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ABSTRACT
The Distributed Constraint Optimization Problem (DCOP) is a fun-
damental formalism for multi-agent cooperation. A dedicated frame-
work called Resource Constrained DCOP (RCDCOP) has recently
been proposed. RCDCOP models objective functions and resource
constraints separately. A resource constraint is an n-ary constraint
that represents the limit on the number of resources of a given type
available to agents. Previous research addressing RCDCOPs em-
ploys the Adopt algorithm, which is a basic solver for DCOPs.

In this paper we propose another version of the Adopt algorithm
for RCDCOP using a pseudo-tree that is generated ignoring re-
source constraints. The key ideas of our work are as follows: (i)
The pseudo-tree is generated ignoring resource constraints. (ii) Vir-
tual variables are introduced, representing the usage of resources.
These virtual variables are used to share resources among sub-
trees. These ideas are used to extend Adopt. The proposed method
reduces the previous limitations in the construction of RCDCOP
pseudo-trees. The efficiency of our technique depends on the class
of problems being considered, and we describe the obtained exper-
imental results.
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1. INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) [2, 3,

4, 6] is a fundamental formalism for multi-agent cooperation in
distributed meeting scheduling, sensor networks and other applica-
tions including distributed problem solving.

A dedicated framework called Resource Constrained DCOP (RCD-
COP) has been recently proposed [1, 5] . RCDCOP models ob-
jective functions and resource constraints separately. A resource
constraint is an n-ary constraint that represents the limit on the
number of resources of a given type available to agents. Multiply-
constrained DCOP is formalized in [1]. As an example domain,
[1] describes the meeting scheduling problem with privacy require-
ments. Resource constrained distributed task scheduling modeled
as n-ary constrained DCOPs, and the algorithm to solve such prob-
lems, are presented in [5]. The previous research addressing RCD-
COPs employs the Adopt algorithm [4], which is a basic solver for
DCOPs. An important graph structure for Adopt is the pseudo-tree
for constraint networks. A pseudo-tree implies a partial ordering of
variables. In this variable ordering, n-ary constrained variables are
placed on a single path of the tree. Therefore, resource constraints
that have large arity augment the depth of the pseudo-tree. This
also reduces the parallelism, and therefore the efficiency of Adopt.

In this paper, we propose another version of the Adopt algo-
rithm for RCDCOP using a pseudo-tree that is generated ignoring
resource constraints. The key ideas of our work are as follows: (i)
The pseudo-tree is generated ignoring resource constraints. (ii) Vir-
tual variables are introduced, representing the usage of resources.
These virtual variables are used to share resources among sub-
trees. These ideas are used to extend Adopt. The proposed method
reduces the previous limitations in the construction of RCDCOP
pseudo-trees. The efficiency of our technique depends on the class
of problems being considered, and we describe the obtained exper-
imental results.

2. PROBLEM DEFINITION: RESOURCE
CONSTRAINED DCOP (RCDCOP)

A DCOP is defined by a setA of agents, a setX of variables
and a setF of binary functions. Agenti has its own variablexi.
xi takes a value from discrete finite domainDi. The value ofxi is
controlled by agenti. The cost of an assignment{(xi, di), (xj , dj)}
is defined by a binary functionfi,j(di, dj) : Di × Dj → N. The
goal is to find a global optimal solutionA that minimizes the global
cost function:

P

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).
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Figure 1: Resource constrained DCOP

In RCDCOP resource constraints are added to DCOP. Resource
constraints are defined by a setR of resources and a setU of re-
source requirements. A resourcera ∈ R has its capacity defined
by C(ra) : R → N. Each agent requires resources according
to its assignment. For assignment(xi, di) and resourcera, a re-
source requirement is defined byui(ra, di) : R × Di → N. For
each resource, the total amount of requirement must not exceed
its capacity. The global resource constraint is defined as follows:
∀r ∈ R,

P

ui∈U, {(xi,di)}⊆A ui(r, di) ≤ C(r). The resource con-
straint takes arbitral arity. An example of RCDCOP that consists of
5 variables and 2 resources is shown Figure 1(a). In this example,
x0, x2 andx3 are constrained by resourceR0. x0, x1 andx4 are
constrained by resourceR1.

3. BACKGROUND : SOLVING RCDCOP US-
ING ADOPT

The Adopt[4] algorithm depends on a variable ordering defined
by a pseudo-tree. The edges of the original constraint network are
categorized into tree edges and back edges of the pseudo-tree. The
tree edges represent the partial order relation between two vari-
ables. There is no edge between different subtrees. By employing
this property, Adopt performs search processing in parallel.

The processing of Adopt consists of two phases as follows. (i)
Computation of global optimal cost: Each node computes the
boundary of the global optimal cost according to the pseudo-tree.
(ii) Termination: After computation of global optimal cost, the
boundary of the cost is converged to the optimal value in the root
node. Then the optimal solution is decided according to the pseudo-
tree in a top-down manner.

Details of the Adopt algorithm are shown in [4]. In this pa-
per, important modifications for Adopt are applied to computa-
tion of the global optimal cost. Agenti computes the cost us-
ing information as follows. (1)xi: variable of agenti. Valuedi

of xi is sent to lower neighbor nodes ofxi using VALUE mes-
sage. (2)current_contexti: current partial solution of ancestor
nodes ofxi. current_contexti is updated byVALUE message
andcontext of COST messages. (3)contexti(x, d), lbi(x, d)i,
ubi(x, d): boundary of optimal cost for each valued of variable
xi and subtree routed at child nodex. These elements are received
from child nodex usingCOST message. Ifcurrent_contexti in-
cludescontexti(x, d), upper and lower bounds of cost arelbi(x, d)
andubi(x, d) respectively. Ifcurrent_contexti is incompatible
with contexti(x, d), contexti(x, d), lbi(x, d)i andubi(x, d) are
reset to{}, 0 and∞ respectively. (4)UBi(d), LBi(d): upper
bound and lower bound of cost for valued of variablexi and the
subtree routed atxi. They are computed using cost information.

In previous work[5], a version of the Adopt algorithm, which
serializes resource constrained variables, is proposed. For exam-
ple, the pseudo-tree shown in Figure 2(a) is generated from the
RCDCOP shown in Figure 1(a). In this example,x0, x2 andx3,
which are related to resourcer0, are placed on a single path of a
pseudo-tree.x0, x1 andx4, which are related to resourcer1, are
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Figure 2: Serializing of resource constrained variables

also placed on a single path. If it is necessary to serialize variables,
extra tree edges are inserted between nodes (e. g. (x2, x3) and (x1,
x4) in Figure 2(a)). In the Adopt algorithm,Resource evaluation
nodes, which evaluate resource constraints, are introduced. A re-
source evaluation node is added as a child node of the lowest node
of serialized nodes. For example, in Figure 2(b), extra nodesr0

andr1 are added as child nodes ofx3 andx4 respectively. Each
agent sends its value of variable to resource evaluation nodes using
theVALUE message. Then the resource evaluation node evaluates
the total amount of resource requirement for its resource. If the
resource constraint is not satisfied, the resource evaluation node
notifies its parent node using theinfinity COST message. In this
approach, no modification of the Adopt algorithm is necessary ex-
cept adding resource evaluation nodes and handling infinity cost.
However, large arity of resource constraint increases the depth of
the tree, and reduces parallelism in search processing.

4. SOLVING RCDCOP WITH RESOURCE
CONSTRAINT FREE PSEUDO-TREE

In this work, we propose a novel version of the Adopt algorithm
for RCDCOP. The proposed algorithm allows resource constraints
related to nodes in different subtrees. The pseudo-tree is generated
ignoring resource constraints. For example, the pseudo-tree shown
in Figure 1(b) is generated from the RCDCOP shown in Figure
1(a). In this example, there is a constraint edge ofr0 between two
different subtrees, which containx2 andx3 respectively. Similarly,
there is a constraint edge ofr1 betweenx1 andx4.

4.1 Introduction of virtual variables
The main idea of the proposed method is the introduction of

virtual variables, which represent usage of resources. Each node
shares resources with its parent node and child nodes using the
virtual variables. Virtual variablevra,i is defined for resourcera

and nodexi, which requires resourcera in the subtree routed at
xi. vra,i is owned by the parent node ofxi. vra,i takes a value
from its discrete domain{0, 1, · · · , C(ra)}. As a simple exam-
ple, a pseudo-tree, which is related to single resource constraint,
is shown in Figure 3. In this example, resourcer0 is related to
variablesx0, x1, x2 and x3. For these resources and variables,
virtual variablesvr0,1, vr0,2 andvr0,3 are introduced. Each vir-
tual variablevra,i is owned by the parent node ofxi. The value
of vra,i is controlled by the parent node. Note that root nodex0

does not have a parent node. Therefore, it is assumed that the value
of vr0,0 is given from the virtual parent node. In this case,vr0,0

takes a constant value that is equal to capacityC(r0) of resource
r0. Valuedra,j of virtual variablevra,j , which is owned by agent
i, is sent toi’s child nodej using theVALUE message. Therefore,
theVALUE message is modified to contain(xi, di) and additional
assignment(vra,j , dra,j). When nodej receives theVALUE that
contains(vra,j , dra,j), nodej updates itscurrent_contextj with
new (vra,j , dra,j). In nodei, assignments of virtual variables for



x0

x1

x2 x3

r0

x0

x1

x2 x3

vr0,1

vr0,2
vr0,3

vr0,0

(a) pseudo-tree (b) virtual variables

Figure 3: Virtual variables for resource constraint

resourcera should satisfy a constraintca,i as follows.

ca,i : dra,i ≥ ui(ra, di) +
X

j∈child nodes of i
which requires ra

dra,j (1)

Heredra,i denotes the value ofvra,i, which is received from the
parent node ofi. The assignment(vra,i, dra,i) is contained in
current_contexti. If an assignment does not satisfy the resource
constraintca,i, the violation of the resource constraint is repre-
sented by infinity cost. Each nodei evaluates the boundary of opti-
mal cost forcurrent_contexti. Then the cost information is sent
to the parent node ofi using theCOST message. The context of
the COST message is modified to contain additional assignment
for virtual variables ofi’s parent node.

In a general case, variables are related to one or more resources.
Moreover, variables are related to a subset of whole resources. Vir-
tual variables are generated according to rules as follows.
(1) Basically, if a subtree routed at nodei’s child nodej requires
resourcera, then nodei owns virtual variablevra,j . However, the
following cases are prioritized as special cases.
(2) If nodei or multiple subtrees routed ati’s child nodes require
ra, thencurrent_contexti contains assignment (vra,i, dra,i). In
this case,dra,i is decided as follows. (i) If noi’s ancestor node
requiresra, theni is the root node forra. In this case,dra,i is
initialized as a constant that takes a value equal to capacityC(ra)
of ra. (ii) If node i is not the root node forra, theni’s parent node
h owns virtual variablevra,i. Therefore,VALUE messages, which
are received fromh, contain assignment(vra,i, dra,i).
(3) If nodei requires resourcera and no subtree routed ati’s child
node requiresra, theni is a leaf node forra. In this case, nodei
has no virtual variables forra. Therefore, the resource constraint is
defined bydra,i ≥ ui(ra, di).
(4) If multiple subtrees routed ati’s child nodesj ∈ A′ require
ra, theni must sharera among child nodesj ∈ A′, even if node
i does not requirera. Therefore, nodei owns virtual variables
{vra,j |j ∈ A′}.

An algorithm to generate virtual variables is shown in Algorithm
1. For the sake of simplicity, the algorithm consists of two phases
of processing. As a result, nodei generates setXi of own variables.

4.2 Growth of search space
Additional virtual variables increase the search space. Nodei

selects an assignment for a set of variablesXi = {xi}∪{vra,j |j ∈
Childreni, ra ∈ Rj}. HereRj denotes a subset of resources that
are required in the subtree routed at nodej. Cost evaluations in
nodei are modified toδi(Di), LBi(Di) andUBi(Di) respectively.
HereDi denotes a total set of assignments forXi. Moreover, cost
information of nodei’s child nodej is evaluated forXi,j = {xi}∪
{vra,j |ra ∈ Rj}. Therefore, they are modified tolbi(j,Di,j),
ubi(j,Di,j), ti(j,Di,j) andcontexti(j,Di,j) respectively. As a
result of these modifications, the size of the search space increases
exponentially with the number of virtual variables.

If an assignment does not satisfy Equation 1, the cost of the as-

Algorithm 1: Generate virtual variables
1 Initiationi{
2 Generate pseudo−tree ignoring resource constraint.
3 if(i is not root node)pi ← parent node of nodei.
4 Ci ← a set of child nodes of nodei.
5 Ri ← a set of resources required by nodei.
6 Xi ←{xi}.
7 if ( i is root node ){ call Rootwardi(). call Leafwardi(ϕ). } }
8 Rootwardi(){
9 R−

i ← Ri.
10 for eachj in Ci{ call Rootwardj () and receiveR−

j . R−
i ← R−

i ∪ R−
j . } }

11 Leafwardi(R+
pi

){

12 R+
i ← ϕ.

13 for eachr in R−
i {

14 n ← number of nodesj s.t.r ∈ R−
j .

15 if (n ≥ 2 or (n = 1 and (r ∈ Ri or r ∈ R+
pi

) ) ){ R+
i ← R+

i ∪ {r}. } }
16 for eachj in Ci{
17 for eachr in R−

j { if( r is contained inR+
i ) Xi ←Xi ∪ {vrr,j}. }

18 call Leafwardj (R+
i ). } }

signment is∞. A violation of a resource constraint does not de-
pend on evaluation of other resource constraints. If an assignment
violates a resource constraint forra, the assignment is a violated
assignment even if other resource constraints are satisfied. There-
fore, the assignment is pruned.

The memory space for nodei’s child nodej increases exponen-
tially with the number of virtual variables that are contained inXi,j .
However, in the Adopt algorithm, default initial cost information
is used when the cost information has not been received from the
child nodes. Therefore, it is unnecessary to store the cost informa-
tion that takes the initial value.

4.3 Correctness of the algorithm
The proposed method uses additional virtual variables. This

modification straightforwardly extends Adopt. In each node, the
original variable and virtual variables can be considered as one in-
tegrated variable. The cost evaluation and invariants for the inte-
grated variable are the same as the original definition of Adopt.
Therefore, the optimality, soundness and termination are the same
as Adopt.

5. EVALUATION
The efficiency of the proposed method is evaluated by experi-

ments. As initial experiments, we use a modified graph coloring
problem with three colors. The problems are generated using pa-
rameters(n, d, r, c, l, u). The number of nodesn and link density
d are the basic parameters of the graph coloring problem. The link
densityd is set to 1 or 2. In original graph coloring problems, this
setting of parameters is used to generate a low constrained problem.
However, the problem contains additional resource constraints as
follows. Parameterr, c, l determines number of resources, capac-
ity of a resource, and arity of a resource constraint respectively. In
this problem setting, each variable is related to at least one resource
constraint. For the sake of simplicity, the usage of a resource, which
is required by an agent, is limited to 0 or 1.This means that each
agent requires a unit amount of a resource or does not require one
at all. Parameteru represents the ratio of a variable’s values that
require a resource. In these experimentsu is set to2

3
. Capacityc of

a resource is set to⌈n
2
⌉. Each problem instances generated so that

at least one assignment globally satisfies resource constraint. 10
instances for each setting are averaged. As a competitive method,
Adopt using local serialization of resource constrained variables, is
also applied. Each experiment is terminated at 9999 cycles . In that
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Figure 4: Message cycles

Table 1: Size of pseudo-trees and dimension of assignments
n d r c l Depth of Branching max. dim. num. of max. total execution time (s)

pseudo tree factor of assign- infinity num. of (Itanium2 1.6GHz
ment cost cost info. 32GB Memory/C++)

w. Local w. Virtual w. Local w. Virtual w. Virtual w. Local w. Virtual
Serialize Variables Serialize Variables Variables Serialize Variables

10 1 1 5 10 10.0 4.3 1.0 2.7 5.3 0 17.4 0.004 0.020
2 3 5 7.1 4.3 1.1 2.7 6.5 0 19.3 0.001 0.055
4 2 3 6.4 4.3 1.4 2.7 8.6 3.0 22.3 0.001 0.257

2 1 5 10 10.0 6.8 1.0 1.5 3.6 0 60.8 0.033 0.132
2 3 5 8.4 6.8 1.1 1.5 4.7 0 81.5 0.007 0.538
4 2 3 7.7 6.8 1.3 1.5 6.2 176.5 116.3 0.007 2.637

20 1 1 10 20 20.0 5.3 1.0 3.5 9.6 0 50.3 0.507 32.524
2 5 10 13.8 5.3 1.1 3.5 10.9 0 65.8 0.011 47.405
4 3 5 10.8 5.3 1.2 3.5 13.0 0 71.1 0.002 334.243

2 1 10 20 20.0 11.2 1.0 1.5 3.7 0 176.9 1.089 5.656
2 5 10 17.3 11.2 1.1 1.5 5.1 0 323.5 0.192 57.735
4 3 5 15.2 11.2 1.2 1.5 6.8 0 559.4 0.073 490.274

case, the cycle is considered as total number of message cycles.
The results are shown in Figure 4 and Table 1. In these results the
incorrectly terminated instances are taken into account.

In the case ofr = 1, message cycles of the competitive method
are greater than the proposed methods. In this case, the compet-
itive method generates a linear graph as a pseudo-tree. The lin-
ear pseudo-tree causes a delay in the processing of Adopt. On the
other hand, the proposed method generates a pseudo-tree ignoring
resource constraints. Therefore, processing of Adopt is performed
in parallel. However, in the case ofr = 2 and4, d = 2, the pro-
posed method takes a larger number of cycles than the competitive
method. In this problem, the proposed method generates multiple
virtual variables for each node of a pseudo-tree. Therefore, the
search space of the proposed method is increased. Results related
to generated pseudo-trees, the dimension of assignments and exe-
cution time are shown in Table 1. In the competitive method, the
depth of pseudo-tree increases when the number of resources is
small. On the other hand, the depth of pseudo-tree does not depend
on the number of resources. In the proposed method, dimension
of the assignment for each node increases with the number of re-
sources. The dimension also depends on the branching factor. The
total number of cost information that is recorded in each node in-
creases with the dimension of assignment. Computation cost of
proposed method is greater than previous method. The main rea-
son of that is internal search processing related to virtual variables.

6. CONCLUSION
We propose a distributed constraint optimization method for RCD-

COP using a pseudo-tree that is generated ignoring resource con-
straints. The main idea is to introduce a special set of virtual vari-
ables that represents the usage of resources. The proposed method
reduces the previous limitations in the construction of RCDCOP
pseudo-trees. The efficiency of our technique depends on the class
of problems being considered, and we described the obtained ex-
perimental results. The promising class of problems is defined

by a large number of agents and few shared resource constraints
Analysis of pseudo-trees to improves the efficiency of the proposed
method, better representation of boundaries to prune the search pro-
cessing, will be included in future work.
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