
Expediting RL by Using Graphical Structures

(Short Paper)
Peng Dai

Dept of Computer Science
and Engineering

University of Washington
Seattle, WA 98195

daipeng@cs.washington.edu

Alexander L. Strehl
Yahoo! Research
New York, 10018

strehl@yahoo-inc.com

Judy Goldsmith
Dept of Computer Science

University of Kentucky
Lexington, KY 40506-0046
goldsmit@cs.uky.edu

ABSTRACT
The goal of Reinforcement learning (RL) is to maximize reward
(minimize cost) in a Markov decision process (MDP) without know-
ing the underlying model a priori. RL algorithms tend to be much
slower than planning algorithms, which require the model as input.
Recent results demonstrate that MDP planning can be expedited,
by exploiting the graphical structure of the MDP. We present ex-
tensions to two popular RL algorithms, Q-learning and RMax, that
learn and exploit the graphical structure of problems to improve
overall learning speed. Use of the graphical structure of the under-
lying MDP can greatly improve the speed of planning algorithms, if
the underlying MDP has a nontrivial topological structure. Our ex-
periments show that use of the apparent topological structure of an
MDP speeds up reinforcement learning, even if the MDP is simply
connected.

1. INTRODUCTION
Given a set of states, a set of actions, an initial state and a set of

goal states, classical planning finds a sequence of actions that pro-
ceeds from the initial state to a goal state while minimizing cost.
Decision theoretic planning [2] is a powerful extension that intro-
duces outcome uncertainty.

Markov decision processes are a widely used model for AI re-
searchers to represent decision theoretic planning problems. Given
an MDP model, a planner finds a solution that has the optimal or
at least acceptable cost. Classical MDPs solvers such as value it-
eration [1] use dynamic programming. This assumes the model
is known. In reinforcement-learning (RL), the MDP environment
is initially unknown, so dynamic programming is not immediately
applicable.

There are two main approaches to RL, model-free learning and
model-based learning (or simply model-learning) [12]. Model-free
algorithms learn a value function or policy directly from the data,
while model-based algorithms first construct an MDP model that
they then use to reason about future actions and costs.

We show two basic RL algorithms can be made faster and more
practical by learning and exploiting knowledge of the underlying
graphical structure of environments. By examining the topological
structure of the MDP’s reachability graph rooted at the initial state,
algorithms that use dynamic programming techniques can be mod-
Cite as: Expediting RL by Using Graphical Structures (Short Paper), Peng
Dai, Alexander L. Strehl and Judy Goldsmith, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal,pp. 1325-1328.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ified to find near-optimal policies more quickly in many MDPs.
The contribution of our paper is three-fold. We show, in de-

tail, how two representative reinforcement learning algorithms, Q-
learning (model-free) and RMax (model-based), can be modified to
use the underlying graphical MDP structure. We discuss how this
method can be extended to current and future RL algorithms. Fi-
nally, we provide extensive empirical evaluation of our algorithms
in comparison with the old algorithms. The experiments show that
graphical-structure analysis significantly benefits RL algorithms.

2. BACKGROUND
A scenario based MDP is a six-tuple 〈S, A, T, C, s0, G〉. S is a

finite set of system states. A is a finite set of actions. Ta(s′|s) is the
probability of the system changing from state s to s′ by performing
action a. C(s, a) is the instantaneous cost of performing action a
at state s. s0 ∈ S is the initial state and G ⊆ S is a set of goal
states. We will use “MDP" for “scenario based MDP" for the rest
of the paper.

Given an MDP, we define a policy π : S → A to be a map-
ping from the state space to the action space. A value function
V π for policy π, V π(s) : S → R denotes the value of the to-
tal expected cost starting from state s and following the policy π:
V π(s) = C(s, π(s)) +

∑
s′∈S Tπ(s)(s

′|s)V π(s′). A policy π1

dominates another policy π2 if Vπ1(s) ≤ Vπ2(s) for all s ∈ S. An
optimal policy π∗ is a policy that is not dominated by any other pol-
icy, and is the optimal solution of the MDP. The value function of
the optimal policy is called the optimal value function V ∗(·). Bell-
man [1] showed that V ∗(·) can be calculated by solving a system
of linear equations in the form

V ∗(s) = mina∈A(s)[C(s, a) +
∑

s′∈S

Ta(s′|s)V ∗(s′)]. (1)

Equation 1 is also know as the Bellman equation. Using the Bell-
man equation as an assignment operator over a particular state is
denoted as a Bellman backup. Bellman backups are the basic oper-
ations of dynamic programming, a technique of solving MDPs by
calculating their optimal value functions.

Dynamic programming works directly in value function space.
It backs up the value of states according to some order, until a time
when further backups would result in only a very small change to
the value function. We use the term converge loosely and infor-
mally to mean that the learned value function is sufficiently close
to the optimal value functions. The simplest variant of value itera-
tion [1], for example, initializes the value functions arbitrarily, and
updates its value function by applying Bellman backups on every
state in a fixed order. The algorithm halts when the largest change

in value during the most recent iteration is smaller than a thresh-
old. Once the optimal value function is sufficiently approximated,
a near-optimal policy, π, is easily extracted by choosing an action
for each state:

π(s) = argmina∈A(s)[C(s, a) +
∑

s′∈S

Ta(s′|s)V (s′)].

Topological value iteration (TVI) [4] is a recent dynamic pro-
gramming MDP algorithm . It makes use of the graphical structure
of MDPs to perform Bellman backups in a better order. TVI first
constructs a directed graph G from an MDP: the vertices of G are
the states of the MDP, and the directed edges are state transitions.
If the probability Ta(s′|s) > 0, then the edge s → s′ is in G. TVI
then computes the strongly connected components (SCCs) of G
and their topological order. It solves every connected component
sequentially by value iteration, according to this order. TVI out-
performs VI significantly in MDP domains that have a reasonable
number of SCCs.

3. MODEL-FREE LEARNING
Previously, we discussed how to obtain a near-optimal value func-

tion and policy for an MDP assuming we already have a model. The
model consists of the cost function C and transition function T . In
the reinforcement learning setting, we want to find a near-optimal
value function and policy when the model is not initially provided.
RL algorithms interact with the environment to get approximations
of the model, and therefore solve the MDP.

Q-learning [13, 14] is a standard RL algorithm for MDPs. The
algorithm maintains Q-values for each state action pair. Q∗(s, a) =
C(s, a) +

∑
s′∈S Ta(s′|s)mina′Q

∗(s′, a′). Q∗(s, a) stands for
the minimum expected cost of being in state s, applying action
a, and then following the optimal policy. Thus, the optimal value
function of s is the minimum Q-value with respect to s, V ∗(s) =
minaQ∗(s, a).

In MDPs, Q-learning initiates exploitation trials from the initial
state. In each step of the trial, an action a is chosen for the cur-
rent state s, which transitions the learning agent stochastically to
s′ according to the (unknown) transition function. A cost c(s, a) is
sensed, and Q(a, s) is updated by Q(s, a) = Q(s, a)+α(c(s, a)+
mina′Q(s′, a′)−Q(s, a)), where α is the learning factor, which it
is often decreased as the time passes. Updating a Q-value is called
a Q-backup.

Q-learning is very powerful, and is guaranteed to converge to
an optimal policy, albeit sometimes slowly. One weakness is that
it uses the same learning strategies for every MDP. The intuition
behind our topological Q-learning (TQL) algorithm comes from
TVI. TQL has two phases. The first phase is the initial learning
phase. Here, we learn graphical information as well as Q-values.
We initiate trials from the initial state the same way as Q-learning.
As well as updating the value function for state-action pairs en-
countered along the trials, we record all predecessor-successor pairs
visited during those trials. In other words, we mark all the visited
edges of G. After a certain number (x) of trials, we use the recorded
edge information to construct a directed graph, the reachability
graph, GR. Notice that the reachability graph is by no means guar-
anteed to be identical to the real G, since the trials might not visit
all edges or even all states. However, if the learning process is
sufficiently long, the information of learned state-action pairs is
sufficient to solve the original MDP.

Given the reachability graph, we apply Kosaraju’s algorithm to
find the SCCs of GR and their topological order. In the second
phase, we choose one component at a time according to this order,
pick one state from this component, and initiate trials from that

state until the current component is converged. These trials are
slightly different from trials of Q-learning. In Q-learning, a trial
terminates only when a goal state is encountered. But trials of the
second phase TQL finish when they run into a goal state or get
into a state belonging to a component whose topological order is
larger than the current one. This is because when a component
is converged, all its states are converged, and we do not back up
converged states. So if a later trial reaches converged states, we
stop it. In each component, we initiate trials from the same state,
since every other state in the component is reachable from this state.
If we do enough trials, every state in that component gets backed
up sufficiently.

Suppose we are asked to provide an online RL agent that takes
advantage of the topological structure. We outline a simple exten-
sion to TQL to achieve this goal. When TQL learns that a transi-
tion from state s to s′ is possible, it stores this fact in its reacha-
bility graph. With little additional overhead, we could store each
experience-tuple (s, a, c, s′) that is observed by agent, and link
each of these tuples to the state s in our reachability graph.1 Then,
in the second phase, instead of initiating more trials from various
states according to the topological ordering, we could simply run
Q-learning over our saved experience-tuples from those states (and
their outgoing neighbors in the reachability graph). This method
can be viewed as a version of the “experience replay” algorithm
[12] that takes advantage of learned topology.

One problem with the experience-replay approach described above
is that storing every experience-tuple is memory intensive. An al-
ternative approach is to maintain and update an approximate model
of the underlying MDP.2 After this, we can initiate Q-learning trials
from any state by simulating them in our model. Alternatively, we
could solve the model directly. This approach is developed in full
detail in the next section.

4. MODEL-BASED LEARNING
Model-based RL algorithms use the agent’s experience to esti-

mate the system dynamics (transitions and costs) of the underly-
ing MDP. It is straightforward to compute the maximum-likelihood
model of the cost and transition distributions for each state-action
pair. For instance, if we’ve seen n1 transitions from state s to state
s′ after action a, out of n2 total transitions from state s after action
a, we would estimate the unknown transition probability Ta(s′|s)
by T̂a(s′|s) = n1/n2. As the agent gains experience over the state-
action space, its model converges to the true MDP. Once the agent
estimates the model, it can then solve the model using any MDP
planner, and act according to an optimal policy. Unfortunately,
when little experience has been gathered, the empirical model may
be inaccurate, and resulting policies are suboptimal.

Several effective model-based algorithms have been developed,
such as E3 [7], RMax [3], and MBIE [11]. These algorithms esti-
mate a model and its uncertainty. They use their models to obtain
either the best known cost (exploitation) or knowledge that will re-
duce model uncertainty (exploration). The RMax algorithm is a
model-based algorithm that has formal guarantees on its learning
time [3, 6]. Therefore, we use it as a representative model-based
RL algorithm. We describe RMax and discuss how to augment it to
take advantage of the MDP’s graphical structure. This very simple
modification brings vast improvement.

The MDP model used by RMax contains the empirical transi-

1Here s′ is the state reached and c is the immediate cost of taking
action a at s.
2The Q-values computed by the experience replay algorithm con-
verge to the optimal Q-values of the approximate model.

tion and reward distributions only for those state-action pairs that
have been experienced by the agent at least m times, for some ex-
ploration parameter m. The transition distribution for other state-
action pairs is a self loop, and the cost for those state-action pairs
is 0, the minimum possible. The intuition is that the transition and
cost estimates for those state-action pairs that have not been tried m
times are likely to be inaccurate. Instead of using past experience
to compute a model for these state-action pairs, we make them min-
imally costly in RMax’s model. By choosing m carefully, RMax
learns a near-optimal policy in polynomial time [3, 6].

Here we present an extension of RMax, Topological RMax (TR-
Max). In RMax, whenever a new state-action pair (s, a) has been
visited at least m times, we gather all the other relevant state-action
pairs, the state-action pairs (s′, a′) that have the same property, and
perform value iteration over them. Like TQL, TRMax has two
phases. The first is the same as RMax, except we also remember
the visited successor-predecessor pairs. After x trials, we compute
the SCCs of the current reachability graph GR as well as their topo-
logical order, then enter the second phase. From then on, when a
state-action pair (s, a) has been visited m times, for a state-action
pair (s′, a′) to be relevant, we require (s′, a′) to have been visited
at least m times, and s′ must belong to a component that has a
higher topological order than the component of s in GR. We use
topological value iteration in solving the new model.

We originally extended RMax by recomputing the SCCs of the
reachability graph and the topological ordering each time a new
state-action pair was visited m times. We discarded that approach
since constructing the SCCs of a directed graph is costly in practice.
One possible improvement is to update the SCCs and topological
ordering incrementally [10]. The overhead required may limit its
practicality, but we plan to test this.

5. EXPERIMENTS
RL algorithms often do not have a well defined stopping crite-

rion. During our experiments we kept a running average of the
(estimated) value of the initial state. When the most recent value
was sufficiently close to the long-term average, we terminated the
experiment.

Any implementation of RMax must choose a technique for solv-
ing its model and this choice will affect the computational complex-
ity of the algorithm. For our experiments, we used value iteration.

Our topological RL algorithms are based on the reachability graph
that is known when we call Kosaraju’s algorithm after x trials.
What is a reasonable choice for x?

The influence of a state s with respect to a policy π, Iπ(s), is the
expected number of times that state is visited in a trial following
policy π [9]. Since any trial originates from the initial state s0,
the influences of s0 is 1. Similarly,

∑
g∈G Iπ(g) = 1. When

Iπ(s) < 1, it is the probability of s being visited in the exploitation
trial. The influence of a state s with respect to the optimal policy is
called the optimal influence I∗(s).

Iπ(s) =
∑

s′∈S,a=π(s′)

Ta(s|s′)Iπ(s′),

I∗(s) =
∑

s′∈S,a=π∗(s′)

Ta(s|s′)I∗(s′).

The influence measures the effect that changing the value of s
will have on the value of s0.

THEOREM 1. If a state has an optimal influence of at least ε,
then with probability p = 1 − (1 − ε)t, the optimal policy will

|S| 5000 10000 1000 2000
nl QL TQL QL TQL RMax TRMax RMax TRMax
10 21.72 15.25 50.31 27.93 28.14 9.47 117.87 35.78
20 17.68 11.41 38.55 19.94 30.34 10.33 122.72 36.76
30 13.80 9.03 36.32 18.32 28.27 9.40 81.96 22.41
40 16.66 10.32 32.16 17.83 26.45 8.80 95.60 26.73
50 11.68 7.96 38.99 20.70 21.41 6.80 100.82 28.31
60 11.52 7.19 36.30 18.20 23.23 7.46 34.67 15.96
70 11.21 6.77 34.67 15.96 21.77 7.11 87.97 23.64
80 11.91 7.46 36.26 17.50 22.32 7.08 83.98 22.46
90 14.72 9.13 31.76 15.29 24.63 7.01 79.13 21.48

100 12.51 7.78 34.42 19.06 21.45 6.76 82.41 22.19

Table 1: Convergence time (seconds) of learning algorithms on
MDPs ma=5 and ms = 10 with various layer numbers

visit it at least once in t trials. (In particular, when ε = 10−6,
t = 10, 000, p = 0.99.)

PROOF. From the definition of I∗(s), the probability that state s
is not visited by a trial is 1− I∗(s). Given t independent trials, the
probability that s is not visited in any of them is (1 − I∗(s))t, so
the probability of s being visited at least once is 1− (1− I∗(s))t.
By hypothesis, I∗(s) ≥ ε, so with probability p = 1− (1− ε)t, s
should be visited at least once in t trials.

We used x = 10, 000 in our experiments. When we called
Kosaraju’s algorithm, states that were not visited in those x trials
were ignored. Theoretically, we know from the above theorems that
they have very small probabilities of making any real difference to
the ultimate V ∗(s).

We tested Q-learning (QL), Topological Q-learning (TQL), RMax,
and Topological RMax (TRMax). Each algorithm was implemented
in C, and executed on the same Intel Pentium 4 1.50GHz processor
with 512M main memory and a cache of 256kB.

domain |S| QL TQL RMax TRMax
RMDP 1000 3.67 4.09 50.05 50.07

racetrack 1849 3.68 3.14 162.39 109.72
RMDP 2000 17.60 17.07 236.89 140.61
RMDP 4000 13.01 12.85 1043.83 576.53

racetrack 5566 24.90 23.82 976.84 279.65
RMDP 10000 43.55 37.83 - 3566.59

racetrack 21371 139.42 160.84 - -
racetrack 50077 1443.17 1311.60 - -

Table 2: Convergence time (seconds) of four algorithms on sin-
gle connected component domains

We first used “layered" MDP domains,3 [4], and larger problems
for QL and TQL, which are usually faster than RMax and TRMax.
Each layered MDP configuration is a four-tuple 〈|S|, ma, ms, nl〉,
where |S| is the size of the MDP, ma the maximum number of ac-
tions of each state, ms the maximum number of successors of a
state-action pair, nl the number of layers. We fixed |S|, ma=10,
ms=5, and varied nl. For each configuration, we ran 20 MDPs,
and averaged their statistics. For each problem, we measured the
convergence time, the time taken to get an optimal policy, and the
deviation of the calculated policy, the difference between the values
V ∗(s0) computed by RL algorithms and by value iteration. Con-
vergence times are listed in Table 1. All the deviations in our ex-
periments were O(10−2), so were not listed. Looking at the table,
we first notice that our topological learning algorithms converged
faster than their basic algorithms. Comparing the left and right ta-
ble, we also find that TRMax achieved a bigger speedup ratio over
RMax compared to TQL over QL. This shows that model-based
3The “layered" MDPs are nonrepresentational MDPs with multiple
SCCs.

learning benefited more from the graphical structure learning. An-
other interesting phenomenon is that as the number of layers in-
creased, the running time of all the learning algorithms decreased.
This is the opposite to the performance curve of dynamic program-
ming approaches reported in [4].

Using TQL, we solved an MDP with 20,000 states and 100 lay-
ers within 1 minute, instead of more than 3 minutes by QL. We also
solved an MDP with 4,000 states and 50 layers by TRMax within
2 minutes rather than over 6 minutes using RMax. The constant
factor speedup shows that topological RL indeed widens the appli-
cability of RL.

Topological value iteration reduces to value iteration when an
MDP is strongly connected. We want to investigate if this is also
the case for our topological learning algorithms. In this set of ex-
periments, we used strongly-connected MDP problems. In Table 2,
we listed the convergence times of algorithms on eight such prob-
lems. Random MDP was abbreviated as RMDP. The cut-off time
was set at 90 minutes.

The convergence times of TQL were sometimes slower than QL.
In those few cases, however, the termination time increased by at
most 15%. Interestingly, TQL ran slightly faster than QL on three
random MDP problems and two racetrack problems. This phe-
nomenon is more distinct in the comparison between TRMax and
RMax.

For the biggest racetrack problem we tested that RMax and TR-
Max can solve, TRMax was more than twice as fast as RMax,
and consistently faster than RMax except for the smallest problem.
This is counter-intuitive, since TRMax behaves like RMax except
that it uses additional computation by calling Kosaraju’s algorithm.
The reason for these results follow. First, the solution graph of an
MDP, containing the set of states and transitions that can be reached
from s0 using the optimal policy, has many fewer edges than G, so
may contain multiple connected components. For our problems,
the number of SCCs in the solution graph of two smaller racetrack
problems are 546 and 1751 respectively. Similar observations were
reported in the evaluation of policies for partially observable MDPs
[5] (on page 117). In problems where a few actions are obviously
better than others, the learning algorithm verifies their optimality
quickly. The following trials continue to take these actions. Thus,
some suboptimal action transitions might never be traversed. Our
reachability graph, GR, is built on the edges visited in the trials,
so it skips unvisited suboptimal action transitions. Basically, back-
ing up a state s is meaningful only when the backup is driven by
a value change of the descendants of s (the set of states reachable
from s) in the solution graph, because such a change might poten-
tially change the value of V ∗(s0). Since GR skips a lot of edges
that are not in the solution graph, most of the backups skipped by
TRMax and not by RMax are necessary. So TRMax runs faster
than RMax on strongly-connected MDPs.

6. RELATED WORK
The idea of performing value iteration on connected components

in their topological order is not new. Our main contribution is to
extend its applicability to the learning setting. The procedure de-
scribed above is roughly outlined (on page 75) in the paper by [2].
It is streamlined and fully developed into the TVI algorithm and
analyzed in full by [4].

In Prioritized Sweeping [8], states are prioritized according to
their absolute Bellman error and backed up in priority order. Con-
sider an MDP with connected components C1, C2, and C3, con-
nected in a chain, and states s1, s2, and s3 in those components, re-
spectively. Suppose that for actions a, a′, and a′′, Ta(s3|s1) > 0,
Ta′(s3|s2) > 0, and Ta′′(s2|s1) > 0. Suppose that the priority

of backing up s1 is always higher than the priority of s2. When s3

is backed up, s1’s value will be recomputed, and then s2’s value,
which change s1’s. The situation is more complex when more com-
ponents proceeds C1. In TVI, the value for state s3 is computed
exactly (or closely approximated) before it is used to compute the
values of s2 and s1, so it saves a lot of premature backups on s2

and s1. Wingate and Seppi [15] extended the notion of Prioritized
Sweeping to General Prioritized Solvers. They consider a variety of
prioritization schemes, and introduce the notion of partition. They
do not, however, mention partitions via SCCs. They discuss topo-
logical order on vertices in a cyclic graph, and focus on approximat-
ing a topological order. Within a connected component, it might be
possible to use one of their priority metrics to improve TVI.

7. CONCLUSION
We propose a practical method to speed up RL approaches for

MDPs. By learning successor-predecessor information of MDP
models during learning trials, we are able to construct a reacha-
bility graph that restores the dominating graphical structures of the
original MDP. Using the topological order of SCCs in this reach-
ability graph can help us either initiate useful future trials (model-
free learning), or perform backups wisely (model-based learning).
On all the problems tested, TQL and TRMax consistently outper-
formed their nontopological counterparts by a constant factor. We
proved that it is safe to only consider the reachability graph instead
of the original MDP as long as our initial learning is sufficient.
Therefore, the scope of the problems solvable by these algorithms
has been enlarged.

8. REFERENCES
[1] R. Bellman. Dynamic Programming. Princeton University Press,

Princeton, NJ, 1957.
[2] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning:

Structural assumptions and computational leverage. J. of Artificial
Intelligence Research, 11:1–94, 1999.

[3] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial
time algorithm for near-optimal reinforcement learning. J. of
Machine Learning Research, 3:213–231, 2002.

[4] P. Dai and J. Goldsmith. Topological value iteration algorithm for
Markov decision processes. In Proc. IJCAI-07, pages 1860–1865,
2007.

[5] E. Hansen. Finite Memory Control of Partially Observable Systems.
PhD thesis, University of Massachusetts, Amherst, 1998.

[6] S. M. Kakade. On the sample complexity of reinforcement learning.
PhD thesis, Gatsby Computational Neuroscience Unit, University
College London, 2003.

[7] M. Kearns and S. Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[8] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time. Machine Learning,
13:103–130, 1993.

[9] R. Munos and A. Moore. Influence and variance of a Markov chain :
Application to adaptive discretization in optimal control. In Proc. of
IEEE Conference on Decision and Control, 1999.

[10] D. J. Pearce and P. H. Kelly. A dynamic topological sort algorithm
for directed acyclic graphs. ACM J. of Experimental Algorithmics,
11:1.7, 2007.

[11] A. L. Strehl and M. L. Littman. A theoretical analysis of model-based
interval estimation. In Proc. of ICML-05, pages 856–863, 2005.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

[13] C. J. Watkins. Learning from Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, UK, 1989.

[14] C. J. Watkins and P. Dayan. Q-Learning. Machine Learning,
8(3-):279–292, 1992.

[15] D. Wingate and K. D. Seppi. Prioritization methods for accelerating
MDP solvers. J. of Machine Learning Research, 6:851–881, 2005.

