
A Flexible Framework for Verifying Agent Programs∗

(Short Paper)
Louise A. Dennis

Dept. of Computer Science
University of Liverpool, UK

l.a.dennis@liverpool.ac.uk

Berndt Farwer Rafael H. Bordini
Dept. of Computer Science

Durham University, UK
{berndt.farwer,r.bordini}@durham.ac.uk

Michael Fisher
Dept. of Computer Science
University of Liverpool, UK

mfisher@liverpool.ac.uk

ABSTRACT
There is an increasing number of agent-oriented program-
ming languages that have working interpreters and plat-
forms, with significant progress in the quality of such plat-
forms over the last few years. With these platforms becom-
ing more popular, and multi-agent systems being increas-
ingly used for safety-critical applications, the need for ver-
ification techniques that apply to systems written in such
languages is proportionally intensified. Building on our pre-
vious work on model checking for a particular agent-oriented
programming language, we have developed a new approach
whereby model checking techniques can be used directly on
a variety of such languages. The approach also supports the
verification of multi-agent systems where individual agents
have been programmed in different agent languages.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; I.2.5 [Artificial Intelli-
gence]: Programming Languages and Software; D.2.4
[Software Engineering]: Software/Program Verifica-
tion—Model checking

General Terms
Languages, Verification

Keywords
Agent-Oriented Programming Languages, BDI Agents, Ver-
ification, Model Checking, Java Pathfinder

1. INTRODUCTION
The last decade has seen significant growth in both the

amount and maturity of research being carried out in the
area of agent-based systems. An agent can be seen as an
autonomous computational entity, making its own decisions
about what activities to pursue. Rational agents make such
decisions in a rational and explainable way and, since agents

∗Work supported by EPSRC grants EP/D054788 (Durham)
and EP/D052548 (Liverpool).

Cite as: A Flexible Framework for Verifying Agent Programs (Short
Paper), Louise A. Dennis, Berndt Farwer, Rafael H. Bordini and Michael
Fisher, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

are autonomous, understanding why an agent chooses a
course of action is vital. Therefore, a key new aspect in the
design and analysis of such systems is the need to consider
not just what agents do but why they do it.

So, as agent-based solutions are used in increasingly com-
plex and critical areas, there is greater need to analyse,
comprehensively, the behaviour of such systems. Not sur-
prisingly, therefore, formal verification techniques tailored
specifically for agent-based systems is an area that is now
attracting a great deal of attention.While program verifi-
cation is well advanced, for example Java verification us-
ing Java PathFinder [10, 15], verification of agent-oriented
programs poses new challenges that have not yet been ad-
equately addressed, particularly in the context of practical
model-checking tools. In agent verification, we have to verify
not only what the agent does, but why it chose that course
of action, what the agent believed that made it choose to
act in this way, and what its intentions were in doing so.

Rather than providing an approach for one particular
programming language, we here describe a novel architec-
ture for a system allowing the verification of a wide range
of agent-based programs, produced using various high-level
agent programming languages. Although the implementa-
tion of this architecture is a complex undertaking, we here
provide the first comprehensive account of the architecture.

Our previous work [1, 3] has concentrated on model check-
ing techniques for agent-based systems written in the logic-
based agent-programming language AgentSpeak [13]. As de-
scribed above, it is vital to verify not only the behaviour that
the agent systems has, but to verify why the agents are un-
dertaking certain courses of action. Thus, the temporal ba-
sis of model-checking captures the dynamic nature of agent
computation, but is extended with intensional modal op-
erators capturing the informational (‘beliefs’), motivational
(‘desires’) and deliberative (‘intentions’) aspects of a rational
agent. Such pioneering work on model checking techniques
for the verification of agent-based systems has appeared, for
example, in [1, 11, 3, 12].

The structure of the paper is as follows. In Section 2, we
give an overview of our Agent Infrastructure Layer (AIL)
followed, in Section 3, by a description of how we are in-
corporating existing BDI languages into our framework. We
motivate the key characteristics of our property specifica-
tion language and discuss our extension AJPF (Agent Java
PathFinder) of Java PathFinder (JPF) in Section 4. In the
concluding section, we summarise our contribution and in-
dicate future research directions.Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp. 1303-1306.



AgentSpeak

Java Promela

JPF Spin

translate

verify

(a) Old approach

AgentSpeak 3APL Jadex MetateM ...

AIL property

Java code AJPF

JPF

Java listener

Java listener

(b) New approach

Figure 1: Approaches for Model Checking Agent Programming Languages.

2. ARCHITECTURE OF THE AIL
Building on our previous work, we have developed a new

framework that brings a large part of the verification-related
aspects together. Figure 1(a) shows diagrammatically how
the previous approach worked. Contrast this with the new
approach outlined in this paper (see Figure 1(b)).

One of the problems with existing approaches to model
checking agent programs is that one had to find ways of en-
coding beliefs, goals, etc., within the state of the JPF or Spin
state machine. This is a complex task, and one that would
need to be (at least partly) done again to allow model check-
ing of different programming languages. As in other fields
of Computer Science, with the emergence of various mod-
elling formalisms (in particular here new agent programming
languages), a need for a unifying framework arises.

We have investigated the key aspects underlying several
BDI programming languages [5]. Based on that, we have
developed the Agent Infrastructure Layer (AIL), a collec-
tion of Java classes that: (i) enables implementation of AIL
interpreters for various agent languages, (ii) contains adapt-
able, clear semantics, and (iii) can be verified through AJPF,
an extended version of the open source Java model checker
JPF [15]. AJPF is a customisation of JPF that was opti-
mised for AIL-based interpreters.

The AIL can be viewed as a platform on which agents
programmed in different programming languages co-exist,
and together with AJPF this provides uniform model check-
ing techniques for various agent-oriented programming lan-
guages. This is further extended with the MCAPL 1 in-
terface which allows programming languages that do not
have their own AIL-based interpreters to be model checked
against specifications written in the same property specifi-
cation language. (However, these will not benefit from the
efficiency improvements that the optimised AJPF provides.)

The AIL is not intended as a new language in its own
right, but as an intermediate layer incorporating the main
features of practical agent languages. We identify the key
operations that many (BDI-)languages use and treat these
operations as part of an AIL toolkit. The semantic rules
in [5] are a part of this toolkit but any given language can
use only some of these rules in its own AIL-based interpreter
and may choose to add its own custom rules built from the
basic operations made available. These operations and rules
have formal semantics and are implemented in Java.

We assume that agents in an agent programming lan-
guage all possess a reasoning cycle consisting of several (≥ 1)
stages (a reasoning cycle can often be broken down into var-
ious identifiable stages that help formalisation and under-
standing). Each stage is a disjunction of rules that define

1Model Checking Agent Programming Languages.

how an agent’s state may change during the execution of
that stage. The combined rules of the stages of the rea-
soning cycle define the operational semantics of that lan-
guage. The construction of an interpreter for a language
involves the implementation of these rules (which in some
cases might simply make reference to the pre-implemented
rules) and a reasoning cycle. This means that the AIL can be
viewed as a collection of Java classes/methods that provide
the building blocks for custom programming of agent lan-
guage interpreters, with the particular advantage of making
model checking possible (and more efficient). In this way,
we can implement, for example, an AgentSpeak interpreter
following the AgentSpeak operational semantics but using
the AIL operations rather than using Java from scratch.

Common to all language interpreters implemented using
AIL methods are the AIL-agent data structures for beliefs,
intentions, goals, etc., which are accessed by the model
checker and on which the modalities of the property specifi-
cation language are defined. The implicit data structures of
a given BDI language need to be translated into the AIL’s
data structures. In particular the initial state of an agent
has to be translated into an AIL agent state.

In addition to the AIL toolkit, we also provide a set of in-
terface classes, which we call the MCAPL interface. As men-
tioned earlier, this allows agents to be model checked using
the same property specification language even if no AIL-
based interpreter for that language has been developed. An
implementation of the MCAPL interface must define the re-
quired operators of the property specification language. For
instance, agents implementing the MCAPL agent interface
must provide a method which succeeds when they believe the
given parameter (represented as a “formula”) is true. In this
way, the implementation of such a method effectively im-
plements the semantics for belief in that specific supported
language. The AIL implements these interfaces and so de-
fines an AIL-specific semantics for the property specification
language; supported languages that use the AIL must ensure
that their use of the AIL makes the semantics of the proper-
ties consistent with their own semantics of those modalities.

Figure 2 provides a diagrammatical representation of AIL.
An agent, originally programmed in some agent program-
ming language ‘APL’ and running on the AIL platform, is
represented in the figure. It uses AIL data structures to
store its internal state comprising, for instance, a belief base,
a plan library, a current intention, and a set of intentions
(as well as other temporary state information). It also uses
the specific interpreter for the programming language ‘APL’
that is built using AIL classes and methods. The interpreter
defines the reasoning cycle for ‘APL’ which interacts with
the model checker, essentially notifying it when a new state
is reached that is relevant for verification.



AIL classes/methods

APL Agent APL-AIL 
Interpreter

AIL Data 
Structures

JPF VM

Unification & other optimised functions
 

Property Specification Language

Figure 2: Overview of the AIL Architecture.

non-AIL 
Interpreter

AIL classes/methods

APL1-AIL 
Interpreter

APL2-AIL 
Interpreter

APLn-AIL 
Interpreter

…

MCAPL Interface

Property Specification Language

Figure 3: The MCAPL Interface.

The agent runs in the JPF virtual machine. This is a
Java virtual machine specially designed to maintain back-
track points and explore, for instance, all possible thread
scheduling options (that can affect the result of the verifica-
tion) [15]. The JPF model checker is extensible and config-
urable, which will allow us to optimise its performance for
AIL-based systems.

3. INCORPORATING BDI LANGUAGES
Translating programs for use in the AIL framework re-

quires the actual language to be adapted to the AIL classes
and a translation to be carried out on the initial state of the
agents as described by the program. To adapt a language,
we use the AIL operations and rules as building blocks for
custom programming language interpreters. That way, we
can implement, for example, a 3APL interpreter following
the 3APL operational semantics but using AIL operations.
We do not have an AIL reasoning cycle as such and each
language has its customised interpreter reimplementing the
original reasoning cycle of the respective language.

The AIL provides operations and rules to ease the imple-
mentation of language interpreters. These building blocks
can be used to recreate the operational semantic rules of the
target language. Using these Java classes and methods pro-
vided in AIL makes programming the language interpreter
rather straightforward. The AIL provides all the infrastruc-
ture that is needed for a full implementation of an agent
programming language so that the only task required to im-
plement a language on top of AIL is the plugging together of
AIL operations to form the specific semantic rules. Taking
into consideration that the operations include all the basic
querying and updating of agent state components, the rules
are easily constructed.

Some special methods of the AIL are provided in the ex-
pectation that they will be overridden by the custom lan-
guage interpreter. This allows the pre-existing operational
semantic rules provided by AIL to be customised to a large

extent by simply overriding key methods without requiring
the creation of new language-specific rules. The transla-
tion of the initial state of an agent involves mapping the
agent’s components to the respective data structures in the
AIL agent class. This includes the beliefs and plans consti-
tuting the agent’s program, as well as information on the
agent’s context and content in the case of group, team, or
organisational structures [8].

4. MODEL CHECKING

4.1 Property Specification Language
Since the AIL is intended to be a general framework with

which a number of agent programming languages can inter-
face through translators, with the ultimate goal of provid-
ing a basis for efficient model checking, the properties to be
checked are specified at the MCAPL level but the semantics
of the properties are provided by the implementation of the
MCAPL interfaces. For agents running on an AIL-based
interpreter, the semantics of the properties are specified by
the AIL. The property specification language allows users
to refer to agent concepts at a high level, even though JPF
does model checking at the Java bytecode level.

Property specifications will be formally represented by a
modal logic built on top of a (linear) temporal logic. The
modalities of interest in multi-agent systems are, for exam-
ple, beliefs and intentions. A typical question can be para-
phrased “If agent A has the goal to achieve G and has a
plan as how to bring about G, will A eventually believe
G?” Such properties require temporal reasoning (‘eventu-
ally’) on a modal language (‘A believes G’). This builds on
our work on model checking AgentSpeak [3], on developing
the MABLE system [16], and on formalising agents [6].

4.2 AJPF
Central to the aim of bringing uniform model checking

techniques [4, 9, 7, 14] to different agent programming lan-
guages is the extension of an existing — known to be efficient
— model checker. We opted for JPF because of its flexibility
and extensibility. This allows us to embed the AIL classes
into JPF as well as providing the means for temporal logic
model checking. The embedding of the AIL classes, in turn,
aims to optimise model checking for multi-agent systems by
using JPF technologies to minimise the state space that
needs to be checked. Property specification in our exten-
sion to JPF is possible in a meaningful, yet generic, way at
the level of the MCAPL layer. In principle, model checking
could be carried out without the development of the MCAPL
or AIL classes and interfaces by feeding a language’s Java
code directly to JPF. This would, however, not allow ac-
cess to any agent-specific components in a transparent way.
Furthermore, in practice the memory and time required for
model checking would be prohibitive (e.g., because the Java
interpreters include heavy and unnecessary code such as for
parsing). On the other hand, the definition of the AIL and
its incorporation into JPF provides an efficient and elegant
route for model checking, by mapping the key constructs of
the agent language itself onto AIL concepts.

4.2.1 Java PathFinder (JPF)
JPF is an explicit state model checker for runtime-based

verification of Java bytecode. Essentially, JPF implements



its own Java virtual machine on top of the host system’s vir-
tual machine2. The difference is that JPF’s virtual machine
explores all possible paths that may be taken in a program,
continuously checking for deadlocks, violated assertions, and
unhandled exceptions. (To enable this, the state space of the
program has to be finite.) If JPF finds an error in a possible
execution, it reports all the steps leading to that error.

Model checking in any application area is subject to the
state-space explosion problem. In particular, systems in-
volving concurrency, such as multi-agent systems, cause in-
terleavings in the state transition system on which the model
checking is carried out. Out of the box, JPF is equipped with
a rich set of configuration options and abstraction mecha-
nisms to optimise particular model checking requirements.

4.2.2 Efficiency Issues
The general success of model checking as a verification

technique is due in great part to the various state-space re-
duction techniques that have been developed over the years,
and made available in the most successful model checkers.
Not all such techniques work well on agent-based programs,
requiring agent-specific techniques to be developed (one such
technique can be found in [2]). These techniques can have a
major impact on the scale of implemented systems that can
be effectively verified by model checking.

JPF internally employs some state-space reduction tech-
niques. Nevertheless, we have to ensure that the state space
of the transition system relevant to model checking an agent
systems remains as small as possible. It clearly helps if we
can hide as much code as possible from JPF’s virtual ma-
chine or have large blocks of code be executed atomically,
thereby improving the efficiency of model checking.

For our approach we have decided to restrict the rele-
vant states that can be model checked to those agent states
that are reached after a complete round of the reasoning
cycle, hiding the internal state changes (i.e., the intermedi-
ate states between applications of individual semantic rules)
from the model checker. We do this partly by embedding
the Java-based libraries forming the AIL within JPF, in par-
ticular its new (Open Source) version, so that the basic con-
structs implemented in the AIL become part of the model
checker. This is part of the customisations of AJPF, which is
an essential component of our framework for verifying mul-
tiple agent programming languages.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have provided an overview of our new

framework for the verification of multi-agent systems, incor-
porating agents programmed in several programming lan-
guages. This unifying approach to model checking and ex-
ecution of heterogeneous agent systems will have wide ben-
efit, as dependable systems are required in many areas of
applications of agent technology.

The architecture presented in this paper is much more
flexible than previous approaches to model checking for
agent-based systems. Despite the greater flexibility, we have
reason to believe that the system works efficiently, due to the
precautions we have taken in building the architecture and
the internal optimisations of AJPF, our extension of JPF.

We have developed the AIL toolkit so that new agent

2As JPF itself is written in Java, the “host virtual machine”
is the Java virtual machine used to run JPF itself.

programming languages can easily be incorporated into the
AJPF model checking architecture. Even without repro-
gramming a language interpreter using the AIL classes, it is
possible to integrate agent programs written in a variety of
languages into our verification and execution framework by
interfacing directly with the MCAPL layer (with the draw-
back of bypassing the AJPF optimisation).

Our future plans are to carry out case studies to test the
framework and to further optimise the code. The idea is to
implement the case studies in different agent programming
languages. Our automatic translators can then be used to
translate these to the AIL platform and AJPF used to ver-
ify that the systems satisfy a specification written in our
property specification language.

6. REFERENCES
[1] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.

Model Checking Rational Agents. IEEE Intelligent
Systems, 19(5):46–52, 2004.

[2] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
State-Space Reduction Techniques in Agent Verification. In
Proc. 3rd Int. Conf. Autonomous Agents and Multiagent
Systems (AAMAS), pages 896–903. IEEE, 2004.

[3] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying Multi-Agent Programs by Model Checking. J.
Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[5] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and
M. Wooldridge. A Common Semantic Basis for BDI
Languages. In Proc. 7th Int. Workshop on Programming
Multiagent Systems (ProMAS), 2007.

[6] M. Fisher. Temporal Development Methods for
Agent-Based Systems. J. Autonomous Agents and
Multi-Agent Systems, 10(1):41–66, 2005.

[7] J. Hatcliff and M. B. Dwyer. Using the Bandera Tool Set
to Model-Check Properties of Concurrent Java Software. In
Proc. 12th Int. Conf. Concurrency Theory, volume 2154 of
LNCS, pages 39–58. Springer, 2001.

[8] A. Hepple, L. A. Dennis, and M. Fisher. A Common Basis
for Agent Organisations in BDI Languages. In Proc. Int.
Workshop on LAnguages, methodologies and Development
tools for multi-agent systemS (LADS), 2007.

[9] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[10] http://javapathfinder.sourceforge.net.
[11] M. Kacprzak, A. Lomuscio, and W. Penczek. Verification

of Multiagent Systems via Unbounded Model Checking. In
Proc. 3rd Int. Conf. Autonomous Agents and Multiagent
Systems (AAMAS), pages 638–645. IEEE CS Press, 2004.

[12] F. Raimondi and A. Lomuscio. Automatic Verification of
Multi-agent Systems by Model Checking Ordered Binary
Decision Diagrams. J. Applied Logic, 5(2):235–251, 2007.

[13] A. Rao. AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language. In Proc. 7th European
Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW), volume 1038 of LNCS,
pages 42–55. Springer, 1996.

[14] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an Extensible
and Highly-Modular Software Model Checking Framework.
In Proc. ESEC / SIGSOFT FSE, pages 267–276, 2003.

[15] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model Checking Programs. Automated Software
Engineering, 10(2):203–232, 2003.x

[16] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons.
Model Checking for Multiagent Systems: The MABLE
Language and its Applications. Int. J. Artificial
Intelligence Tools, 15(2):195–225, 2006.




