
Automated Global-to-Local Programming in 1-D Spatial
Multi-Agent Systems

Daniel Yamins and Radhika Nagpal
Harvard University

School of Engineering and Applied Sciences
Cambridge, MA 02138

yamins@fas.harvard.edu, rad@eecs.harvard.edu

ABSTRACT
A spatial computer is a distributed multi-agent system that
is embedded in a geometric space. A key challenge is engi-
neering local agent interaction rules that enable spatial com-
puters to robustly achieve global computational tasks. This
paper develops a principled approach to global-to-local pro-
gramming, for pattern formation problems in a one-dimensional
multi-agent model. We present theoretical analysis that ad-
dresses the existence, construction, and resource tradeoffs
of robust local rule solutions to global patterns, and which
together form a “global-to-local compiler”.

1. SPATIAL COMPUTERS
A spatial computer is a distributed multi-agent system that
is embedded in a geometric space. The agents’ computa-
tional constraints are local: each agent has limited inter-
nal memory and processing power, and communicates only
with neighboring agents. The systems’ computational goals,
however, are typically defined relative to the global spatial
structure.

Real-world spatial computers abound. In biology, em-
bryonic development is a prototypical example, where large
numbers of identically-programmed agents interact to gen-
erate a spatially complex organism from an undifferenti-
ated embryo [14] (fig. 1). In engineering, sensor networks
distributed over large open regions or embedded in build-
ings react to dynamic global environments by collectively
processing spatially localized data [12]. Mobile and recon-
figurable robot swarms cooperate to achieve global spatial
search, transport, and shape formation imperatives from in-
numerable local actions [8, 6, 10]. A “paintable computer”
that could form image displays and storage devices on-the-
fly would be an ultimate, if not yet accessible, form of spatial
computing [2].

A key challenge for spatial computing is programmable
self-organization. How does one design local interaction
rules to achieve prespecified global goals? Despite the many
compelling examples in nature, decentralized systems are
difficult to reason about. Cascades of interaction produced
by iterated local rules often behave in apparently unpre-
dictable ways, and therefore are hard to design. This diffi-
culty is compounded by the need for robustness, so that com-
munications failures and perturbations that disturb equil-

Cite as: Automated Global-to-Local Programming in 1-D Spatial Multi-
Agent Systems, D. Yamins and R. Nagpal,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.615-622.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Embryo of the common fruit fly Drosophila
melanogaster several hours post-fertilization. The
colored stripes are a repeating pattern of spatially
organized gene expression, roughly radially symmet-
ric around the embryo’s major axis. The stripes,
which emerge from interactions between cells as the
embryo grows, are developmental precursors of the
major body components of the adult fly.

bria are automatically repaired. Furthermore, some global
tasks may not be solvable at all, given the local agents’ com-
putational and informational limitations.

This paper addresses the problem of designing spatial
computer programs in a principled way, for the case of pat-
tern formation problems in a one-dimensional multi-agent
model. In doing so, we resolve four subproblems:

1) An existence problem: We demonstrate a simple cri-
terion, called local checkability, that any robustly solvable
pattern must satisfy. If a pattern is not locally checkable,
no robust local rule can self-organize it.

2) A construction problem: For all patterns that are lo-
cally checkable, we describe an algorithmically-derived local
rule that generates it robustly. The mechanism this pro-
cedure exploits can be viewed as a self-organizing Turing
machine.

3) A resource problem: The two main resource param-
eters of the model, the agent interaction radius and agent
memory size, exist in a radius-state resource tradeoff. We
describe algorithms for tuning along the continuum between
large-radius/low-state and low-radius /high-state implemen-
tations. And,

4) A description problem: We exhibit a simple method,
called local feature invariance, to allow programmers to de-
scribe solvable global patterns compactly.

By combining these four techniques, we are able to build
a “Glocal-to-Local Compiler” – a procedure which takes as
input a pattern and resource parameter limits, and whose
output is a local rule generating the pattern within the spec-
ified limits.

The methods presented in this paper only explicitly ad-
dress one-dimensional pattern formation (applying, for in-
stance, to the case of fruit fly early embryonic development

615

shown in fig. 1). However, the techniques naturally gener-
alize to other spaces, as we discuss at the end.

Related Work: Our 1-D multi-agent model is similar
to cellular automata. Studies of cellular automata go back
over 50 years, from the pioneering work of Ulam and von
Neumann to the more recent attempts to classify automata
rules, and their use in modeling real biological systems [11,
13]. Single rules, like Conway’s Game of Life, have been
shown to generate a variety of complex behaviors from vary-
ing initial conditions [3]. The main emphasis of these studies
has been to understand the local-to-global connection: given
a local agent rule, what patterns will it produce?

In contrast, engineering emphasizes the inverse global-to-
local question: given a pattern, which agent rules will ro-
bustly produce it? Recent work has shown that this prob-
lem can be tractable. Nagpal and others have created pat-
tern formation languages for Amorphous computers, while
Klavins, Kotay, and others have demonstrated robust self-
assembly algorithms for modular robots [7, 5, 10]. This
paper examines similar problems in a simpler model, but
achieves more comprehensive results. We introduce a set of
generic techniques – local checkability, self-organized Turing
machines, resource tradeoff algorithms, local feature invari-
ance – that aim to provide a theoretical underpinning for
the future algorithm development.

2. THE 1-D MODEL
This section introduces a simple mathematical framework

for describing one-dimensional distributed multi-agent sys-
tems and the patterns they can form. The main objects in
our model are:

• Configurations, static snapshots of the overall multi-
agent system, composed of agents, their internal states,
and the underlying 1-D geometry.

• Local Rules, the locally-defined identical programs each
agent runs.

• The Timing Model, the order in which agents update
their state.

• Patterns, the spatially-organized structures that the
agents are attempting to form.

• Robust Solutions, iterated local rules that self-organize
given patterns, robust to initial conditions and timing.
Finding robust solutions algorithmically is the central
goal of this paper.

Configurations: A configuration is a labeled graph whose
nodes represent agents, whose labels represent agent internal
states, and whose edges represent the spatial relationships
between the agents. Schematically:

2 0 1 11 0 1 2 13

in which the color-number correspondence represents agent
internal states. To formalize this picture, we define a con-
figuration of size n over state set S as a labelled graph

X = (V, E, A)

in which the vertex set V = {1, . . . , n} represents the agent
nodes, the edge set E = {(1, 2), (2, 3), . . . , (n− 1, n)} repre-
sents the linear 1-D spatial relationships, and A : V → S, is
a labeling assigning each node a state in S. The labeling of
the nodes is the idea that each agent is one of the states in S
at any given time. The fact that the edges of the graph are

directed indicates that agents can distinguish left from right.

Local Neighborhoods: Given a configuration X and an
agent i ∈ V (X), we wish to define the “local view” around
a in X, as a function of a choice of a radius parameter
r. Formally, the r-neighborhood in X at agent i, denoted
Br(i, X), is the subgraph of X whose nodes are at most
distance r from i. The r-neighborhood of a “central agent”
further than r hops from the ends of a configuration contains
2r + 1 nodes, with a unique “center agent”. The neighbor-
hood of an agent closer than r hops to the left or right end
contains fewer nodes and will have asymmetric local views,
with fewer than 2r + 1 nodes. Let Br,S denote the set of
all local radius-r neighborhoods. (Usually we’ll drop the S
from the subscript when it’s obvious from context.)

Local Rules: Dynamics are generated by agent-based pro-
grams running identically on each of the agents, and drawing
information only from other nearby agents. Formally, a local
rule of information radius r is any function

F : Br → S.

A local rule is just a look-up table by which an agent i takes
local information from the r-neighborhood Br(i, X) around
i, and chooses a new state to adopt as a function of what it
sees. The inputs to the look up are local r-neighborhoods,
so therefore the domain is Br. The outputs are the new
states that the agents will adopt, so therefore the range
is S. Any two central agents with the same r-local agent
state sequence will have identical r-neighborhoods, and so
be treated identically by F . End-agents can act differently,
since their neighborhoods have different local geometry.

A local rule F acts on a configuration X = (V, E, A) at
agent i ∈ X by changing the value of A(i) from whatever it
is to F (Br(F)(i, X)). For example, suppose F is a radius-

2 local rule such that on the neighborhood b = (01b130),
F (b) = 3. (The hat indicates the agent at the center of
b.) Then the action of F on agent 5 from the configuration
depicted above is:

2 0 1 11 0 1 2 13

2 0 1 31 0 1 2 13
action of local rule, on radius-2 ball, changing 1 --> 3

The Timing Model: Given a configuration of agents and
a local rule, there are many orders in which agents can act.
An asynchronous action updates one agent at a time. A
local rule can also act (partially or wholly) synchronously
by having a subset of agents all update their states simu-
lateously. For a configuration X, given c ⊂ V (X), define
F (c, X) to be the configuration obtained by replacing the
labels of each i ∈ c with F (Br(f)(i, X)). We define a call
sequence for a size-n configuration to be an infinite sequence

c = (c1, c2, c3, . . .)

where each cj ⊂ V (X). The set cj represents the agents
that are called at timestep j.

In this paper, we work over a “live timing model” which
includes both synchronous and asynchronous call sequences.
A call sequence c is live if it calls every agent infinitely many
times, meaning intuitively that no agent is completely ex-
cluded. Let Sn denote the set of all live call sequences for
size-n configurations, and S = ∪nSn.

Given a local rule F , an initial configuration X0, and a
call sequence c, a trajectory arises by each agent iteratively

616

applying F in the order given by c. Formally, the trajectory
of local rule F starting at X0 generated by call sequence c is
the sequence {F n

c (X0)|n ∈ N}, where

F n
c (X0) = F (cn, F n−1

c (X0))

and F 0
c (X0) = X0. If the trajectory converges to a unique

final fixed configuration y, then we say that the trajectory
has a well-defined limit, and write y = limn F n

c (X).

Pattern Goals: The “computational goal” of the spatial
computers studied here is pattern formation. Intuitively, a
pattern is an arrangement of states that is ordered in some
fashion. This order can be described most simply by defining
patterns as sets of configurations. Formally, let CS be the
set of all configurations with state set S. Then a pattern
over state set S is any subset T ⊂ CS . The elements of T
are the instances of the pattern.

Two broad classes of patterns that are of interest are re-
peat patterns and proportionate patterns. Consider a length-
4 configuration of agents, the left-most of which has state 1,
followed by three agents in state 0. By repeatedly concaten-
ing this segment with itself we obtain a version of the 1000
pattern at every size that is a multiple of 4:

0 0 0 11 0 000 0 01
size 4 instance size 8 instance

Given any finite state sequence q, the general repeat pattern
is Tq = {qn|n ∈ N} for any finite m-ary string q. The pattern
Tq only has instances at sizes that are multiples of the size
of the generating unit. The fruit fly embryonic gene pattern
shown in fig. 1 is a repeat pattern.

In contrast, consider the “half pattern” T1/2 consisting of
configurations of the form 1n0n, for each n:

1 1 1 0 0 0 011 01
size 4 instance size 8 instance

0

T1/2 is an example of a proportionate patterns, character-
ized by having a subpattern (or a change in background
pattern) appear at a specific fractional value along an oth-
erwise (piecewise) uniform structure.

Robust Solutions: Intuitively, to “robustly solve” a pat-
tern, a local rule must generate trajectories that always con-
verge to configurations consistent with that pattern. For-
mally, a local rule F is a robust solution to pattern T if for
all initial conditions X0 and live call sequenes c ∈ C|X0|, the
limit of the trajectory generated by F starting at X under
c is well-defined and an element of T whenever T contains
at least one configuration of size n. Symbolically,

lim
n→∞

F n
s (X) ∈ T whenever T ∩ Cn 6= ∅.

We impose the condition that T ∩ Cn 6= ∅ because it would
be unfair to expect a rule that cannot add or remove agents
to push into T a configuration whose size is wrong.

3. LOCAL CHECKABILITY: EXISTENCE
In this section, we describe a simple “necessary condition”

that any pattern must meet to be robustly solvable.
Let T be a pattern. Assuming that T has at least one

instance X of size n, the definition of a local rule F being a
solution to pattern T requires that

lim
n→∞

F n
c (X) = Y

for some fixed configuration Y ∈ T . The local neighbor-
hoods around the agents in Y must therefore all be fixed

points of F . These local neighborhoods overlap, forming a
mutually interlocking configuration-wide stop state. For ex-
ample, if a local rule F with radius 2 is a solution to the
T1000 pattern, then in this figure:

0 0 0 11 0 00

all of the bracketed 2-neighborhoods must be fixed states
of F . That is, F (10b001), F (00b001), F (01b000) = 0 and

F (00b100) = 1.
These considerations suggest that for T to admit a robust

solution, it must be possible to find a coherent set of locally-
specifiable stop states as a subset of T . This constrains the
patterns T that are robustly solvable. To see this formally,
we define the notion of local checkability.

Recall the definition of Br, the set of local neighborhoods
of radius r with states in the set S. Consider a binary-valued
function Θ on Br, i.e. Θ : Br → {0, 1}. Θ should be thought
of as a “recognition function” – Θ(b) = 1 means that the
local neighborhood b is “recognized” as a correct local stop
state. For any such function define

Θ(X) =
Y

a∈V (X)

Θ(Br(a, X)).

When applied to a whole configuration X, Θ(X) = 1 only
when all agents recognize a stop state.

Definition 1 [Local Check Schemes] Let T be a pattern.
A binary-valued function Θ is a local check scheme (LCS)
for T of radius r if

• For all X ∈ CS, Θ(X) = 1 ⇒ X ∈ T.

• For all n such that T ∩ Cn,S 6= ∅, there is X ∈ Cn,S

such that Θ(X) = 1, where Cn,S are all the configura-
tion over S of size n.

The smallest r for which there exists a check scheme of
radius r for T is the local check radius of T , denoted
LCR(T). If there is no check scheme for T of any finite
radius with m states, then LCR(T) is defined to be ∞.

Intuitively, the first condition in the above definition pre-
vents bad deadlocks, while the second condition requires
there to be at least one fixed point. The key result is:

Proposition 1 If F is a robust solution to T , then r(F) ≥
LCR(T).

Proof. Suppose F is a solution to T . Then if F (c, X) =
X for all call sequences c only if X ∈ T . Moreover, for
each n, choosing any X ∈ Cn,S , let Y = limn F n

s (X). Then
Y ∈ Cn,S and F (c, Y) = Y for all c, so Y ∈ T . Now define
ΘF : Br(F) → {0, 1} by

Θ(Br(F)(i, X)) = 1 ⇔ ∀ i, F (Br(F)(i, X)) = X(i).

Notice that X = F (c, X) for all c if and only if for all i ∈
V (X), F (Br(F)(i, X)) = X(i), which holds if and only ifY

i∈V (X)

Θ(Br(F)(i, X)) = 1.

Hence, Θ(X) = 1 implies X ∈ T , and for each n there is
a Y ∈ Cn,S such that Θ(Y) = 1. Thus Θ is a local check
scheme for T , and LCR(T) ≤ r(F).

617

In words, local checkabilty is necessary for solvabil-
ity, simply describing the fact that the stopping condition
of “satisfying the pattern”must be locally recognizable. An-
other way to say this is: if we let TΘ be the pattern consisting
of all configurations X such that Θ(X) = 1, the pattern T is
locally solvable only if there is a local check scheme Θ such
that TΘ ⊂ T and T ∩ Cn 6= ∅ ⇒ TΘ ∩ Cn 6= ∅.

The repeat pattern T1000 has a radius-2 local check scheme
Θ given by setting Θ(b) = 1 iff b = 01b000, 00b100, 10b001,

00b010, b1000, 1b000, 10b00, or 100b0. However, a radius of 1
with two states is insufficient to provide an LCS for the
T1000 pattern, for suppose Θ were such an LCS. The radius-
1 neighborhoods include 1b00, 0b00, 0b01, and 0b10. Any LCS
for T1000 would thus have to accept 0b00, but then it would
also have to accept 0 strings of any length, contradicting the
first condition on an LCS. Hence, LCR(T1000) = 2, so any
solution must have radius ≥ 2.

A slight generalization of the above construction shows
that all repeat patterns are locally checkable:

Proposition 2 For all repeat patterns Tq, LCR(Tq) ≤ |q|/2.

However, proportionate patterns, in contrast, are not lo-
cally checkable at any radius, and are thus not robustly solv-
able by local rules:

Proposition 3 LCR(T1/2) = ∞, i.e. the half-pattern is
not locally checkable.

Proof. Suppose Θ is a local check scheme of radius r for
T1/2. Let Xn = 1n0n for n > 2r + 1. Since Xn is the only
configuration in T1/2 of size 2n, it must be Θ-accepted and
thus Θ(b) = 1 for all r-neighborhoods b in Xn. On the other
hand, the r-neighborhoods in the configurations 1n02r+1 are
identical to those in Xn. Hence all such configurations must
also be Θ-acceptable for all n > 2r + 1. But such configura-
tions are not in T1/2, contradicting that Θ is a local check
scheme for T1/2.

While a complete characterization of local check schemes is
beyond the scope of this paper, it is instructive to note that
local checkability has useful closure properties. Given two
locally checkable patterns T1 and T2 with check schemes
Θ1,Θ2, Θ1 · Θ2 is a check scheme for T1 ∧ T2, the logical
“AND,” while Θ1 · Θ2 + Θ1 + Θ1 taken modulo 2 checks
T1 ∨ T2, the logical ‘OR’. Hence

LCR(T1∧,∨T2) ≤ max{LCR(T1), LCR(T2)}.

Similarly, local checkability is closed under concatenations:
define T1 · T2 = {X ◦ Y | X ∈ T1, Y ∈ T2}. Then if Θ1 and

Θ2 are check schemes for T1 and T2, defining eΘ(b) = 1 for all
r(Θ1) + r(Θ2)-neighborhoods in TΘ1 · TΘ2 gives local check
scheme for T1 · T2. Hence,

LCR(T1 · T2) ≤ LCR(T1) + LCR(T2).

A similar construction holds for unordered concatenation,
i.e. for the pattern T1 × T2 defined as containing configura-
tions x1◦y1◦. . .◦xn◦yn with xi ∈ T1∪{∅} and yi ∈ T2∪{∅}.
By using the operators {∧,∨, ·,×} in arbitrarily complicated
combinations, a wide variety of locally checkable complex
patterns can be created. For instance, given the two sim-
ple repeat patterns T100 and T1000, we can easily form the
combination patterns

T100 ∨ T1000 = {(100)n, (1000)n, |n ∈ N}

and T100 · T1000 = {(100)n(1000)m, |n, m ∈ N}. The closure
properties and the similarly of the proof of prop. 3 to that of

the pumping lemma suggests local check schemes are related
to regular languages. The connection is somewhat subtle
and beyond the scope of this paper.

4. SUFFICIENCY BY CONSTRUCTION
Proposition 1 establishes that local checkability is a nec-

essary condition for solvability. We now demonstrate, by
construction, that it is also sufficient.

Specifically, given a local check scheme Θ, recall that TΘ

is the pattern consisting of all configurations X such that
Θ(X) = 1. We will show how for each local check scheme Θ
we can construct a local rule FΘ that is a robust solution for
TΘ. The radius of the local rule FΘ need not be the same as
the radius r(Θ) as long as it is finite, but by virtue of prop.
1, of course r(FΘ) ≥ r(Θ). In the construction we make, the
local rule FΘ will have radius at most 2r(Θ) + 2.

A Gradient Algorithm: We will first show how to solve
a subclass of local check schemes that have an especially
simple structure.

Specifically, define a subconfiguration x to be Θ-consistent
if there is a configuration X ∈ TΘ such that x is a subcon-
figuration of X. Then, we say that a local check scheme Θ
is single-choice if for any Θ-consistent subconfiguration x,
there is at most one i ∈ S, such that x ◦ i is Θ-consistent
and at most one j such that j ◦ x is Θ-consistent (where ◦
denotes string concatenation). Let that unique i be denoted
∇Θ(x)+ when it exists. Intuitively, this is the “gradient” of
Θ from the left direction. If Θ is of radius r, then ∇Θ(x)+

is only a function of the right-most 2r states.
We will now use the gradient to produce robust solutions

to single-choice check shemes. Let R = 2r and let B be
any R-neighborhood. Let B− denote the r-neighborhood
consisting of the portion of B to the left of the center agent,
and let B(0) denote the state of the center agent. Now, let
FΘ be the local rule of radius R defined by

FΘ(B) =

(
∇+

Θ(B−), if Θ[B−]

B(0), otherwise
. (1)

In words, the first clause causes an agent that is just to
the right of a patch of Θ-correctness to switch its state to
extend the patch of Θ-correctness rightward; while the sec-
ond clause instructs an agent that is not on the “right-most
border of correctness” to do nothing; and left-end agents are
automatically on the border of correctness if they have in-
correct states. Intuitively, what this rule does is generate a
right-moving “wave of Θ-correctness” by applying the local
Θ-gradient operator (fig. 2).

Proposition 4 For any single-choice local check scheme Θ,
FΘ as defined in eq. 1 is a solution to TΘ.

Proof. If Θ is single-choice, then for any n such that
TΘ,n , TΘ ∩ Cn 6= ∅, there is a unique configuration Xn ∈
Tn. We have now to show that if X0 is any configuration
of size n and c is any live call sequence, then (FΘ)n

c (X0)
converges to Xn. We prove inductively that for each j ≤ n
and some t, Xt , (FΘ)t

c(X0) = Xn[1 : j] ◦ Z for some
configuration Z. To this end, suppose inductively that X0 =
Xn[1 : j] ◦ Y for some j < n, and that Y (1) 6= ∇+

Θ(Xn[j −
2r− 1 : j]). In words, j + 1 is the first position in X0 where
the local check scheme Θ fails to hold. Then because of the
second clause of the definition of FΘ in eq. 1, all k ≤ j,
FΘ(BR(k, X0)) = X(k). Let t the be first timestep in c
such that agent j + 1 is called (such a t must exist since c is
assumed to be live). Then Xt−1 = Xn[1 : j]◦Y (1)◦Z where

618

¬Θ

Θ

¬Θ
Θ

Θ

Θ

¬Θ

¬Θ

¬Θ
Θ

Figure 2: Single-choice algorithm on typical initial
condition. Θ = correct locally; ¬Θ = not locally cor-
rect.

Z is some configuration. Let B = BR(j + 1, Xt−1). Since
Θ[B−] holds by inductive assumption, the first clause of eq.
1 yields FΘ(B) = ∇+

Θ(B−). Thus Xt = Xn[1 : j + 1] ◦ Z′,
completing the induction.

A Self-Organized Turing Machine: In general, local
check schemes can allow multiple choices to follow a con-
sistent subconfiguration. The radius-2 check scheme for the
pattern T100 ·T1000 is multi-choice because both 0 and 1 are
acceptable states following the 2-neighborhood 00b100:

0 1 0 0. . . .
0 1 0 0

1 0

. . . .

. . . .0

Suppose we tried to solve the pattern T100 ·T1000 along the
lines of what we did for single-choice patterns. We’d have
to choose a value for ∇+

Θ(00b100), say 0. In this case, the
solution will write a string of repeats of 1000 until it reaches
the right end. If the number of agents in the configuration is
such that the end does not precisely line up with a complete
unit of 1000, the only way the configuration can be solved
is if the number of repeats of 100 back toward the left end
of the configuration is changed. This means that the right-
end agent has to communicate to left-end agents, sending a
signal with the message: ‘substitute another copy of 100 in
place of 1000’.

The signal will travel toward the left until reaching the
left-most instance of 1000, whereupon it should cause the
agent whose local radius-6 neighborhood is 100100b01000100
to substitute the choice of ‘0’ state made originally with ‘1’
instead. Having done this, the signal must dissipate and
cause a new gradient wave to travel to the right, realigning
all the repeats of 1000 relative to the new choice. When this
wave reaches the right end, if a complete unit of 1000 fits,
the configuration is solved. If not, another signal will have
to be sent right-ward with the same message. Repeating
these events, the configuration will eventually be solved (see
fig. 3).

In general, we construct a local rule FΘ, with radius 2r(Θ)+
2, that self-organizes a brute-force “lexicographic” search
through the set of possible locally correct structures. This
rule comes to equilibrium only when the local ball around
every agent is consistent with the check scheme Θ – if no
Θ-consistent state of size n exists, FΘ will never achieve
equilibrium. Ten detailed local rules defining this construc-
tion appear in table 3. For ease, the rules assume we have
m + 2 extra states to work with.

The 10 rules work by implicitly implementing a virtual
self-organizing Turing machine. As described in detail in
the text accompanying figure 3, Rules 1-4 essentially re-
implement the single-choice algorithm. A head – represented
by an extra state denoted � – is “born” (as per Rule 1)
when an agent determines that it is on the “border of cor-
rectness”. Then, the head propagates across the system (as
per Rules 2-3), writing a trail of local Θ-correctness in its
wake. Finally, the head halts, as per Rule 4, disappearing
off the right boundary. Sometimes, the right-moving �-head
is unable to halt and disappear, because it will encounter a
situation in a multi-choice check scheme in which no possible
local completion exists. In this case, Rules 5-10 implement
the signalling described in the discussion above, using m+1
extra states denoted �, and 41, 42, . . . , 4m.

The Turing machine is virtual, since it does not exist apart
from states of the agents in the system. At any given time,
it heads are emergent structures virtually hosted by sev-
eral neighboring agents. Moreover, it is a distributed Turing
machine because at any given time, there may be multiple
heads present in the system; the rules encode their interac-
tions so that eventually a consistent choice is made. The
distributed Turing machine is implementing a self-organized
distributed signalling system to coordinate the construction
of long-range correlations.

Combining this construction with proposition 1, we have:

Theorem 1 Local checkability is a necessary and sufficient
condition for local solvability. Moreover, a pattern T with
local check radius LCR(T) has a robust solution with radius
2 · LCR(T) + 2 (using m + 2 extra states).

By definition of robustness, the solutions are guaranteed by
theorem 1 to be completely self-repairing and time-delay
agnostic. At the expense of an additional 2r(Θ) + 3 added
to the radius, the requirement for the extra states can be
removed. The rule FΘ can be quite slow, since it must
search through (potentially) exponentially many configu-
rations. An optimized linear time algorithm can be con-
structed [15].

5. THE RADIUS-STATE TRADE-OFF
Often times, agents have limits on either their memory or

communication radius. One of the useful important proper-
ties of local check schemes is their ability to tradeoff between
these two resource parameters. The pattern

T1000 = {1000, 10001000, . . .},

for example, uses two states and has a local check radius of
2. If four states were available, one could encode essentially
the same information as T1000 with the pattern

T1234 = {1234, 12341234, . . .}.

However, T1234 only requires a radius of 1 to check locally.
To show how this radius/state tradeoff works in general, we
demonstrate two algorithms, one which trades off state for
radius, and the other which trades off radius for state.

Trading State for Radius: We will first show how to
solve the problem of decreasing agent state by increasing
local radius. We illustrate this in one of the most important
representative cases – the “coordinate” pattern.

A “k-coordinate pattern” is any state pattern in which
each agent can determine locally k unique coordinate values.
A local check scheme for the k-coordinate pattern is provided

619

Figure 3: Left: 10 rules defining FΘ. Right: Action of FΘ for the pattern T100 · T1000.

Define FΘ, with radius 2r(Θ) + 2, by:

Rule 1: If

• B(−2r − 1 : −1) satisfies Θ, and

• B(−2r : 0) does NOT satisfy Θ,

then FΘ(B) = �.

Rule 2: If

• B(0) = B(1) = �, and

• B(2r − 1 : −1) satisfies Θ,

then FΘ(b) = ∇Θ(b)+ when the latter exists.

Rule 3: If

• B(−1) = � and

• B(−2r − 2 : −2) satisfies Θ,

then FΘ(B) = �.

Rule 4: For the right-end agent, if

• B(0) = �, and,

• B(−2r − 1 : −1) satisfies Θ,

then FΘ = η(B) when the latter exists.

Rule 5: If

• The agent is as in Rule 2, BUT ∇Θ(B−)+ does not
exist, or

• the agent is as in Rule 4, BUT η[B] does not exist,

then FΘ(B) = �.

Rule 6: If

• B(1) = �, and

• B(−2r − 1 : −1) and B(−2r : 0) both satisfy Θ, and

• B(0) = M(B),

then FΘ(B) = �.

Rule 7: If

• B(0) = �, and

• B(−2r − 2 : −2) and B(−2r − 1 : −1) both satisfy Θ,
and

• B(−1) 6= M(B(−2r − 1 : −1)),

then FΘ(B) = 4B(−1).

Rule 8: If

• B(1) = 4B(0) and

• B(−2r : 0) satisfies Θ, and

• B(0) 6= M(B(−2r : 0)),

then FΘ(B) = Θ(B(−2r : 0))+.

Rule 9: If

• B(0) = 4j for some j 6= B(−1), or

• B(0) = 4B(−1) and B(−1) = M(B(−2r − 1 : −1)),

then F (B) = �.

Rule 10: For the agent is the left-end, if B(0) = � then
F (B) = �.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Action of FΘ for the pattern T100 · T1000 on a typical
initial condition with 22 agents: Straight arrows indi-
cate agent whose action is being shown. Curved side arrows
indicate time steps, solid = one step, dotted = many. Step
1 → 2: Rule 1 generates � head. Steps 2 → 4: Rules
2-3 apply to propagate � head rightward, leaving trail of
Θ-correct states. Steps 4 → 5: Head continues to propagate
until reaching right end. Step 5 → 6: there is no completion,
since 1000 unit doesn’t fit evenly; so Rule 5 reverses � into
�. Step 6 → 7: Rule 6 propagates � to first point where
new decision is possible. Steps 7 → 10: Rules 7-9 replace
state 0 in agent 3 with state 1, and reverse � back to �. 40

state arises in step 8 to prevent inappropriate updating in
agent 3. Step 10 → 11: Rules 2-3 apply again, propagating
� back to right end. Steps 11 → 14: Process repeats until
configuration solved.

Technical definitions for Rules: In the above specifications, the following definitions apply. Let b be any r-neighborhood.
Define “local coordinates” on b so that 0 is the position of the center agent, +i is the agent i hops to the right of center, and
−i the agent i hops to the left. Given a 2r +1-neighborhood B, let B(i : i +2r) denote the r-neighborhood with central agent
at position i + r. Θ+(b) denotes the minimal j > b(|b|) such that Θ(b(1 : |b| − 1) ◦ j) = 1 when such a j exists (where |b| is
the number of nodes in b). M(B) denotes the maximal l such that Θ[b(1 : |b| − 1) ◦ l]. Given a Θ-consistent subconfiguration
x, let ∇Θ(x)+ denotes the minimal i ∈ S such that x ◦ i is Θ-consistent, when such an i exists. A subconfiguration y is
right-end Θ-consistent if there is a configuration X with Θ(X) = 1 such that X = z ◦ y for some z. Given a Θ-consistent
subconfiguration x, let ηΘ(x) denote the minimal i ∈ S such that x ◦ i is right-end Θ-consistent, when such an i exists.620

by the well-known discrete gradient :

Θ(B) =

(
1 , if B(−1) = B(0)− 1

0 , otherwise
.

This check scheme has radius of 1/2, meaning that it only
makes use of information from the agent to the left. Threre
is no radius-1/2 local check scheme for k-coordinatization
with fewer than k states.

However, if we allow a somewhat larger radius, we can
dramatically lower the required amount of state. Another
well-known idea in computer science is the DeBruijn se-
quence: for m states and window-length n, a deBruijn se-
quence B(n, m) is an m-ary sequence of length-mn in which
each length-n m-ary sequence arises exactly once as a con-
tiguous subsequence in B(n, m), wrapping around at the
end. For example, an instance of B(3, 2) is 10111000. It is
a classic and simple result that such sequences exist for all
m and n [4].

The key realization is to think of the view within each
length-n window in B(n, m) as encoding a unique position
along a line up to mn positions in length. For example, a
coordinate gradient of length 8 can be encoded by B(3, 2):

1 2 3 40 6 75

1 0 0 00 1 111 0

That is, we make the encoding 101 → 0, 010 → 1, 100 →
2, &c. Hence, a system that forms the “DeBruijn repeat
pattern” TB(n,m) is self-organizing a length-n encoding of
the mn-coordinatized pattern.

To get a system to self-organize the pattern TB(n,m), we
must find a local check scheme for this pattern. The key
fact here is that B(n, m) has a radius d(n + 1)/2e check
scheme defined by accepting precisely the n + 1 windows in
the pattern. For example, the radius-3/2 local check scheme

accepting precisely the 3/2-neighborhoods 10b10, 01b00, 10b00,

00b01, 00b11, 01b11, 11b10, and 11b01, is a local check scheme
for B(3, 2). Hence, the radius-1/2 discrete gradient check
scheme in 8 states can be replaced by a radius-3/2 check
scheme in 2 states. More generally, a radius-1/2 check scheme
for the 2n-coordinate pattern can be replaced with a radius-
d(n + 1)/2e check scheme in 2 states.

Coordinate patterns represent only one type of local check
scheme. However, the DeBruijn encoding idea can easily
be modified for any local check scheme to make a general
state/radius tradeoff procedure [15].

Trading Radius for State: Conversely, suppose we
were given the pattern T100000000 over the binary states {0, 1}.
This pattern has local check radius of 4. But now, instead of
just one binary variable, suppose each agent had access to a
three-variable state space {0, 1}3. Consider the local check
scheme Θ accepting “staggered shifts” of the 100000000 pat-
tern, each shift separated by three positions, in each of the
three variables. Pictorially, this is:

0 0000 0 001

0 0000 000

1 0000 0 000

1

with Θ accepting precisely the 1-neighborhoods in the above
figure. Each radius-1 neighborhood is unique, and the neigh-
borhoods cannot appear in any other order than the origi-
nal pattern, shift-repeated in each variable. The result is a
radius-1 check scheme for T100000000, now over 8 states.

A general version of this “cut and shift” construction can
easily be made. Intuitively, instead of modeling agent in-
ternal states as a single m-ary variable taking values in S,

suppose each agent now has access to the k-variable state
space Sk, with mk states. Let Bj,r(i, X) denote the r-
neighborhood in X at agent i, for variable j. For instance,
in the configuration above, B2,2(5, X) = (0, 1,b0, 0, 0).

Now, suppose we’re given a radius r local check scheme Θ
with m states, and our goal is to get a radius l local check
scheme for the pattern TΘ generated by Θ, for any l < r. Let
Θl be the radius-l local check scheme on M = 2d(r− l)/(2l+
1)e + 1 variables defined setting Θl(B = (b1, . . . , bl)) = 1 if
and only if there is an X ∈ TΘ and i ≤ |X| such that
Bj = Bl(i+j(2l+1), X) for j = −(M−1)/2, . . . , (M−1)/2.
Evidently Θl((b1, . . . , bl)) = 1 IFF Θ(b1 ◦ b2 ◦ . . . bl) = 1.
Hence for any Θl-satisfying configuration, the original pat-
tern can be “read off” from the first variable b1, or in a
shifted version in any other variable. Θl is thus a radius-l
check equivalent to Θ.

The continuum: Combining the two complementary di-
rections of radius-state tradeoff, we have shown that there is
a continuum between high-state/low-radius and high-radius/low-
state implementations of equivalent check schemes.

6. PATTERN DESCRIPTION
Our driving problem is building a “compilation” proce-

dure – an algorithm whose input is a solvable pattern T and
a resource limitation, and whose output is explicit robust so-
lution to T respecting that limitation. To serve as the input
to such a procedure, we must find a language for compactly
describing infinite patterns. An extremely simple approach
is local feature invariance: the user specifies a set of sam-
ple configuration that are instances of the pattern, together
with a feature radius at which she’d like the features of the
samples to be preserved. We then compute the simplest
local check scheme consistent with those features.

Formally, let X = {X1, X2, . . . , XK} be a finite set of
configurations (the samples) and fix an r > 0 (the feature
radius). Let

B(X , r) = {Br(i, X)|X ∈ X , i ∈ {1, . . . , |X|}},

that is, the set of all distinct r-neighborhoods present in the
samples. Define a local check scheme Θ(X , r) to accept only
r-neighborhoods consistent with the samples, i.e.

Θ(X , r)(B) =

(
1, If B ∈ B(X , r)

0, otherwise
.

Denote the pattern generated by Θ(X , r) as T (X , r). By
definition, T (X , r) is the set of all configurations Y such
that Θ(X , r) accepts every r-neighborhood in Y . Since all
the r-neighborhoods accepted by Θ(X , r) are exactly those
appearing as r-neighborhoods in the sample set X , T (X , r)
can simply be thought of as the largest pattern consistent
with the features of the original samples, at scale determined
by r. In words, the samples are a set of “pictures” that
indicate features to be generalized into the complete (and
often infinite) pattern.

For example, let X1 = {(100000010000001000000)}. This
sample is evidently “trying” to capture the 1000000 repeat
pattern. Taking large enough radius generates the “right”
answer, i.e. T (X1, 4) = T1000000. By choosing a smaller ra-
dius, other structures emerge. For instance,

T (X1, 2) = 10000 · (T10000 × T00000) · 00000.

Only a few samples are required to generate complex pat-
terns. For the three-sample set X2 = {100100, 10001000, 1001000},
we have T (X2, 3) = T100 · T1000. Thus the logic and con-

621

Figure 4: Snapshots from trajectory of rule outputted by global-to-local compiler described in section 6, on
a ellipsoidal repeat pattern with rotational symmetry, with random initial condition. Compare to Fig. 1.

catenation operators {∧,∨, ◦,×} described in §3 are easily
expressed by the invariant features of their samples.

Using this input framework, we can define a Global-to-
Local compilation procedure. Given a pattern input de-
scribed as a sample/feature pair (X , r), and a maximum
possible communications radius R, the following three-step
process compiles the input into a local rule solution:

(X , r) −→ Θ(X , r), (Local Feature Invariance)

−→ Θ(X , r)(R−1)/2, (Radius → State Tradeoff)

−→ FΘ(X ,r)(R−1)/2 , (Construction)

where step 2 uses the construction in §5. By construction,
this procedure generates a robust solution to the pattern
T (X , r), using radius at most R. For example, with the
input from above, it outputs a nearest-neighor local rule
solving T100 · T1000. We have implemented this Global-to-
Local compiler in Matlab. Code is available for download at
www.people.fas.harvard.edu/~yamins.

7. APPLICATION AND GENERALIZATION
Our paper focusses on one-dimensional systems. Many

questions in spatial multi-agent systems turn out to be es-
sentially one-dimensional in nature, even when the spaces
nominally have more complex geometry. For example, one
of the basic techniques in the field – the discrete gradient
– is precisely meant to construct a one-dimensional coor-
dinate system, whatever the dimension of the underlying
space [1, 2]. Moreover, many spatial computers naturally
produce structures with a high degree of symmetry, ren-
dering patterns trivial along all but one dimension. The
radial symmetry of the early Drosophila embryo forms a
one-dimensional repeat pattern, even though the organism
is a three-dimensional ellipsoid, thus allowing our techniques
to apply (see fig. 4). And, artificial self-assembly systems
that do construct nontrivial higher-dimensional patterns of-
ten treat the multiple dimensions independently [7, 9].

In addition, we have studied the application of these tech-
niques to more complex underlying geometries. We find,
and will present in future work, that almost all the results
discussed in this paper generalize. The 1-D multi-agent
model presented in §2 generalizes simply by replacing the 1-
D directed line graph with a graph G describing some other
space. The proof of prop. 1 also makes no specific reference

to the 1-D model, so local checkability as a necesary criterion
is a very general result. In fact, local checkability is useful
for almost all quasi-regular underlying spatial graphs [15].
The generalizations of the radius/state tradeoff algorithms
and local feature invariance technique are similar.

Generalizing the sufficiency construction is more complex.
The basic idea is to replace “zero-dimensional” point-like
Turing heads with higher-dimensional wavefronts, making
the tie to signalling waves more explicit. With this general-
ized“wave-computing”approach, it is possible to design flex-
ible higher-dimensional distributed signaling systems [15].
In future work, we will assemble these components into gen-
erally applicable global-to-local compiler.

8. REFERENCES
[1] H. Abelson et al. Amorphous computing. Comm.

ACM, 43(5), 2001.

[2] W. Butera. Programming a Paintable Computer. PhD
thesis, MIT, 2002.

[3] J. Conway. The game of life. Scientific American,
March 1970.

[4] N. DeBruijn. A combinatorial problem. Indagationes
Math., 8, 1946.

[5] E. Klavins. Directed self-assembly using graph
grammars. In Foundations of Nanoscience, 2004.

[6] M. Kloetzer and C. Belta. Hierarchical abstractions
for robotic swarms. In Proc. IEEE ICRA 06, 2006.

[7] R. Nagpal. Programmable Self-Assembly. PhD thesis,
MIT, 2001.

[8] R. Olfati-Saber et al. In Proc. CDC03, 2003.

[9] G. Poulton et al. Agent Theories, Architectures, and
Languages, 2004.

[10] D. Rus et al. Self-reconfiguration robots.
Communications of the ACM, 45, March 2002.

[11] J. v. Neumann. The Theory of Self-reproducing
Automata. U. Illinois Press, 1966.

[12] G. Werner Allen et al. Monitoring volcanic eruptions.
In Proc. EWSN 05, 2005.

[13] S. Wolfram. Rev. Mod. Phys., 55, 1983.

[14] L. Wolpert. Positional information. J. Theor. Bio.,
25(1), 1969.

[15] D. Yamins. A Theory of Local to Global for
One-Dimensional Multi-Agent Systems. PhD thesis.

622

www.people.fas.harvard.edu/~yamins

	Spatial Computers
	The 1-D Model
	Local Checkability: Existence
	Sufficiency by Construction
	The Radius-State Trade-Off
	Pattern Description
	Application and Generalization
	References

