
Supervision and Diagnosis of Joint Actions
in Multi-Agent Plans

(Short Paper)

Roberto Micalizio Pietro Torasso
Università di Torino, Dipartimento di Informatica

corso Svizzera 185
Torino, Italy

{micalizio,torasso}@di.unito.it

ABSTRACT
The paper formalizes a distributed approach to the problem of su-
pervising the execution of a multi-agent plan where (possibly joint)
actions are executed concurrently by a team of cooperating agents
in a partially observable environment. The notions of plan and
agent diagnosis are introduced and discussed.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

Keywords
Multi-Agent Planning, Plan execution monitoring, Plan diagnosis

1. INTRODUCTION
Thanks to the recent technological advances many complex tasks

can now be solved in a distributed way by means of a Multi-Agent
System (MAS). The basic idea consists in decomposing a complex
goal into sub-goals, each of which is assigned to an agent (either
software or robotic) of a team: the agents of the team cooperate
to reach a common global goal. However, as pointed out in [3],a
MAS represents an effective solution in distributed problem solv-
ing only when the interactions involve just few agents and when the
agents do not have to interact heavily.
In order to avoid (or at least to limit) the occurrence of harmful
interactions while the agents accomplish their tasks, the agents’
activities can be organized in a multi-agent plan (MAP). While a
number of approaches to the synthesis of MAPs have been pro-
posed (see e.g., [2, 5]), the synthesis of a MAP is just the first step
as the actual execution of a plan may be threatened [1] by the oc-
currence of unexpected events (e.g., faults in the functionalities of
the agents); therefore the execution of the MAP needs to be super-
vised to detect anomalous situations and to recover from them.
Some Model-Based solutions for supervising (monitoring and di-
agnosing) the execution of a MAP have been recently proposed
(see e.g., [10, 6, 7, 8]). These approaches, however, are unable
to deal withjoint actions (i.e., actions which require the coopera-
tion of more agents to achieve a goal that a single agent couldnot
achieve). In many real cases, joint actions play a relevant role for
accomplishing a given task; see for example the construction task
scenario addressed in [9] where a number of robots cooperatefor
assembling habitats on the surface of Mars (or Moon).
Cite as: Supervision and Diagnosis of Joint Actions in Multi-Agent Plans.
(Short Paper), R. Micalizio and P. Torasso,Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.
1375-1378.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Dealing with joint actions presents a number of issues: firstof all,
the agents need to synchronize themselves before starting the exe-
cution of a joint action. Moreover, the presence of joint actions in-
troduce further dependencies among the agents: a flaw in an agent
could affect other agents which are cooperating with it during the
execution of a joint action. This means that novel methodologies
for the supervision and the recovery of a MAP must be devised.
In this paper we propose a framework for the supervision of the
execution of a MAP: such a framework is sufficiently general to
deal with both simple actions executed by a single agent and joint
actions involving a number of cooperating agents. In particular, the
paper focuses on the problems of detecting as soon as possible the
occurrence of anomalies in the execution of a MAP (e.g., action
failures) and of diagnosing these anomalies, i.e., providing a set
of possible explanations for these failures. Particular attention is
devoted to the diagnostic task, which has to highlight not only the
possible explanations for the detected failures but even how these
failures threaten the execution of the given MAP.

The paper is organized as follows: section 2 introduces the model
of a multi-agent plan (MAP), while section 3 addresses the main is-
sues related to the distributed execution of a MAP. In sections 4 and
5 we address the problems of monitoring and diagnosing the execu-
tion of the MAP in a distributed way; finally in section 6 we make
some concluding remarks.

2. MODELING THE MULTI-AGENT PLAN.
In this paper we focus on a specific class of MAS where the

agents in a teamT work together to achieve a common goalG.
Since agents cooperate by exchanging services or by executing
joint actions, there exist causal dependencies among the activities
they perform. In order to model the MAS in a way which high-
lights both the agents activities and the causal dependencies exist-
ing among them, we adopt the notion of Multi-Agent Plan (MAP).
Global plan. The notion of MAP has been formalized by Cox et
al. in [4]. Briefly, given a teamT of agents, the MAP is the tuple
〈A, E, CL, CC, NC〉 such that:A is the set of the action instances
the agents have to execute; each actiona is assigned to a specific
agenti of the teamT and it is modeled in terms of preconditions
and direct effects;E is a set of precedence links between actions;
CL is a set of causal links of the forml : a

q
→ a′; the link l states

that the actiona provides the actiona′ with the serviceq, where
q is an atom occurring in the preconditions ofa′; finally, CC and
NC are respectively theconcurrency and non-concurrency sym-
metric relations over the action instances inA; in particular, the
pair〈a, a′〉 in CC models a joint action whereas constraints inNC

prevent the conflicts for accessing the resources; this is equivalent
to theconcurrency requirement introduced in [10].

6
Move(A1,T)

NC NC NC NC

at(A2,T)

at(A2,T) at(A2,S)

at(A2,S)

loaded(A2,B1) unloaded(A2) loaded(A2,B2)

at(A2,T)
CC CC CC

loaded(A2,B1)

at(A3,T)

at(A3,T)

1
LoadS(A1,B4)

at(A1,T) at(A1,S)

loaded(A1,B4) unloaded(A1) loaded(A1,B3)
at(A1,T)

at(A1,S)

at(B4,S)

at(B1,S)

at(B1,S)

at(B2,S)

at(B1,T)

at(B1,T)

at(B4,T)

on(B3,B1)

on(B2,B1)

B1 B4

B2 B3

Goal State

2
Move(A1,T)

3
UnloadS(A1,B4)

4
Move(A1,S)

5
LoadS(A1,B3)

7
POnS(A1,B3,B1)

8
LoadL(A2,B1)

12
LoadS(A2,B2)

9
Move(A2,T)

10
UnloadL(A2,B1)

11
Move(A2,S)

14
POnS(A2,B2,B1)

13
Move(A2,T)

18
Move(A3,S)

15
LoadL(A3,B1)

16
Move(A3,T)

17
UnloadL(A3,B1)

a0
a∞

Figure 1: The MAP P to be supervised.

3. DISTRIBUTED PLAN EXECUTION
During the distributed execution of the MAP the agents need to

coordinate their activities to prevent the violation of theconstraints
defined during the planning phase. We adopt a distributed super-
vision approach (similar to the one discussed in [10, 7]) where a
MAP P is decomposed in a number of sub-plansPi and each sub-
planPi is assigned to the agenti of the team; each agent performs
a local control loop on the progress of the actions it has to execute
and communicate with other agents when required.
Local Plans. The decomposition can be easily done by selecting
from P all the actions an agenti has to execute. Formally, the sub-
plan for agenti is the tuplePi=〈 Ai, Ei, CLi, CCi,, NCi T in

i ,

T out
i 〉 where:Ai, Ei, CLi, CCi andNCi are the same as inP re-

stricted to the actions the agenti has to execute; whileT in
i (T out

i)
is a set of incoming (outgoing) causal linksa

q
→ a′ wherea′ (a)

belongs toAi anda (a′) is assigned to another agentj in the team.
Coordination during plan execution. As concerns the plan exe-
cution, the time is assumed to be a discrete sequence of instants.
Actions are not scheduled in a rigid timetable as we assume that
an action is executed as soon as its preconditions are satisfied. Al-
though actions are modeled in terms of preconditions and effects,
their execution may require more than one instant.
When an action is completed at timet, the agenti receives a set
of observationsobsi

t relevant for the status of agenti itself. Al-
though in general the observationsobsi

t are not sufficient for pre-
cisely inferring the status of agenti, we assume that they are suf-
ficient to evaluate the outcome (succeeded or failure) of the last
action the agenti has executed. Coordination among agents can be
achieved in an efficient way by exploiting the causal links and the
concurrency or non-concurrency constraints defined in the MAP
and maintained by each agent in the definition of its own sub-plan.
In the nominal plan execution, coordination is required in three
cases. First, when an agenti has to provide a serviceq to another
agentj, i has to informj when the serviceq has been provided.
Technically, the information about the service provided byan agent
to another one is encoded in the causal linkl in the MAPP .
Coordination is also needed during the execution of a joint action
as it involves the synchronization of two (or more) agents; the set of
concurrency constraintsCC defined in the MAPP denotes which
agents need to cooperate (and when). Finally, explicit coordina-
tion is required for executing actions bounded by non-concurrency
constraints: in this case coordination is ruled by the set ofnon-
concurrency constraintsNC in P and prevents the simultaneous
execution of the constrained actions.

Coordination among agents is also needed in case of an action
failure; in fact an agent must notify other agents when a service
will not be provided as a consequence of a failure.

Running Example. For illustrative purpose we will use a simple
example from the blocks world. Let us consider three agentsA1,
A2 andA3, that cooperate to move the blockB1, B2, B3 andB4
in the target locationT whereB2 andB3 have to be put on the top
of B1. Initially the four blocks are in the source locationS. We dis-
tinguish betweensmall and large blocks. In its nominal behavior
an agent can handle one small block, whereas for handling a large
block two agents have to join their efforts.
The operations within the source and target locations are constrained
as, at each time instant, only one block can be loaded/unloaded in
the same location; we assume that the given MAPP does not vio-
late such a constraint.

Figure 1 shows a possible instance of a MAP which achieves
the target configuration of blocks. The agentsA2 andA3 cooper-
ate for loading the large blockB1 (actionsLoadL(A2,B1) and
LoadL(A3,B1)), moving it to the target positionT (actions
Move(A2,T) andMove(A3,T)) and position the block inT (ac-
tions UnloadL(A2,B1) andUnloadL(A2,B1)). The agent
A2 has also the task of moving the small blockB2 and putting it
on the top ofB1 (actionPOnS(A2,B2,B1)). The task assigned
to A1 involves the transfer of small blocksB4 andB3.
The plan is a DAG whose nodes correspond to actions and edges
can be precedence links (dashed), causal links (solid) or concur-
rency and non-concurrency constraints (solid bidirectional edges
labeled withCC andNC respectively). It is easy to see that agents
A2 andA3 execute some joint actions (e.g.,〈8, 15〉) to move the
large blockB1 in its final position. Causal links are labeled with
the services an action provides to another one: for example,the
causal link from action1 to action3 is labeled with the service
loaded(A1,B1). The dashed rectangles specify which actions
are included in the sub-plans assigned to the three agents.

4. MONITORING THE MAP EXECUTION
The supervision task, that each agenti performs over the ex-

ecution of actionai
t it is responsible for, provides two important

services:
1) infers the agent belief stateBi

t+1 after the execution ofai
t;

2) assesses of the outcome of the executed actionai
t.

Agent status.Intuitively, the agent status can be expressed as a set
VARi of the variables concerning both the status of the agent and
the status of the system resourcesRES . A critical role is played by
the subsetHEALTH i of VARi which denotes the set of variables
concerning the health status ofi’s functionalities: for each agent
functionalityf , a variablevf ∈ HEALTH i represents the health
status off ; the domain of variablevf is the set{ok, ab1, . . . , abn}
whereok denotes the nominal mode whileab1, . . . , abn denote non
nominal modes.
Agent belief state. since the system is just partially observable,

the agenti observes just a subset of its status variables; in partic-
ular, the the variables inHEALTH i are not directly observable
and their actual value can be just inferred. Thus, the setobsi

t of
observations conveys information about a subset of variables in
VARi \ HEALTH i; and in most cases the agenti can determine
just a set of alternative states which are consistent withobsi

t; in lit-
erature this set is known asbelief state and will be denoted asBi

t.
Action models. As discussed in [5], the model∆(ai

t) of a simple
action ai

t (assigned to agenti at timet) is characterized by three
parts: a setvar(ai) ⊆ VARi of state variables, a setpre(ai) of
preconditions and a seteff(ai) of effects, where both preconditions
and effects are constraints defined over the setvar(ai). Since an
action may have non deterministic effects, the action model∆(ai

t)
can be seen as transition relation where each tupled ∈ ∆(ai

t) mod-
els a possible change in the status of agenti, which may occur while
i is executingai

t. Each tupled has the formd = 〈st, st+1〉 where
st andst+1 represent two agent states at timet andt + 1 respec-
tively; each state is an assignment of values to the status variables
in var(ai) (the variables inVARi\ var(ai) are assumed to be con-
stant).
Given the actionai, healthVar(ai)=HEALTH i∩var(ai) denotes
the set of health status variables, i.e. functionalities, which directly
affect the outcome of actionai. Thehealthy formula for ai is de-
fined on this set of variables and denotes under what conditions the
action behaves nominally and all the expected effects are reached.
Formally the set of nominal effects ofai is:
nominalEff(ai)={q ∈ eff(ai) | pre(ai)∪ healthy(ai) ` q}.
On the contrary, when the healthy formula does not hold, the behav-
ior of the action may be non deterministic and some of the expected
effects may be missing.
Joint actions. The notion of simple action can be extended to cover
the notion of joint action: in fact, as discussed in [5], a joint action
can be seen as the simultaneous execution of a subset of simple
actions. In this paper we consider a stronger notion of jointac-
tion: two simple actionsai andaj are part of a joint actionai,j not
only because they are executed at the same time, but also because
they actively cooperate to reach an effect. This stronger notion of
joint action can be captured by exploiting the notion ofdependency
set introduced in [7]. Intuitively, a dependency set highlights the
subset of agents among which a strict cooperation is required in a
specific time instant.
The notion of dependency set is sufficiently general to coverboth
simple and joint actions. In fact, when an agenti executes a simple
actionai

t, the agenti is the only member of its dependency setI(t);
on the other hand, when agenti executes a joint actionai,j

t , the de-
pendency setI(t) associated withi at timet contains both agenti
and agentj. Therefore the notationaI(t)

t can denote either a simple
or a joint action according to the number of agents involved in the
dependency setI(t).
The state estimation process.Let a

I(t)
t denote the (joint) action

executed by the agent(s) in the dependency setI(t) (for the sake
of readability we will writeaI

t whenever the time of the depen-
dency set is obvious from the context); the process for estimating
the (joint) belief state after the execution of an actionaI

t can be
formalized in terms of Relational Algebra operators (see [7] for
details). In particular, given agenti and its dependency setI(t)
at timet, let BI

t be the joint belief state of agenti, let ∆(aI
t) the

model of the (joint) action which the agenti has to execute at time
t, the joint belief state at timet + 1 is:
BI

t+1 = PROJECTION
VARI

t+1
(SELECTIONobsI

t+1
(BI

t JOIN∆(aI
t))).

The join operationBI
t JOIN∆(aI

t) represents the prediction step as
it estimates the set of possible states of the agents inI at timet+1.

However, the set of predictions resulting from the join operation is
in general spurious as it predicts all possible evolutions:we have
to take into consideration the observations received by each agent
i ∈ I at timet+1 to restrict the set of possible states. The selection
operation SELECTIONobsI

t+1
has the effect of pruning off all those

predictions which are inconsistent with the agent observations; in-
tuitively, obsI

t+1 =
⋃

i∈I
obsi

t+1. Finally, the belief state at time
t + 1 is obtained by projecting the resulting estimates over the sta-
tus variables of the agents at timet+1 i.e., over the set of variables
VARI

t+1.

5. DIAGNOSING A MAP
Action outcome. The outcome of actionaI

t is eithersucceeded
or failed; in particular, actionaI

t is considered succeeded when all
its nominal effectsnominalEff(aI

t) have been achieved after its ex-
ecution. WhenaI

t is a joint action, the agents inI share a jointed
belief stateBI

t resulting from the conjunction of the belief states
of the agents inI(t). In order to be conservative, we consider ac-
tion aI

t successfully completed only when the nominal effects ofaI
t

hold in every possible state inBI
t . Of course, when we can not as-

sert that actionaI
t is succeeded we assume that the action is failed.

Agent diagnosis. Whenever the outcome ofaI
t is failed, a diag-

nostic process is activated in order to infer a set of possible expla-
nations for such a failure; i.e. which combinations of faults in the
agents inI may be the cause of the failure of actionaI

t .
In the relational framework we propose, given the failure ofaction
aI

t , the agent diagnosisDI
t can be determined simply by projecting

the joint belief state over the health status variables, formally:
DI

t = PROJECTIONhealthVar(aI
t
)(B

i
t).

Each tupled ∈ DI
t is an assignment of values to the variables in

healthVar(aI
t), moreover, every assignmentd is consistent with the

observationsobsI
t ; hence, every tupled is a possible explanation

for the failure of actionaI
t .

It is worth noting that, as a consequence of the partial observabil-
ity, the agent diagnosis is in general ambiguous (i.e., it maintains a
number of alternative explanations).
Plan diagnosis.While the agent diagnosis singles out the not nom-
inal health status of the agents, the plan diagnosis aims at discover-
ing which other actions in the plan could be indirectly affected by
the failure of actionaI

t . Two different kinds of threats have to be
considered: thecausal threats andfault threats.
Fault threats. For the sake of simplicity in the discussion let’s con-
sider first fault threats. The agent diagnosisDI

t allows one to de-
termine which actions may be threatened by the not nominal health
status of the agents inI . Intuitively, given an agenti ∈ I , the ac-
tion ai ∈ Ai is threatened by the agent diagnosisDI

t when:
- the actionai has still to be execute (i.e.,ai

t ≺ ai) and
- the action requires at least one functionalityf which is assumed
to be faulty inDI

t .
More formally, the actionai is threatened by the diagnosisDI

t

when the healthy formulahealthy(ai) is inconsistent withDI
t . In

the following we will denote asfThreatenedActs(aI
t , i) the set of

actions agenti has still to execute and which are threatened by the
agent diagnosis.
Causal threats. The actions threatened through causal links can be
determined by considering both the failed actionaI

t and the set of
actions threatened by the agent diagnosis. Intuitively, anactiona

is threatened through a causal linksl : a′ q
→ a when it is no longer

guaranteed that the actiona′ provides the serviceq; this may hap-
pen either becausea′ is failed or becausea′ is in turn threatened.
In the following we denote ascThreatenedActs (aI

t) the set of ac-
tions threatened by a causal links; this set can be determined just by
propagating the failure through the existing causal links.It is worth

noting that, while the actions threatened by the agent diagnosis be-
long to same agenti, the actions threatened through causal links
may have been assigned for execution to any other agent; i.e., the
causal threats may have a much wider impact than the fault threats.
The plan diagnosis can be therefore represented as the unionof the
two sets of threatened actions:
thrActs(aI

t) = fThreatenedActs (aI
t) ∪ cThreatenedActs (aI

t).
Namely, the plan diagnosis consists of all the actions whichare
threatened by the failure of actionaI

t .
Missing goals. A missing goal is a service agenti is responsible
for, which can not be provided as a consequence of the failureof
actionaI

t (wherei belongs to the dependency setI). In principle,
it would be sufficient to provide all the missing goals in order to
reach the MAP’s goal despite the occurrence of the action failure.
To formally characterize the concept of missing goal we introduce
the notion ofprimary effect as the nominal effectq of an actiona
(q ∈ nominalEff(a)) such that eitherq is a an atom which appears
in the global goalG or q is a service that an agent provides to an-
other one. In general, given an actiona, primary(a) denotes the
(possibly empty) set of primary effects provided bya.
Given the plan diagnosisthrActs(aI

t), thrActs(aI
t , i) denotes the

subset of threatened actions in the plan assigned to agenti; formally
thrActs(aI

t , i)={actionsa ∈ thrActs(aI
t)|a ∈ Ai}. The set of

missing goals for agenti is the set of goals that agenti can no
longer achieve:
missingGoals(i)=

⋃
a∈thrActs(aI

t
,i) primary(a). The notion of

missing goals can be easily extended to all agents in the depen-
dency setI : missingGoals(I)=

⋃
i∈I

missingGoals(i).
Running Example. To make clear the diagnostic process let’s
reconsider the previous example and assume that the joint action
〈9, 16〉 (executed by agentsA2 andA3) fails. In particular,〈9, 16〉
requires that both agentA2 and agentA3 execute amove action
from the source locationS to the target locationT. Since the avail-
able observations after the action execution provide the information
that the two agents have not reached the target locationT, the agents
infer that the outcome of joint action is failed because the nominal
effects have not been achieved. For explaining this action failure
the agent diagnosisDA2,A3 is inferred and in particular it includes
the following alternative explanations:

power(A2) mobility(A2) power(A3) mobility(A3)
1 reduced ok full ok
2 full ok reduced ok

It follows that every action assigned to agentA2 (A3) which re-
quires powerfull is threatened by the agent diagnosis. Let us as-
sume that, apart from other functionalities, only the jointactions
require that the power is full to be successfully completed (in other
words, power full is a conjunct of the healthy formula). There-
fore the setfThreatenedActs(〈9, 16〉) includes the joint action
〈10, 17〉. Hence the set of actions threatened through the causal
links is cThreatenedActs (〈9, 16〉)= {7,10,11,12,13,14,17,18},
involving the actions of agentA1 too.
However, in order to determine the missing goals we have to con-
sider the primary effects of the actions, assigned either toA2 or to
A3, which are threatened by the failure. In this example, the actions
which satisfy these conditions are actions〈10, 17〉 and14. Thus,
the set of missing goals includes the effects of these two actions:
at(B1,T) andon(B2,B1).
Implementation and preliminary results We have implemented
this approach by extending the implementation discussed in[7] in
order to handle joint actions. The relations representing both the
belief states and the action models have been encoded by means
the Ordered Binary Decision Diagrams (OBDDs) and the relational
operations have been mapped into standard operations on OBDDs.

A prototype has been implemented in Java JDK 1.5 and exploits
the JavaBDD1 package for symbolically encoding and manipulat-
ing OBDDs. The robotic agents are simulated in a software envi-
ronment and are implemented as threads running on the same PC2.
The preliminary results collected so far are encouraging; in fact, at
each time instant, the plan supervision (monitoring, agentdiagno-
sis and failure propagation) performed by each agent requires on
average 5 msec. and the maximum absolute CPU time is 30 msec.

6. DISCUSSION AND CONCLUSIONS.
In this paper we have pointed out the interplay between plan and

agent diagnosis in estimating the impact of an action failure: in par-
ticular, for singling out what sub-goals are no more guaranteed to
be achieved by the current MAP after the occurrence of an action
failure. The set ofmissingGoals is the starting point of any strat-
egy aimed at recovering the execution of the MAP as it represents
the set of services that need to be provided in an alternativeway
(typically a replanning step is needed). The proposed framework is
sufficiently general for monitoring and diagnosing the execution of
joint actions, which require tight cooperation among the agents not
only during the execution but also during the supervision process.

Recently, Roos et al. [10] have proposed a distributed approach
to the diagnosis of a MAP, which is relevant as it introduces the
notion of plan diagnosis. Our framework extends the approach by
Roos et al. since the non deterministic effects of failures are explic-
itly represented. As a consequence we can complement the plan
diagnosis with the notion of agent diagnosis.

The preliminary experimental results are encouraging and pave
the way for testing the approach in more challenging domainssuch
as the air traffic control domain and the space exploration scenario.

7. REFERENCES
[1] L. Birnbaum, G. Collins, M. Freed, and B. Krulwich.

Model-based diagnosis of planning failures. InProc.
AAAI90, pages 318–323, 1990.

[2] C. Boutilier and R. I. Brafman. Partial-order planning with
concurrent interacting actions.JAIR, 14:105–136, 2001.

[3] N. Carver and V. Lesser. Domain monotonicity and the
performance of local solutions strategies for cdps-based
distributed sensor interpretation and distributed diagnosis.
Journal of AAMAS, 6:35–76, 2003.

[4] J. S. Cox, E. H. Durfee, and T. Bartold. A distributed
framework for solving the multiagent plan coordination
problem. InProc. AAMAS05, pages 821–827, 2005.

[5] R. M. Jensen and M. M. Veloso. Obdd-based universal
planning for synchronized agents in non-deterministic
domains.JAIR, 13:189–226, 2000.

[6] M. Kalech and G. Kaminka. Diagnosing a team of agents:
Scaling up. InProc. AAMAS05, pages 249–255, 2005.

[7] R. Micalizio and P. Torasso. On-line monitoring of plan
execution: A distributed approach.Knowledge-Based
Systems, 20(2):134–142, 2007.

[8] R. Micalizio, P. Torasso, and G. Torta. On-line monitoring
and diagnosis of a team of service robots: a model-based
approach.AI Communications, 19(4):313–349, 2006.

[9] B. Sellner and R. Simmons. Towards proactive replanning
for multi-robot teams. InProc. Int. Work. PS in Space, 2006.

[10] C. Wittenven, N. Roos, R. van der Krogt, and M. de Weerdt.
Diagnosis of single and multi-agent plans. InProc.
AAMAS05, pages 805–812, 2005.

1http://sourceforge.net/projects/javabdd
2Intel Pentium 1.86 GHz, RAM 1 GB, Windows XP OS.

