

The Senior Companion Multiagent Dialogue System

ABSTRACT
This article presents a multi-agent dialogue system. We show how
a collection of relatively simple agents is able to treat complex
dialogue phenomena and deal successfully with different
deployment configurations. We analyze our system regarding
robustness and scalability. We show that it degrades gracefully
under different failures and that the architecture allows one to
easily add new modalities was well as porting the system to
different applications and platforms.

General Terms
Algorithms, Design, Reliability.

Keywords
dialogue, natural language processing, agent-oriented software
engineering, emergent behavior, scalability, robustness,
performance, case studies.

1. THE SENIOR COMPANION
The Senior Companion is an application designed to make
company to senior citizens, help them carry out their everyday
tasks and provide them with easy access to information, including
past conversations. It is intended to be deployed in a variety of
devices, from computer desktops to handheld devices and small
robots.
The current implementation builds a user model by carrying out
conversations over a collection of photos. A photo, besides being
the direct object of some conversations, may act as a trigger to
conversations about the relations of the user with the people,
places and events depicted.
Regarding everyday tasks, the current system it is able to read
daily news from selected websites to the user.
The user interacts with the system mainly via voice or text, if it is
plugged to a microphone or keyboard-enabled device, respectively.
In its most traditional deployment, a touch-screen laptop, the user
can also use touch for a limited set of commands (an example
being selecting a person in the photo).
Figure 1 shows the view of the system deployed in a standard
desktop computer that has a microphone. On the right side one
notices an avatar. Lip movements, head movements and facial
expressions associated with the communicative act are displayed
through it. In the center, the system displays the photo that is the
subject of discussion or an icon representing the current activity of
the system. For instance, a newspaper is shown if it is currently
reading the news. The buttons allow the user to go to the next or
previous photo. In the lower part there are two text panels, the

uppermost shows the history of the user interaction so far, and the
one in the bottom takes typed input.

Figure 1: Senior Companion Screenshot

Figure 2 shows the annotated log of a typical user session. SC
stands for senior companion. Comments after // describe the action
carried out by the user or the system that does not appear in the
log.

Figure 2: Annotated Log of a User Session

2. THE MULTIAGENT DIALOG SYSTEM
Our dialog system is composed of a collection of agents.

The general protocol for inter-agent communication is a simple
type-based publish-subscribe mechanism, similar to the one used
in SmartKom[2]. Each listener agent subscribes with the agents
that publish the types that it listens for, and each producer agent

(SHORT PAPER)

Hugo Pinto Yorick Wilks Roberta Catizone Alexiei Dingli

hugo@hugopinto.net Y.Wilks@dcs.shef.ac.uk R.Catizone@dcs.shef.ac.uk A.Dingli@dcs.shef.ac.uk
University of Sheffield University of Sheffield University of Sheffield University of Sheffield

Cite as: The Senior Companion Multiagent Dialogue System (Short
Paper), H. Pinto et al., Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller
and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp. 1245-1248.
Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

broadcasts changes to its listenable types to the subscribed agents.
Any agent can be at the same time a subscriber and a publisher.

Figure 3 shows the main agents and components of the senior
companion.

Figure 3: Senior Companion Agents and Modules

The Input Manager translates the inputs from the user interface to
messages that are understood by the dialog system agents. The
Text Watcher, the Speech Watcher and the Photo Watcher listen to
the availability of new voice, text or photo respectively.
The Speech Watcher processes speech (a wave file) and publishes
two results: a string corresponding to its highest scoring hypothesis
and a table with its N-best hypotheses and their corresponding
texts.
The Text Watcher agent listens for the presence of a new text
string that might come from the Input Manager or the ASR Agent,
and broadcasts a potentially modified version of the received text.
It might apply simple corrections in the input before broadcasting,
such as changing “waht” to “what”.
The Image Watcher detects whenever a new photo event comes
through the input interface and publishes the information related to
the photo (GPS coordinates, time, number of people detected, etc).
It uses a customized version of OpenCV for image processing[].

The Natural Language Understanding (NLU) Agent processes a
text string and outputs a linguistic interpretation of the sentences
present. It includes a syntactic analysis and a shallow semantic
analysis that includes named entities. This agent uses a customized
version of GATE’s ANNIE system[1] for the analyses.

The Dialogue Manager (DM) uses information about the current
interaction, the interaction history, its background knowledge and
the information from the NLU Agent and the watchers to decide
what to do at each time step. The DM’s decision of what to do at
each time step may be to issue a command (perform<action>), to
convey a dialogue act (convey<dialog-act>) or to just wait. As the
dialog manager itself is a complex multiagent system, we will
defer its details to the next section.

The Application Domain Manager (ADM) decides how to satisfy
the logical specification of commands from the Dialogue Manager
(DM) with a set of domain-specific commands. We have one
ADM per application domain.
The Communication Agent takes a convey(DialogAct) command
and decides how to present the information. It is up to this agent to
decide if it will use the gesture of an avatar, voice, the application
canvas or a combination of both to display the information. For
instance, it could decide to present convey(inform(movies_info)) as
a table showing the cinemas and movies, if movies_info had entries
for several movies, or it could just render it as speech if
movies_info had a single entry.
The Output Interpreter (OI) agent takes a logical specification of a
list of commands and translates it into the actual commands
understood by the interface. For example, it might render a
specified table as HTML, vector graphics or GIF image, depending
on the capabilities of the GUI. We have one output interpreter
agent for each specific user interface and GUI. As an example, we
could have one for Internet Explorer and another for Firefox.

The Presentation Interface is responsible for playing the sounds,
actually loading and changing pictures and gathering user input.

3. DIALOGUE MANAGEMENT
The dialog manager, though an agent from a higher level
viewpoint, is also a multiagent system composed of two main
agent types: behavior and control agents.
Behavior Agents embody a single conversational or operational
task of the system, such as “discover user name”,
“chat_about_photo”, “talk about event” and “read news”.
Control agents are used to determine which behavior agent will
run at each time step.
Each behavior is tagged at design time with a set of terms that
characterize it. These terms can be restrictions on domain
properties (such as time>18:00), keywords, parts-of-speech tags,
named entities, or syntactic dependencies. Each behavior in the
system has a unique key, formed by the set of its terms.
The dialog manager uses the information that comes from the
watchers and the NLU agent to make a set of indexing terms. It
matches these indexing terms to the keys of each behavior and
selects for execution at each time step the behavior that most
closely matched the current indexing terms.
But what happens if the user interrupts a conversation in its
middle? How may the system get back to it later?
We use a simple solution for this dilemma: we put the behavior
into a stack. At any moment the running behavior is the one that is
on the top of the stack. Whenever a new conversational behavior is
selected, the current one is stopped and the new one pushed on top
of the interrupted behavior. The dialog proceeds according to the
new behavior. When it is over, the corresponding behavior is
popped and the interrupted behavior and conversation resumed
from where they were stopped.
A problem arises with this approach: what to do when the user
causes the selection of a behavior that is already pushed down the
stack? In most cases we do not want to restart the conversation
from scratch, but rather, we want to continue the conversation
from were we left. We thus made the system stack a “white-box

1246

stack with removal’, allowing the inspection and removal of
elements in any position of the stack.

Figure 4 shows the Dialog Management System. Dashed arrows
indicate the direction of broadcast messages. Full arrows indicate
components that directly modify others. Full connections that are
not arrows show just association.

Figure 4: Agents of the Senior Companion Dialog Manager

The Adder is the agent that takes care of the decision of what to do
when a new behavior is selected for execution, as discussed in the
previous paragraph. In this system it checks the stack for an
interrupted behavior identical to the one to be stacked, and if it is
the case, remove it from the stack and re-pushes it to the top.
Otherwise it just pushes the new behavior. A behavior, when
selected for execution, keep the values of the indexing terms used
for its selection – it is then called an instantiated behavior. These
terms provide a partial context for the behavior.
The Remover takes care of a problem that we have not discussed
so far: how to perceive and decide when a conversational behavior
is no longer relevant and what to do when it happens? Examples
could be conversations that were interrupted for so long that the
user is no longer interested in them, or conversations that were
subsumed by other conversations. The current system has two
behavior Remover agents, one that removes behaviors that are
inactive for a time longer than a constant and another that removes
behaviors that get pushed down the stack beyond a certain depth.

The Working Memory (WM) is not as passive as the name might
suggest. Besides keeping predicates and objects that correspond to
the knowledge of interest to the behavior agents, is has three active
roles: it tries to keep its knowledge consistent, actively forgets old
information, and automatically infers new information whenever
new predicates and objects are added to it. As the other agents in
the system, it notifies subscribed agents of changes in its state. The
Adder registers the instantiate behavior to listen to events in the
Working Memory, so that the behavior always have the latest
percepts during its execution.
The low level percepts coming from the Text Watcher, Photo
Watcher, Speech Watcher and NLU Agent are caught by the
Indexing Terms Agent, the Language Interpreter and the Image
Interpreter.
The Language Interpreter adds predicates and objects to the
Working Memory, based on what is already there, the system
background knowledge and the outputs of the NLU Agent, Speech

Watcher and Text Watcher. It is the element that might be able to
tell that “he’, corresponds to George_Washington_01, a specific
George Washington in our system.

The Image Interpreter uses information from the watchers to
populate the working memory in the same way as the Language
Interpreter. One example is the addition of predicates that describe
the relative positions of the people described in the photos. It has
background knowledge about pictures and spatial relations.

The Application Watcher is an application and system specific
agent that creates objects and predicates representing aspects of the
system that are used in behavior selection and execution. It is the
agent that might populate the working memory with system time
information, for example.
The Indexing Terms agent uses the information of the WM, the
NLU, and the watchers to create indexing terms for behavior
selection.
A Scorer agent, under request of a Selector, produces a list of
scores, each corresponding to a particular view of the indexing
terms of the behaviors available for selection. We may have
scorers that focus only on full matches, scorers that use term
expansion to assign partial scores, scorers that just consider system
properties, etc. The main motivation for this was to allow
experimentation with different scoring policies, and to being able
to treat each term type individually. The present system uses just
full match scorers, one for system properties and one for
keywords.
The Selector agent decides which behavior, if any, will be selected
for addition whenever it receives new indexing terms. It calls the
available scorers and uses a defined algorithm to combine them.
Currently we select the highest scoring behavior considering the
sum of all Scorers. In the future we will investigate the
incorporation of default preferences and preferences based on the
content of the stack.
The Dialog Manager Watcher (DM Watcher) monitors the events
inside the dialog manager. It populates the Working Memory with
predicates such as “NewUtteranceArrived(time)”. The predicates
and objects of the Dialog Manager are used in operations of finer
grained dialog control and repair, usually carried out by
specialized behaviors (an example would be “clarify last
question”).
A behavior in our system is ultimately implemented by an
augmented finite-state machine(more specifically an augmented
transition network[7]). Any action or check is performed by
sending a message and receiving an acknowledgement (the FSM
may ignore the acknowledgement, if it is not crucial)
The Behavior Runner (BR) is the agent that actually drives
behavior execution, telling a stacked behavior when to be active
and when to wait. It won’t stop a behavior in the middle of a
transition or action though, so the behavior always stops
immediately after performing a transition or immediately before
checking the transition conditions. The Behavior Runner is also
the agent that removes behaviors that have finished their
execution.
Finally, the Message Dispatcher is the agent that processes the
messages from a behavior. It publishes the dialog system

1247

messages in a form amenable to the Communication Agent and
Application Domain Manager.

4. DISCUSSION
In this section we discuss our system regarding scalability and
robustness, compare our system to related work and point to our
future investigations.

4.1 Robustness, Scalability and
Configurability
Our main motivation to adopt a multiagent approach to our dialog
system was to be able to easily configure, modify, adapt and
monitor it, was well as making it robust. These characteristics are
particularly relevant as the requirements and deployments of our
system might change beyond our predictions, and the set of
linguistic and cognitive hypothesis to explore are large.
One question of central interest, considering verbal expression, is
how the various scoring and selection strategies affect the overall
dialogue behavior. The same applies to the behavior removal
policy – how the removal strategy and frequency might impact
dialogue? Could we use it to create a ”obsessive” system, that kept
going back to everything the user said, even if it happened three
hours before? What about the different ways to add a behavior?

We see that by decoupling scoring, selection, addition and removal
of behaviors we create not a single system, but a family of systems
that can be easily realized by different agent compositions. We
used in our default implementation agents that embody strategies
that embody one particular successful deployment[5], but we
intend to explore the spectrum of plausible combinations in the
future.
The dialog management system may continue to function, albeit
degraded, even in the absence or failure of some key inputs or
agent. For instance, if we have no NLU input, the selection and
scoring of behaviors will be carried out considering just the words
of a sentence. If speech fails, the user will still be able to use the
system using typed input. If one Scorer does not return a valid
result but the others do, the Selector will still be able to do an
informed decision.
If we add a whole new modality to our system, such as gestures,
we need to add just a gesture Watcher and a Gesture Interpreter,
without any need to modify the rest of the system (except the
concerned behaviors).
We have integrated our dialogue system with a web-based
interface that allowed the user to interact with our system using a
browser. This web interface had an embedded avatar. We also
integrated it with a standalone Java application that had no avatar,
and later superimposed another application containing an animated
avatar (shown in Figure 1). We were able to carry out each
integration with minimal effort – we had to modify just the Input
Manager, the Output Interpreter in all cases. Between the first and
second integration we had to build a new Communication Agent
and a new Application Domain Manager. When we added the third
application, we had to modify the Communication Agent to deal
with the extended capabilities of the animated avatar, but the ADM
was unchanged as the basic application functionality remained the
same. This made us confident in the suitability of the system to be
deployed at

different devices and its robustness and portability to different
scenarios.

4.2 Related Work
The use of ATN’s and a Stack for language processing go back at
least to Woods[7], albeit in a syntax context. For dialogue, this
combination was applied in the COMIC and mini-CONVERSE[5]
projects. The main difference from our approach is that the
behavior selection system was monolithic and the behaviors
(called Dialog Action Forms) directly controlled the application
and the system. Contrary to our system, the behavior could not be
ported if we changed the application, and any change in selection
or scoring would cascade over many parts of the entire system.
The idea of combining variations of finite-state-machines and a
Stack to be able to interrupt and resume agent behaviors was also
extensively used to control agents in computer games[4].
Inspiration for the actual software engineering of our behaviors
came from [6].
Our scoring system has a mild resemblance to the general
functioning of the multiagent system in the Jaspis[3] architecture,
in that we decouple scoring and selection of an agent that
embodies the actual behavior of a task. However our behaviors do
not provide a default score as in Jaspis and we used this
organization just or a specific case.

5. ACKNOWLEDGMENTS
Wei Wei Cheng was a co-designer and main implementer of the
interface shown in Figure 1, and also implemented the interface-
side features of the Input Manager and Output Interpreter. The
Avatar shown in Figure 1 was built by As An Angel and modified
to interoperate with the Senior Companion by Benoit Tabutiaux.
We thank Thiago Tamosauskas for providing us the pictures used
in the system’s tests. This work was supported by the EC.

6. REFERENCES
[1] Cunningham, H., D. Maynard, et al. Framework
and Graphical Development Environment for Robust NLP.
Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL'02).
Philadelphia. (2002).
[2] Wahlster, W. (Ed). SmartKom: Foundations of
Multimodal Dialogue Systems. (2006).Springer-Verlag.
[3] Turunen, M et al. An Architecture and applications
for Speech-based accessibility systems. IBM Systems Journal
Vol 44, N 3, (2005).
[4] Houlette, R. and Fu, D. “The Ultimate Guide to
FSMs in Games”. AI Game Programming Wisdom 2, Steve
Rabin(Ed). 2003.
[5] Catizone, R., Setzer, A., and Wilks, Y. “Multimodal
Dialogue Management in the COMIC Project”, Workshop on
Dialogue Systems: interaction, adaptation and styles of
management. (EACL)Budapest, Hungary. (2003)
[6] Guessoum, Z.,Briot, J.-P. From Active Objects to
Autonomous Agents. IEEE Concurrency 7, 3 (1999) 68-76
[7] William A. Woods: Transition network grammars for
natural language analysis. Commun. ACM 13(10): 591-606
(1970)

1248

