
Petri Net Plans

A Formal Model for Representation and Execution of Multi-Robot Plans

V. A. Ziparo1, L. Iocchi1, D. Nardi1, P.F. Palamara1, H. Costelha2
∗

1Dipartimento di Informatica e Sistemistica
Via Ariosto 25, I-00185

Rome, Italy
{ziparo,iocchi,nardi}@dis.uniroma1.it

2Institute for Systems and Robotics, IST, Lisboa
Polytech. Inst. of Leiria, ESTG, Leiria

Portugal
hcostelha@isr.ist.utl.pt

ABSTRACT
The aim of this paper is to describe a novel representation frame-
work for high level robot and multi-robot programming, called Petri
Net Plans (PNP), that allows for representing all the action features
that are needed for describing complex plans in dynamic environ-
ments. We provide a sound and complete execution algorithm for
PNPs based on the semantics of Petri nets. Moreover, we show that
multi-robot PNPs allow for a sound and complete distributed ex-
ecution algorithm, given that a reliable communication channel is
provided. PNPs have been used for describing effective plans for
actual robotic agents which inhabit dynamic, partially observable
and unpredictable environments, and experimented in different ap-
plication scenarios.

1. INTRODUCTION
High level programming of mobile robots is very important for

developing complex and reliable robotic applications. High level
programming is usually performed by defining plans, i.e. program
structures describing action execution control. To develop complex
applications, plans should represent many features such as sensing,
loops, concurrency, non-instantaneous actions, action failures, and
action synchronization in a multi-agent context. We can roughly
classify high-level robot programming methods as follows.

1. Hand-written behaviors directly coded in robot program. In
this case there is no explicit representation of actions and
plans. It is thus very difficult to design, write and debug
plans.

2. Hand-written behaviors using behavior oriented languages
(e.g. Xabsl [8] and Colbert [7]). These languages consist of
behavioral routines, but, although a framework for designing
plans is defined, there is no formal specification of the lan-
guage and thus it is not possible to verify properties of these
programs/behaviors.

3. Logic-based programming (e.g., ConGolog [4]). These are
declarative languages with associated reasoning capabilities.

∗The work of this author was supported by the Portuguese FCT
through grant SFRH/BD/12707/2003.
Cite as: PNP: A Formal Model for Representation and Execution of Multi-
Robot Plans, V. A. Ziparo, L. Iocchi, D. Nardi, P.F. Palamara, H. Costelha,
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May,
12-16.,2008,Estoril,Portugal,pp. 79-86.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In these frameworks behaviors are specified in a high level
programming language based on a formal system. The main
drawback of such approaches is that they are computationally
very expensive and inadequate to control very complex real
time systems.

Our approach lies between the second and the third categories.
On the one hand, as for other behavior oriented languages, we pro-
vide for an efficient framework for designing, writing, executing,
and debugging plans. On the other hand, as in logic based pro-
gramming, we clearly distinguish action specification and imple-
mentation and we provide a formal specification of our plans which
allows for implementing reasoning and verification procedures.

The aim of this paper is thus to describe a representation frame-
work for high level robot and multi-robot programming, called Petri
Net Plans (PNP)[13], that allows for representing all the action fea-
tures that are needed for describing complex plans in dynamic en-
vironments. PNPs are based on Petri nets [9], a graphical modeling
language for dynamic systems, and used for describing effective
plans for actual robotic agents which operate dynamic, partially
observable and unpredictable environments.

Petri nets (PNs) have been already used to model robotic be-
haviors, as for example [2] and [12]. The former provides an in-
teresting formal approach for modeling single-robot tasks, while
the latter uses PNs to model a multi-robot coordination algorithm,
based on an auction mechanism, to perform environment explo-
ration. However, both approaches have only been evaluated through
simulation. Our approach allows the modeling of generic multi-
robot tasks, and has been evaluated on real robots. Moreover our
approach differs from these works since PNPs are particular Petri
nets that embed some of the features of the logics of actions, while
keeping the characteristics of a dynamic computational model. More
specifically, if we consider an action theory A and a PNP formed
as a composition of actions in A that respects the semantics of the
action theory, then any execution of the PNP (i.e., a sequence of
markings corresponding to a sequence of states) from an initial
marking (state) to a goal marking (state) is a solution of a plan-
ning problem defined by the given action theory A, initial state and
goal state. This property allows for implementing interesting forms
of execution monitoring and to state correctness of PNP execution
according to an action theory.

In the remainder of the paper, after introducing basic notation
in the next section, we define in Section 3 the syntax for single-
robot PNPs in terms of operators (i.e., actions) and possible inter-
actions among them. Two types of models for non-instantaneous
actions are given: 1) ordinary non-instantaneous actions, which al-
low complex constructs for action synchronization and failure re-

79

covery; 2) sensing non-instantaneous actions, which allow for dy-
namically sensing properties at execution time and thus for knowl-
edge acquisition [11, 3]. We provide a set of operators for handling
concurrency, conditionals and iterations. In order to give a clear
operational semantics to our modeling language we provide an ex-
ecution algorithm. After defining what is a correct execution for a
plan, we prove that, if a correct execution is possible, then the algo-
rithm will achieve it. We then define multi-robot plans (Section 4)
as collections of single-robot PNPs, coordinated through synchro-
nization actions which are used to spread information and synchro-
nize actions of different robots. We show that multi-robot PNPs can
be decomposed into a set of single-agent PNPs, whose distributed
execution is equivalent to the centralized execution of the original
multi-robot PNP. Experimental tests are finally described in Section
5.

2. PETRI NETS
Petri nets [9] graphically depict the structure of a distributed sys-

tem as a directed, weighted and bipartite graph. As such, a Petri net
has two types of nodes connected by directed weighted arcs (if not
labeled we assume a weight of one). The first type is called place
(Fig. 1a) and may contain zero or more tokens (Fig. 1c). The num-
ber of tokens in each place (i.e. marking) denotes the state of the
system.

(a) (b) (c)

Figure 1: (a) A place. (b) A Transition. (c) A Place with one
token.

The other type of nodes, called transitions (Fig. 1b), represent
the events modeled by the system. Transitions can consume or pro-
duce tokens from places according to the rules defining the dynamic
behavior of the Petri net (i.e. the firing rule).

More formally, a Petri net can be defined as a tuple

PN = 〈P, T, F, W, M0〉
where:

• P = {p1, p2, . . . , pm} is a finite set of places.
• T = {t1, t2, . . . , tn} is a finite set of transitions.
• F ⊆ (P × T) ∪ (T × P) is a set of edges.
• W : F → {1, 2, 3, . . .} is a weight function and

w(ns, nd) denotes the weight of the edge from
ns to nd.

• M0 : P → {0, 1, 2, 3, . . .} is the initial marking.
• P ∪ T 6= ∅ and P ∩ T = ∅

Petri nets are used to model complex systems that can be de-
scribed in terms of states and their changes. We can define the state
changing behavior (i.e. the marking evolution) in a Petri net by the
following firing rule:

1. A transition t is enabled, if each input place pi (i.e. (pi, t) ∈
F) is marked with at least w(pi, t) tokens.

2. An enabled transition may or may not fire, depending on
whether related event occurs or not.

3. If an enabled transition t fires, w(pi, t) tokens are removed
for each input place pi and w(t, po) are added to each output
place po such that (t, po) ∈ F .

3. SINGLE-ROBOT PNPS
In this section we formally introduce a modeling language for

describing robotic behaviors based on Petri nets. The proposed
language allows for specifying plans, called Petri Net Plans (PNP),
describing complex behaviors of a mobile robot. These plans are
defined by combining different kinds of actions (ordinary actions
and sensing actions) using control structures, such as if-then-else,
while, concurrent execution and interrupts.

3.1 Syntax
A Petri Net Plan

〈P, T, F, W, M0, G〉
is a Petri net 〈P, T, F, W, M0〉 augmented with a set of goal mark-
ings G such that:

1. Places pi represent the execution phases of actions; each ac-
tion α is described by a place corresponding to its initiation
(we call it initial place of α), one corresponding to its execu-
tion (we call it execution place of α), and one corresponding
to its termination (we call it termination place of α);

2. Transitions ti represent events and are grouped in different
categories: action starting transitions, action terminating tran-
sitions, action interrupts and control transitions (i.e. transi-
tions that are part of an operator). Transitions may be labeled
with conditions that control their firing.

3. w(fi, fj) = 1, for each (fi, fj) ∈ F .

4. M0 is the initial marking representing a description of the
initial state of the robot.

5. G is the set of desired markings for the agent and is a proper
subset of the possible markings that the PNP may reach.

In the following we will focus on the structure of a PNP (i.e.
considering only the terms 〈P, T, F 〉). A Petri Net Plan is formally
defined by a set of elementary structures (i.e. no-action, ordinary
action, sensing action) and constructs for combining PNP (i.e. se-
quences, loops, concurrent execution, interrupts). The following
description of single-robot PNPs is provided in terms of the graph-
ical representation of Petri nets (see [13] for a detailed description).

3.1.1 Elementary structures
Elementary PNPs are defined as follows:

1. no-action is a PNP defined by a single place and no transi-
tions, i.e. 〈{p0}, ∅, ∅〉 (see Fig.1a), where p0 is both an initial
and a terminating place.

Figure 2: An ordinary non-instantaneous action.

2. ordinary-action, depicted in Figure 2, is a PNP defined by
3 places and 2 transitions where:

• pi, pe and po are the initial, execution and terminating
place, respectively.

• ts and te are the transitions starting and terminating the
action, respectively.

80

Figure 3: A non-instantaneous sensing action.

3. sensing-action, depicted in Figure 3, is a PNP defined by
places and transitions where transitions and places are the
same of the previous example except for:

• tet and tef are, respectively, the transitions ending the
action when the sensed property is true and when it is
false.

• pof and pof are, respectively, the places terminating the
the action when the sensed property is true and when it
is false.

3.1.2 Operators
PNPs can be combined by using the operator sequence, condi-

tional, loops, concurrent execution and interrupts.

Figure 4: Sequence of two PNPs.

The sequence operator allows to sequence in time two PNPs.
This operator allows for merging two PNPs by choosing a termi-
nating place for an action, an initial place for another action and
join the two nets making such places to be the same. A graphical
representation of this operator is given in Figure 4.

The conditional operator, depicted in Figure 5, allows for de-
scribing conditional structures that are implemented though sens-
ing actions. Given a sensing action α, three PNPs Γ1, Γ2, Γ3, the
conditional structure is obtained by sequencing Γ1 with α, and by
sequencing each outcomes of α with either Γ2 or Γ3. The structure
specifies that after executing Γ1, depending on the outcome of α,
Γ2 or Γ3 will be executed.

The loop operator, depicted in Figure 6, is used to obtain indefi-
nite iterations while a sensed condition remains true. Its implemen-
tation is similar to a conditional structure, except that one sensing
outcome is sequenced with Γ1 forming a loop. The result is a net
executing Γ1 until the sensed property becomes true.

Concurrent execution of actions is defined by the fork and join
operators. The fork operator, Figure 8(a), is obtained by generating
two tokens (representing two parallel threads of execution) from a
single token (representing a single thread of execution) through a
control transition. In a similar way we can define the join operator,
depicted in Figure 8(b), which produces one thread of execution
(i.e. token), from two distinct ones.

Finally, we introduce the interrupt operator, depicted in Figure 7,
which is a very powerfull tool for handling action failures. In fact,

�
�
�

�
�
�

ip

t s1

pe1

1
t e

po1

�
�
�
�

�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�

�
�
�

�
�
�

�
�
�

t s

p
e

te t
t e f

�
�
�
�

�
�
�

�
�
�

p
to

�
�
�
�

�
�
�
�

f
p
o

po3

3
t s

3
pe

3
t e

2
t s

2
pe

2
t e

po 2

Figure 5: Conditional structure.

Figure 6: An indefinite iteration which executes the PNP Γ1

while the sensed property is true.

Figure 7: Interrupt structure where possibly Γ1 is interrupted
and then Γ2 executed.

it can interrupt actions upon failure events and activate recovery
procedures.

Labeling transitions.
In order to specify external events occurring during task exe-

cution, we define a labeling mechanism for transitions in the net.
In particular, all transitions may be labeled with conditions which
must be verified in order to be fired when enabled. A condition φ
on the transition t is denoted with t.φ. If no condition is specified
for a transition, we will assume that it is the condition True. Some-
times it is useful to set the condition of ending transitions to False

81

Figure 8: (a) The fork structure. (b) The join structure.

to model non-terminating actions (for example, support actions run
in parallel with another main action).

3.2 Semantics
In this section we provide an operational semantics for the exe-

cution of PNPs and we present an algorithm that correctly executes
a PNP, in the sense that it correctly performs transitions reaching a
final state according with the occurrence of external events.

The state of an agent during the execution of a PNP is given by
its marking. Transitions between the agent states are thus modelled
by transitions in the PNP, i.e. by evolution of its markings.

During the execution of a plan, and thus during the transitions
we are defining, we assume that the robot is provided with a set of
functions that are able to evaluate its internal state. These functions
are used to evaluate the conditions labelling the transitions of the
PNP by querying a knowledge base KB and thus determine when
and how it is possible to perform such transitions.

We thus give the definitions for executable transitions of a PNP,
that allows for defining the notion of execution of a PNP and of
correct execution of a PNP.

Definition 3.1 Possible Transitions in a PNP. Given two markings
Mi, Mi+1, a transition from Mi to Mi+1 is possible iff ∃t ∈ T ,
such that (i) ∀p′ ∈ P , s.t. (p′, t) ∈ F , then Mi(p

′) > 0; (ii)
Mi+1(p

′) = Mi(p
′) − 1 for each p′ ∈ P , s.t. (p′, t) ∈ F ; (iii)

Mi+1(p
′′) = 1 for each p′′ ∈ P , s.t. (t, p′′) ∈ F .

A possible transition from Mi to Mi+1 is denoted by Mi →
Mi+1.

Definition 3.2 Executable transition in a PNP. Given two mark-
ings Mi, Mi+1 and a Ki at time i, a transition from Mi to Mi+1

is executable iff ∃t ∈ T , such that a transition from Mi to Mi+1

is possible and the event condition φ labelling the transition t (de-
noted with t.φ) holds in Ki (i.e. Ki |= φ).

An executable transition from Mi to Mi+1 is denoted by Mi ⇒
Mi+1.

Definition 3.3 Executable PNP. A PNP P is executable iff it exists
a finite sequence of markings {M0, ..., Mn}, such that M0 is the
initial marking, Mn is a goal marking (i.e. Mn ∈ G) and Mi →
Mi+1, for each i = 0, ..., n− 1.

Definition 3.4 Correct execution of a PNP. An executable PNP P
can be correctly executed iff there exist a finite sequence of mark-
ings {M0, ..., Mn}, such that M0 is the initial marking, Mn is a
goal marking (i.e. Mn ∈ G) and Mi ⇒ Mi+1, for each i =
0, ..., n− 1.

3.2.1 PNP Execution Algorithm

Algorithm 3.1 PNP Execution Algorithm
Domains:

A = {a1, . . . , ak}: Set of Implemented actions
Φ : Set of terms and formulas about the environment
TrType = {start, end, interrupt, standard}

Structures:

Transition : 〈a ∈ A, φ ∈ Φ, t ∈ TrType〉
Action : 〈start(), end(), interrupt()〉

Global Variables:

KnowledgeBase : KB

procedure execute(PNP 〈P, T, F, W, M0, G〉)
1: CurrentMarking = M0

2: while CurrentMarking 6∈ G do
3: for all t ∈ T do
4: if enabled(t) ∧KB |= t.φ then
5: handleTransition(t)
6: CurrentMarking = fire(t)

procedure handleTransition(t)

if t.t = start then
t.a.start()

else if t.t = end then
t.a.end()

else if t.t = interrupt then
t.a.interrupt()

In the following, we present an algorithm which correctly ex-
ecutes a PNP. Algorithm 3.1 assumes the availability of a set of
implemented actions A = {a1, . . . , ak}. Each action considered
here is an abstraction for the implementation of a specific behavior
that the robots can execute: we assume the action can be accessed
by the three functions start, end and interrupt, that, respectively,
start, terminate and suspend the execution of such a behavior. We
also assume that actual behavior execution will be performed in
a separate thread with respect to the execution of Algorithm 3.11.
This means that after an action is started, it will remain active until
either end or interrupt will be invoked.

Moreover, since we can not assume that the agent has complete
knowledge about all the properties of the environment at each point
in time, the evolution of the plan must be controlled according to
the robot actual knowledge about the environment (i.e., according
to its epistemic state of knowledge). Therefore, we assume that
the robot maintains a knowledge base KB containing information
1Obviously, this can be easily extended to non-threaded cases.

82

about the environment. This knowledge base can be implemented
in any form with any formalism: for example, on heterogeneous
cognitive robots normally epistemic knowledge is represented both
at an operational level (as data structures) and at a deliberative
level (as predicates). Pairwise, queries over the environment Φ can
be represented as terms or formulas in any formalism consistent
with the knowledge base. For the purposes of our plan execution
method, we only require that the agent is able to evaluate queries
over the current model of the world, i.e., to calculate KB |= t.φ.

The procedure execute takes as input a PNP 〈P, T, F, W, M0, G〉
and evolves it producing the control commands for the basic behav-
iors (which are associated to the firing of transitions). This process
generates a sequence of transitions {M0, ..., Mn} that evolve the
system from the initial marking M0 to a goal marking Mn ∈ G.

In particular, at each step, Algorithm 3.1 checks (line 4) if each
transition t ∈ T is enabled (enabled(t)) and if the related event
occurs. In our setting, an event occurs if the formula φ guarding
t is satisfied given the current knowledge KB (i.e. KB |= t.φ).
If these two conditions are satisfied the transition t is fired (line 6)
and the relative procedures for action control are handled within
the sub-procedure handleTransition (line 5) that takes care of
appropriately activating, interrupting or deactivating the related ac-
tion. The details of how this is done depend on the actual imple-
mentation of the system.

The algorithm correctly executes a PNP as shown by the follow-
ing theorem.

Theorem 3.1 [13] If a PNP can be correctly executed, then Algo-
rithm 3.1 computes a sequence of transitions {M0, ..., Mn}, such
that M0 is the initial marking, Mn is a goal marking, and Mi ⇒
Mi+1, for each i = 0, . . . , n− 1.

4. MULTI-ROBOT PNPS
The design of multi-robot plans has been considered either as

plan sharing (or centralized planning), where the objective is to
distribute a global plan to agents executing them, or as plan merg-
ing, where individual plans are merged into a multiagent plan (see [5]
for details). In our work we followed the centralized planning ap-
proach that has been easily implemented in our formalism as de-
scribed in this section. In particular, we show how to represent a
multi-robot PNP which can be produced in a centralized manner
and we provide a distributed execution model for it by implement-
ing the centralized planning for distributed plans approach [5]. The
distributed execution model allows to execute a set of single-robot
PNPs, derived from the multi-robot PNP, without the need of a cen-
tral coordinator agent. The correctness of the distributed execution
with respect to the multi-robot PNP is enforced using the commu-
nication primitives send(id), receive(id) and sync(id,id’), where id
and id’ are unique identifiers for the state of execution of single-
robot plans, as we will show in the following. The primitives
are modeled as single-robot ordinary non-instantaneous actions and
represent communication acts.

4.1 Syntax
A multi-robot PNP, for agents {1, . . . , n}, can be defined as the

union of n single-robot PNPs enriched with synchronization con-
straints between actions of different robots. When writing a multi-
robot plan, the syntax is not much different from the single robot
case, except that actions are labeled with a unique id for the robot.
Given n single-robot PNPs {〈Pi, Ti, Fi〉}, appropriately labeled,
the simplest way to define a multi-robot plan is:

M_PNP = 〈M_P, M_T, M_F 〉

where M_P =
Sn

i=1 Pi, M_T =
Sn

i=1 Ti, M_F =
Sn

i=1 Fi.
Such a multi-robot plan consists simply of n independent plans.

When dealing with multi-robot systems, the main issue is how to
represent the interactions among actions performed by different
agents (i.e. among plans). The multi-robot plan, as previously de-
fined, fails to capture such interactions and may result in the exe-
cution of conflicting actions. In particular, we want to be able to
order actions across plans so that overall consistency is maintained
and conflicting situations are avoided.

In our approach, we model multi-robot plans as a collection of
single-robot plans enriched with synchronization constraints to avoid
unsafe interactions. In particular, we introduce new types of op-
erators, assuming that robots can communicate through a reliable
channel. In the following we describe a hard synchronization oper-
ator that synchronizes two plans in a given point in time and a soft
synchronization operator which introduces a precedence relation
among the actions of two plans. Another synchronization operator
that allows for relating interrupts between the actions of two robots
is shown within the example in Section 5.2.

4.1.1 Hard Synchronization
We define a hard synchronization operator among two robots s

and r, depicted in Figure 9(a), and denote it h_sync(s, r, ids, idr):

〈{pi1, pi2, pc, po1, po2}, {ts, te},
{(pi1, ts), (pi2, ts), (ts, pc), (pc, te), (te, po1), (te, po2)}〉

The operator synchronizes in time two single-robot plans and al-
lows for information share among them, through the communica-
tion of ids and idr which encode the state of execution for the
plan of agent s and agent r, respectively. This operator is similar
in structure to an ordinary non-instantaneous action, except that it
does not belong to any agent and it is labeled with a unique pair
(ids, idr).

(b)

(a)

sync(R1,R2,id,id’)

h_sync(id,id’)

sync(R1,R2,id,id’)

R1.gotoLeftSideTable

R2.gotoRightSideTable

R1.lift

R2.lift

l i f t

l i f t

gotoLeftSideTable

gotoRightSideTable

p
c

p
i1

p
i2

p
0 1

p
0 2

t
s t

e

Figure 9: (a) A multi-robot PNP for hard synchronization. (b)
The single-robot PNPs obtained from the multi-robot one.

For example, Figure 9(a) shows a multi-robot PNP for two robots
which have to lift a table. The nodes for action structures and syn-
chronization operators are grouped, for readability, by a common
label. In this example R1 and R2 have to reach the two sides of a
table and lift it simultaneously. The h_sync operator ensures that
the robots will start to lift the table when both have reached it. In
particular, the input transition ts acts as a join waiting for both ac-
tions R1.gotoLeftSideTable and R1.gotoRightSideTable to
terminate. The place pc represents the state in which the commu-
nication, necessary for synchronization, is in progress. Finally, the

83

ending transition of te acts like a fork enabling the performance of
the lift actions.

We now provide the formal definition of the hard synchroniza-
tion operator. Consider, without loss of generality, a sequence of
actions, R1.act1 and R1.act2, of robot R1, and a sequence of ac-
tions, R2.act1 and R2.act2, of robot R2. Assume that por1 and
pir1 are the output and input place of R1.act1 and R1.act2, re-
spectively. Moreover, assume that por2 and pir2 are the output and
input place of R2.act1 and R2.act2, respectively. The multi-robot
plan, which enforces R1.act2 and R2.act2 to start simultaneously,
is the union of the four actions and the h_sync operator, with the
constraint that:

por2 = pi2 ∧ pir2 = po2 ∧ por1 = pi1 ∧ pir1 = po1

4.1.2 Soft Synchronization

(a)

(b)

receive(id)

send(id)

s_sync(id)R2.act3

R1.act1 R1.act2

R2.act4

act1 act2

act3 act4

t
s

t
ep

i
p

c p
o

Figure 10: (a) A multi-robot PNP for soft synchronization. (b)
The single-robot PNPs obtained from the multi-robot one.

We define a soft synchronization operator and denote it as s_sync:

〈{pi, pc, po}, {ts, te}, {(pi, ts), (ts, pc), (pc, te), (te, po)}〉
This operator defines a precedence relation among two actions

of two different robots. Figure 10(a) shows the representation of
a soft synchronization enforcing that the action of agent R1 must
start after the termination of the action of agent R2.

Consider, without loss of generality, the multi-robot plan com-
posed by a sequence of actions, R1.act1 and R1.act2, of robot
R1, and a sequence of actions, R2.act3 and R2.act4, of robot R2.
We want to enforce R1.act1 to be executed before R2.act4. As-
sume that ter1 is the ending transition of R1.act1 and that tsr2

is the starting transition of R2.act4. The synchronized multi-robot
plan is the original multi-robot plan merged with the s_sync opera-
tor and the new edges (po, tsr2) and (ter1, pi). Figure 10(b) shows
the single-robot plans obtained from this synchronized multi-robot
plan.

4.2 Semantics
The semantics of a multi-robot PNP is the same of a single-robot

PNP in the case of multibody planning [10], where a single cen-
tralized agent can dictate actions prescribed by the plan and query
the knowledge base of each agent. Nevertheless, this approach is
not desirable because it introduces a single point of failure in the
system (i.e. the centralized agent).

We show that multi-robot PNPs allow for distributed execution.
In particular, we provide an operational semantics for distributed
execution. Roughly, given a multi-robot PNP, we can automatically
produce a set of single-robot PNPs by isolating the portion of the
plans relative to each robot and replacing synchronization operators
with communication actions. Each single-robot plan can be locally
executed by a robot without the need of a centralized coordinator,
while correctness is maintained by communication actions.

A multi-robot plan can be decomposed into two single-robot
plans (e.g. Figures 9(b) and 10(b)) by isolating actions labeled with
the same agent id and by decomposing the sync operators into the
two communication primitives. Notice that, as we show in the fol-
lowing, the starting transitions of communication primitives have a
different semantics with respect to other actions. Major details are
provided by [1].

For the hard synchronization operator h_sync(id1, id2) the two
communication primitives are sync(id1, id2) and sync(id2, id1),
defined as follows:

sync(id1, id2) = 〈{pid1
i , pid1

e , pid1
o }, {tid1

s , tid1
e },

{(pid1
i , tid1

s), (tid1
s , pid1

e), (pid1
e , tid1

e), (tid1
e , pid1

o)}〉
and

sync(id2, id1) = 〈{pid2
i , pid2

e , pid2
o }, {tid2

s , tid2
e },

{(pid2
i , tid2

s), (tid2
s , pid2

e), (pid2
e , tid2

e), (tid2
e , pid2

o)}〉.
These two (single-robot) primitives, when performed jointly by
robots s and r, establish a communication link between s and r,
based on which a protocol for synchronization is started. In par-
ticular, each action, for example sync(ids, idr) performed by s,
at first sends the ids encoding the state of execution its plan to r
and, then, waits for idr from r, which is acknowledged upon re-
ception. Finally, it waits an acknowledgment of reception of ids by
r to terminate. Notice that the exchange of information is based on
the ids which encode the state of execution of each single plan (e.g.
which sensing branches are performed during execution). Note that
network delay may affect exact simultaneous starting of the two ac-
tions; however, the formalism ensures that the two actions will be
generally executed at the same time by the two robots.

A soft synchronization operator s_sync(id) can be decomposed
into two communication primitives: a blocking receive(id) and a
non-blocking send(id):

send(id) = 〈{ps(id)
i , ps(id)

e , ps(id)
o }, {ts(id)

s , ts(id)
e },

{(ps(id)
i , ts(id)

s), (ts(id)
s , ps(id)

e), (ps(id)
e , ts(id)

e), (ts(id)
e , ps(id)

o)}〉
and

receive(id) = 〈{pr(id)
i , pr(id)

e , pr(id)
o }, {tr(id)

s , tr(id)
e },

{(pr(id)
i , ts(id)

s), (tr(id)
s , pr(id)

e), (pr(id)
e , tr(id)

e), (tr(id)
e , pr(id)

o)}〉.
Consider the example in Figure 10 where we want to enforce that
act1 precedes act4. Intuitively, a sender robot performs a send(id)
action to inform a receiver that he ended action act1. The action
is performed on a separate thread because there is no need to wait
for executing act2. Nevertheless, the receiver robot performs the
receive(id) on the main thread because it has to be sure that act1
has ended before performing act4

We now provide a formal characterization of the single-robot
PNPs S_PNPi obtained a the multi-robot one M_PNP . We de-
note with 〈Pi ⊆ M_P, Ti ⊆ M_T, Fi ⊆ M_F 〉 the subset of
M_PNP composed by the operators labeled with agent i. Recall

84

that synchronization operators do not belong to any agent. Given
a multi agent plan M_PNP = 〈M_P, M_T, M_F 〉 the single-
robot plan for agent i, S_PNPi = 〈S_Pi, S_Ti, S_Fi〉, is the
minimal net such that:

Pi ⊆ S_Pi ∧ Ti ⊆ S_Ti ∧ Fi ⊆ S_Fi (1)

∀t, t′ ∈ Ti ∀p, p′ ∈ M_P

(p, p′ ∈ h_sync(i, r, id1, id2)∧(t, p) ∈ MF∧(p′, t′) ∈ MF) =⇒
({pid1

i , pid1
e , pid1

o } ⊆ S_Pi ∧ {tid1
s , tid1

e } ⊆ S_Ti∧
{(t, pid1

i), (pid1
i , tid1

s), (tid1
s , pid1

e), (pid1
e , tid1

e),

(tid1
e , pid1

o), (pid1
o , t′)} ⊆ S_Fi) (2)

∀t, t′ ∈ Ti ∀p, p′ ∈ M_P

(p, p′ ∈ h_sync(S, i, id1, id2)∧(t, p) ∈ MF∧(p′, t′) ∈ MF) =⇒
({pid2

i , pid2
e , pid2

o } ⊆ S_Pi ∧ {tid2
s , tid2

e } ⊆ S_Ti∧
{(t, pid2

i), (pid2
i , tid2

s), (tid2
s , pid2

e), (pid2
e , tid2

e),

(tid2
e , pid2

o), (pid2
o , t′)} ⊆ S_Fi) (3)

∀t ∈ Ti ∀p ∈ M_P (p ∈ s_sync(id)) =⇒
({ps(id)

i , ps(id)
e , ps(id)

o } ⊆ S_Pi ∧ {ts(id)
s , ts(id)

e } ⊆ S_Ti∧
{(t, ps(id)

i), (p
s(id)
i , ts(id)

s), (ts(id)
s , ps(id)

e), (ps(id)
e , ts(id)

e),

(ts(id)
e , ps(id)

o)} ⊆ S_Fi) (4)

∀t ∈ Ti ∀p, p′ ∈ M_P

(p ∈ s_sync(id) ∧ (p, t) ∈ MF ∧ (p′, t) ∈ MF) =⇒
({pr(id)

e , pr(id)
o } ⊆ S_Pi ∧ {tr(id)

s , tr(id)
e } ⊆ S_Ti∧

(p′, t) 6∈ S_F ∧ {(p′, tr(id)
s), (tr(id)

s , ps(id)
e), (pr(id)

e , tr(id)
e),

(tr(id)
e , pr(id)

o), (pr(id)
o , t)} ⊆ S_Fi) (5)

Condition 1 states that the synchronized plan must include i’s
single-robot part of the plan, but does not take into account syn-
chronization. On the one hand, Conditions 2 and 3 ensure that,
respectively, the send and receive primitives are correctly substi-
tuted to each hard synchronization. On the other one hand, in a
similar way, Conditions 4 and 5 enforce the correct interpretation
of the soft synchronization. Notice that synchronization actions are
also used for exchanging relevant information for cooperation (see
the passing experiment in the next section for an example). These
communications allow robots to maintain local KBs.

Examples of this process are shown in Figures 9 and 10. Here
the multi-robot PNPs in the first part (Figures 9(a) and 10(a)) are
divided in two PNPs for the two agents (Figures 9(b) and 10(b)),
where the synchronization operators are replaced by send, receive
and sync actions. The synchronized single-robot plans are then ex-
ecuted as shown in Section 3.2. The communication primitives will
guarantee the consistency of the distributed multi-robot plan.

The following theorem (see [1] for the proof) ensures correctness
of distributed execution of a multi-robot PNP.

Theorem 4.1 The execution of a multi-robot PNP is equivalent to
the distributed execution of the single-robot PNPs derived from it.

5. EXPERIMENTAL TESTS
The proposed framework has been implemented and used to con-

trol different robotic systems in different domains. A plan executor
for PNP formalism has been implemented with a set of tools for
designing and debugging plans. Plans are executed reacting to the
events occurring in the environment and to the state of the robot.
During the execution of a PNP, the robot makes use of a set of
functions that can access the internal state of the robot and return
truth values about relevant properties for the execution of the plan.

Among the many applications, we describe here two experimen-
tal tests implemented with AIBO robots: a cooperative foraging
test and a passing test. The objective of these tests is to highlight
the features of the formalism in representing the multi-robot plans
needed to accomplish them. Complete multi-robot plans, derived
single robot plans and videos showing the execution of these tasks
with the AIBO robots are available at [1].

5.1 Cooperative foraging
The cooperative foraging test we have considered is set by three

robots that perform a synchronized operation on a set of similar
objects scattered in the environment. In order to achieve such a
complex foraging task it is necessary to be able to synchronize ac-
tions across plans. Each robot can take one of two tasks: collector,
that grabs the object (a ball), supporter, that supports the collector
robot during the grabbing phase. Tasks are assigned to the robots
by an external module [6] that dynamically decides which robot is
in best condition to execute the task. While multi-robot PNPs are
used here to specify the coordinated behavior of the two robots that
execute the collector and supporter tasks.

Figure 11 shows the multi-robot plan. Hard synchronization is
used to synchronize the robot after they reach the corresponding
target positions. Then the collector robot waits for the supporter
one to push the ball below his neck. After that collector robot grabs
the ball and the supperter robot moves away. Finally, the collector
robot brings the object in the target area. All these synchronization
activities are implemented on the robots by pairs of communication
actions.

5.2 Passing
The passing test has the objective of showing the ability of the

multi-robot PNP formalism to address both action synchroniza-
tion and dynamic task assignment. In contrast with the previous
test, here there is no external module for dynamic task assignment,
while this is accomplished by using the PNP structures described in
the previous sections. Two interesting portions of the multi-robot
plan are shown in Figure 12. In the first picture, the hard synchro-
nization construct ensures that the robots synchronize their activi-
ties after they both see the ball. Within the synchronization mes-
sage, the robots also exchange their knowledge about the position
of the ball. Then role assignment is based on sensing actions and
the one which is closer to the ball will go and grab the ball, while
the other will prepare to receive the pass. Note that this assignment
is dynamic and depends on the actual position of the ball. Another
interesting feature of this plan is shown in the second picture, where
we show how an interrupt in the execution of an action performed
by one robot (i.e., the robot loses the ball when it is grabbing it) im-
plies the interrupt of an action in the other robot (i.e., the other robot
will interrupt the ’receive-pass’ action). This is achieved through a
h-sync and it allows the robots to restart the coordination activity
(dashed lines in the figure): for example, if the second robot is now
closer to the ball, it will start the grabbing phase.

6. CONCLUSIONS

85

Figure 11: Multi-robot PNP for foraging test.

h_sync(id1,id2)

R1.closestToBall

R2.closestToBall

R2.!closestToBall

R1.!closestToBall

.

. . .

. . .

. . .

. . .

h_sync(id1,id2)

R2.receiveBall

R1.pass

R1.lostBall

. . .

. . .

. . .

. . .

Figure 12: Portion of Multi-robot PNP for passing test.

In this paper we have presented a new formalism for high level
programming of multi-robot systems that is able to represent plans
with many important features such as sensing, loops, concurrency,
non-instantaneous actions, action failures, and different types of
action synchronization. The main advantage of the Petri Net Plan
framework is the clear definition of the modeling language and of
its semantics in terms of Petri nets. From one side, the high expres-
siveness of PNPs allows for effectively capturing and dealing with
most of the situations encountered when designing autonomous
robots and multi-robot systems. From the other side, we have a for-
mal method to distinguish action implementation and specification
and we can use standard tools to evaluate properties of the nets such
us liveness and reachability of the goal states. Finally, the graph-
ical representation of Petri nets allows for an easy understanding
and debugging of the plans which speeds up the development pro-
cess. Such high expressiveness is also a limitation when designer
is interested in using plan generation techniques. Although we pro-
vide an operational semantics for our plans, in order to have a clear
specification of the behavior of the robots during execution, it may

still be difficult to write plans, especially Multi-Agent plans, for
very complex tasks, like playing soccer. Our future work will in-
clude two main streams: first, we want to study the possibility of
extending plan generation techniques to automatically produce (at
least partial) PNPs; second, we want to investigate learning tech-
niques (e.g., genetic programming) for refining or generating plans
by experiments and user training.

7. REFERENCES
[1] Extra Material Web Page.

www.dis.uniroma1.it/~ziparo/pnp_extras.html.
[2] H. Costelha and P. Lima. Modelling, analysis and execution of

robotic tasks using petri nets. Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, pages
1449–1454, Oct. 29 2007-Nov. 2 2007.

[3] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with
sensing for a mobile robot. In Proc. of 4th European Conference on
Planning (ECP’97), 1997.

[4] G. DeGiacomo, Y. Lesperance, and H. J. Levesque. ConGolog, a
concurrent programming language based on the situation calculus.
Artificial Intelligence, 121(1-2):109–169, 2000.

[5] E. H. Durfee. Distributed problem solving and planning. In G. Weiss,
editor, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, pages 121–164. MIT Press, 1999.

[6] A. Farinelli, L. Iocchi, D. Nardi, and V. A. Ziparo. Assignment of
dynamically perceived tasks by token passing in multi-robot systems.
Proceedings of the IEEE, Special issue on Multi-Robot Systems,
94(7):1271–1288, 2006.

[7] K. Konolige. COLBERT: A language for reactive control in sapphira.
Lecture Notes in Computer Science, 1303:31–50, 1997.

[8] M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel. Designing
agent behavior with the extensible agent behavior specification
language XABSL. In D. Polani, B. Browning, and A. Bonarini,
editors, RoboCup 2003: Robot Soccer World Cup VII, volume 3020
of Lecture Notes in Artificial Intelligence, pages 114–124, Padova,
Italy, 2004. Springer.

[9] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[10] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003. Second Edition.

[11] R. Scherl and H. J. Levesque. The frame problem and knowledge
producing actions. pages 689–695, 1993.

[12] W. Sheng and Q. Yang. Peer-to-peer multi-robot coordination
algorithms: petri net based analysis and design. Advanced Intelligent
Mechatronics. Proceedings, 2005 IEEE/ASME International
Conference on, pages 1407–1412, 24-28 July 2005.

[13] V. A. Ziparo and L. Iocchi. Petri net plans. In Proceedings of Fourth
International Workshop on Modelling of Objects, Components, and
Agents (MOCA), pages 267–290, Turku, Finland, 2006.

86

