition
systems that monitor the activity of humans using cameras [6], GPS
readings [5], or wireless signal strength measurements [8], report
error rates ranging from 5%–40% in accurately classifying behav-
iors from position data. These error rates pose a challenge for our
algorithm since we rely on the existence of temporal dependencies
between behavior observations, across and within traces, to prune
the plan library. If these dependencies were corrupted by obser-
vation noise, then the pruning algorithm as described above could
incorrectly prune correct plans because the noisy observation traces

might contain observed transitions that would be “illegal” accord-
ing to the correct plan. On the other hand, observation failures
resulting in fewer behavior transitions being recorded would not
adversely affect pruning accuracy since the absence of transitions
cannot trigger the deletion of a plan from the hypothesis set.

To address this challenge, we extend the approach described above
by shifting the focus frompruning to prioritization. Rather than
eliminating from consideration those plans that could not legally
generate the observed behavior transitions, we order plans based
on their likelihood of generating the observed sequences. This
likelihood is estimated according to the same criteria employed
for pruning—temporal dependencies between observations, both
within and across traces. We pre-process the plan library in the
same manner, to construct the hashesg (within-trace constraints)
andh (across-trace constraints). However, these hashes are em-
ployed in a different manner against the observed data. For pruning,
the hashes were used to delete plans from the hypothesis set; here
they are used to augment the likelihoods of plans that are consistent
with the given observation. By assuming conditional independence
of observed transitions, we can approximate the log-likelihood of
matching a given observation to a particular plan as the sum of
independent contributions from each transition. In the absence of
additional information from the low-level recognizer, we can treat
these contributions as equal. This leads to the following approach
for plan ordering. For each observed trace, we accumulate a score
that is a linear combination of contributions from observations that
are consistent withg andh. The plan library is sorted according
to this score (this ordering is specific to each trace), and the behav-
ior recognizer is applied to the plans from most promising to least
promising until a suitable match is found.

As with the pruning method, the prioritization approach is agnos-
tic to the choice of behavior recognizer. Although all of the plans
in the library can be sent to the recognizer for detailed analysis, in
practice we apply the recognizer only to the most promising plans
(i.e., the top 10%). This decision is supported by the experimental
results shown below.

4. RESULTS
We follow the experimental protocol prescribed by [1], where

simulated plan libraries of varying depths and complexity are ran-
domly constructed. Randomly-generated plans do not reflect the
distinctive structure of real-world plans and are therefore a pes-
simistic evaluation of our method since it relies so heavily on regu-
larities between consecutive observations (both within and between
plans). The plan trees are randomly assembled fromOR, AND,
SPLIT , RECRUIT nodes, and leaf (behavior) nodes. Adding a
higher percentage ofSPLIT nodes into the tree implicitly increases
the number of execution traces since our simulator (described be-
low) creates a new execution trace for each subplan generated by a
SPLIT .

4.1 Execution Trace Generation
Given a plan library and a pool of agents, the execution trace gen-

erator simulates plan execution by allocating agents from the pool
to plans as they commence execution and blocking plans atRE-
CRUIT nodes while agent resource constraints remain unfulfilled.
Note that a given plan tree can generate many node sequences; the
same node sequence will execute differently based on which other
plans are simultaneously drawing from the limited pool of agents.

4.2 Evaluation
To evaluate the efficacy of our method, we examine three prun-

ing strategies over a range of conditions. To reduce stochastic vari-

ation, the following graphs show results averaged over 100 exper-
iments. All of the strategies employed the same depth-first search
with backtracking to match execution traces against plan hypothe-
ses.

Since plan recognition methods can return multiple hypotheses
for each trace, the natural metrics for accuracy are precision and re-
call. The former measures the fraction of correctly-identified traces
over the number of returned results while the latter is the ratio be-
tween the number of correctly-identified traces to the total number
of traces. Since all of the methods evaluated here are complete,
it is unremarkable that they achieve perfect recall on all of our ex-
periments. Precision drops only when multiple plan trees match the
observed trace. In these experiments, precision was near-perfect for
all methods, indicating that there was little ambiguity in the gener-
ated traces. In a small number of cases (where the observable action
vocabulary was small), our method achieved higher precision than
the baseline because it was able to disambiguate otherwise iden-
tical traces based on parent-child dependencies. However, we do
not claim better precision in general over baseline methods since
these cases are infrequent; rather, the primary focus of this paper
is to present a more efficient scheme for team plan recognition that
exploits inter-plan constraints.

We perform a set of experiments to evaluate the efficiency of
three approaches to team plan recognition:
Unpruned: depth-first matching of the observation trace against

each plan in the library.
Team Only: prune plan libraries for each observation trace using

across-trace dependencies fromh before running depth-first
matching.

Team+Temporal: prune plan libraries using both within-trace de-
pendencies stored ing, and across-trace dependencies from
h, before running depth-first matching.

Figure 1(a) shows how plan recognition time (as measured by the
number of leaf node comparisons) scales with growth in library size
(number of plan trees). We see that the Unpruned and Team Only
approaches scale approximately linearly with library size while the
cost for combined Team+Temporal pruning remains almost con-
stant. This is because the set of plan trees that could explain a
givensetof observed traces remains small.

Figure 1(b) examines how the performance of the three methods
scales with the number of observed execution traces. It is unsurpris-
ing that the time for all of the methods grows linearly. However,
pruning significantly reduces cost. In this case, Team+Temporal
achieves a consistent but less impressive improvement over Team
Only. We see that the pruning strategies enable us to run plan recog-
nition on much larger scenarios.

Figure 1(c) presents the cost of plan recognition against the av-
erage depth size of plan trees in the library. Since the number of
nodes in a plan tree increases exponentially with depth, we expect
to see a similar curve for each of the three approaches. However,
we do see a dramatic reduction in cost due to pruning.

Figure 1(d) shows how increasing the number of distinctly recog-
nizable low-level behaviors (number of observation labels) impacts
the cost of team plan recognition. As the number of potential labels
grows, it becomes easier to disambiguate sequences of observed
actions. Consequently, the benefits of pruning within-trace (using
hashg) become increasingly important. This is evident in our re-
sults, where Team+Temporal pruning shows clear benefits.

4.3 Robustness to Observation Noise
To evaluate the efficacy of our prioritization method, we exam-

ine the robustness of the ranking with respect to observation noise.
These experiments were conducted with a library with 100 plans

(a) Plan library size (b) Parallel execution traces

(c) Plan tree depth (d) Observation labels

Figure 1: Cost of plan recognition, as measured by leaf node
comparisons, for different pruning strategies under varying
conditions: (a) size of plan library; (b) average number of plans
executing in parallel; (c) average depth of plan tree; (d) num-
ber of observable behaviors. Pruning usingh and g enables
dramatic improvements for large plan libraries.

(average depth 4). The observation traces were generated as above
and then corrupted by iid noise (conditions ranging from 0% to
50% probability of misidentification). A corrupted observation was
replaced by a random observation drawn with uniform probability
from the set of 10 observable actions.

The observed transitions were used to generate likelihood es-
timates for each of the 100 plans. The rank of the correct plan
(known from ground truth) serves as a measure of the quality of
the prioritization. Ideally, one would like the correct plan to be at
rank 1; in practice, we would be satisfied if the correct plan appears
reliably in the top 10%, since this gives us an order of magnitude
improvement over a brute-force matching approach.

Figure 2 summarizes the average results from 100 independent
trials for prioritization over a range of noise conditions. We make
several observations. First, we note that the prioritization is very
effective at scoring the correct plan within the first few ranks (aver-
age rank is only 5.2 out of 100 even in extremely noisy conditions).
The standard deviations for these results ranged from 1.2 (for 10%
noise) to 12.4 (for 50% noise). Thus, in moderately noisy condi-
tions, it is reasonable to expect that the correct plan will fall within
the top 10%. Second, we can see that although the across-team
constraints alone are fairly effective at ordering the plan library, one
can achieve significant improvements by also incorporating within-
trace information. This is particularly valuable in high-noise con-
ditions where the chance of corrupting a key observation spanning
sub-team formation is non-negligible. Finally, we note that these
experiments exploited no additional domain knowledge, such as
better sensor models (e.g., confusion matrices for which observa-
tions are likely to appear similar) nor indications about which ob-
servations might be outliers based on higher-level plan knowledge.
These additional sources of domain information can complement
our prioritization strategy and further improve performance. This
validates our belief that a prioritization-based strategy could signif-
icantly improve the efficiency of multi-agent team behavior recog-
nition.

Figure 2: Average rank of correct plan in conditions of increas-
ing observation noise. The prioritization scheme is effective at
ordering plans such that the correct one is within the top 10%.

5. CONCLUSION
This paper presents a method for efficiently performing plan recog-

nition on multi-agent traces. We automatically recover hidden struc-
ture in the form of within-trace and across-trace observation de-
pendencies embedded in multi-agent plan libraries. Our plan li-
brary pruning technique is compatible with existing single-agent
plan recognition algorithms and enables these to scale to large real-
world plan libraries. We extend our pruning approach to robustly
handle scenarios with significant observation noise by generating
an ordering over the plans in the library. An effective estima-
tion of a given plan’s likelihood of generating a particular obser-
vation trace enables the correct plan to reliably appear within the
top 10%, allowing efficient recognition. We are currently applying
this method to activity recognition for physically-embodied agent
teams, such as squads of military operations in urban terrain (MOUT).

6. ACKNOWLEDGMENT
This work was supported by AFOSR grant F49620-01-1-0542

and completed under the sponsorship of the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement
Number W911NF-06-3-0001.

7. REFERENCES
[1] D. Avrahami-Zilberbrand and G. Kaminka. Fast and complete

symbolic plan recognition. InProceedings of International Joint
Conference on Artificial Intelligence, 2005.

[2] K. Erol, J. Hendler, and D. Nau. HTN planning: Complexity and
expressivity. InProceedings of National Conference on Artificial
Intelligence, 1994.

[3] C. Geib. Assessing the complexity of plan recognition. InProceedings
of National Conference on Artificial Intelligence, 2004.

[4] S. Intille and A. Bobick. A framework for recognizing multi-agent
action from visual evidence. InProceedings of National Conference
on Artificial Intelligence, 1999.

[5] L. Liao, D. Fox, and H. Kautz. Learning and inferring transportation
routines. InProceedings of National Conference on Artificial
Intelligence, 2004.

[6] N. Nguyen, D. Phun, S. Venkatesh, and H. Bui. Learning and
detecting activities from movement trajectories using Hierarchical
Hidden Markov Models. InProceedings of Computer Vision and
Pattern Recognition, 2005.

[7] M. Tambe. Towards flexible teamwork.Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[8] J. Yin, X. Chai, and Q. Yang. High-level goal recognition in a wireless
LAN. In Proceedings of National Conference on Artificial
Intelligence, 2004.

